kernel-fxtec-pro1x/arch/mips/mm/c-r4k.c

1417 lines
36 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
*/
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <asm/bcache.h>
#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/cacheops.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/r4kcache.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
#include <asm/war.h>
#include <asm/cacheflush.h> /* for run_uncached() */
/*
* Special Variant of smp_call_function for use by cache functions:
*
* o No return value
* o collapses to normal function call on UP kernels
* o collapses to normal function call on systems with a single shared
* primary cache.
*/
static inline void r4k_on_each_cpu(void (*func) (void *info), void *info,
int wait)
{
preempt_disable();
#if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
smp_call_function(func, info, wait);
#endif
func(info);
preempt_enable();
}
#if defined(CONFIG_MIPS_CMP)
#define cpu_has_safe_index_cacheops 0
#else
#define cpu_has_safe_index_cacheops 1
#endif
/*
* Must die.
*/
static unsigned long icache_size __read_mostly;
static unsigned long dcache_size __read_mostly;
static unsigned long scache_size __read_mostly;
/*
* Dummy cache handling routines for machines without boardcaches
*/
static void cache_noop(void) {}
static struct bcache_ops no_sc_ops = {
.bc_enable = (void *)cache_noop,
.bc_disable = (void *)cache_noop,
.bc_wback_inv = (void *)cache_noop,
.bc_inv = (void *)cache_noop
};
struct bcache_ops *bcops = &no_sc_ops;
#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
#define R4600_HIT_CACHEOP_WAR_IMPL \
do { \
if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
*(volatile unsigned long *)CKSEG1; \
if (R4600_V1_HIT_CACHEOP_WAR) \
__asm__ __volatile__("nop;nop;nop;nop"); \
} while (0)
static void (*r4k_blast_dcache_page)(unsigned long addr);
static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
{
R4600_HIT_CACHEOP_WAR_IMPL;
blast_dcache32_page(addr);
}
static void __cpuinit r4k_blast_dcache_page_setup(void)
{
unsigned long dc_lsize = cpu_dcache_line_size();
if (dc_lsize == 0)
r4k_blast_dcache_page = (void *)cache_noop;
else if (dc_lsize == 16)
r4k_blast_dcache_page = blast_dcache16_page;
else if (dc_lsize == 32)
r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
}
static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
static void __cpuinit r4k_blast_dcache_page_indexed_setup(void)
{
unsigned long dc_lsize = cpu_dcache_line_size();
if (dc_lsize == 0)
r4k_blast_dcache_page_indexed = (void *)cache_noop;
else if (dc_lsize == 16)
r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
else if (dc_lsize == 32)
r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
}
static void (* r4k_blast_dcache)(void);
static void __cpuinit r4k_blast_dcache_setup(void)
{
unsigned long dc_lsize = cpu_dcache_line_size();
if (dc_lsize == 0)
r4k_blast_dcache = (void *)cache_noop;
else if (dc_lsize == 16)
r4k_blast_dcache = blast_dcache16;
else if (dc_lsize == 32)
r4k_blast_dcache = blast_dcache32;
}
/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
#define JUMP_TO_ALIGN(order) \
__asm__ __volatile__( \
"b\t1f\n\t" \
".align\t" #order "\n\t" \
"1:\n\t" \
)
#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
static inline void blast_r4600_v1_icache32(void)
{
unsigned long flags;
local_irq_save(flags);
blast_icache32();
local_irq_restore(flags);
}
static inline void tx49_blast_icache32(void)
{
unsigned long start = INDEX_BASE;
unsigned long end = start + current_cpu_data.icache.waysize;
unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
unsigned long ws_end = current_cpu_data.icache.ways <<
current_cpu_data.icache.waybit;
unsigned long ws, addr;
CACHE32_UNROLL32_ALIGN2;
/* I'm in even chunk. blast odd chunks */
for (ws = 0; ws < ws_end; ws += ws_inc)
for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
cache32_unroll32(addr|ws, Index_Invalidate_I);
CACHE32_UNROLL32_ALIGN;
/* I'm in odd chunk. blast even chunks */
for (ws = 0; ws < ws_end; ws += ws_inc)
for (addr = start; addr < end; addr += 0x400 * 2)
cache32_unroll32(addr|ws, Index_Invalidate_I);
}
static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
{
unsigned long flags;
local_irq_save(flags);
blast_icache32_page_indexed(page);
local_irq_restore(flags);
}
static inline void tx49_blast_icache32_page_indexed(unsigned long page)
{
unsigned long indexmask = current_cpu_data.icache.waysize - 1;
unsigned long start = INDEX_BASE + (page & indexmask);
unsigned long end = start + PAGE_SIZE;
unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
unsigned long ws_end = current_cpu_data.icache.ways <<
current_cpu_data.icache.waybit;
unsigned long ws, addr;
CACHE32_UNROLL32_ALIGN2;
/* I'm in even chunk. blast odd chunks */
for (ws = 0; ws < ws_end; ws += ws_inc)
for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
cache32_unroll32(addr|ws, Index_Invalidate_I);
CACHE32_UNROLL32_ALIGN;
/* I'm in odd chunk. blast even chunks */
for (ws = 0; ws < ws_end; ws += ws_inc)
for (addr = start; addr < end; addr += 0x400 * 2)
cache32_unroll32(addr|ws, Index_Invalidate_I);
}
static void (* r4k_blast_icache_page)(unsigned long addr);
static void __cpuinit r4k_blast_icache_page_setup(void)
{
unsigned long ic_lsize = cpu_icache_line_size();
if (ic_lsize == 0)
r4k_blast_icache_page = (void *)cache_noop;
else if (ic_lsize == 16)
r4k_blast_icache_page = blast_icache16_page;
else if (ic_lsize == 32)
r4k_blast_icache_page = blast_icache32_page;
else if (ic_lsize == 64)
r4k_blast_icache_page = blast_icache64_page;
}
static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
static void __cpuinit r4k_blast_icache_page_indexed_setup(void)
{
unsigned long ic_lsize = cpu_icache_line_size();
if (ic_lsize == 0)
r4k_blast_icache_page_indexed = (void *)cache_noop;
else if (ic_lsize == 16)
r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
else if (ic_lsize == 32) {
if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
r4k_blast_icache_page_indexed =
blast_icache32_r4600_v1_page_indexed;
else if (TX49XX_ICACHE_INDEX_INV_WAR)
r4k_blast_icache_page_indexed =
tx49_blast_icache32_page_indexed;
else
r4k_blast_icache_page_indexed =
blast_icache32_page_indexed;
} else if (ic_lsize == 64)
r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
}
static void (* r4k_blast_icache)(void);
static void __cpuinit r4k_blast_icache_setup(void)
{
unsigned long ic_lsize = cpu_icache_line_size();
if (ic_lsize == 0)
r4k_blast_icache = (void *)cache_noop;
else if (ic_lsize == 16)
r4k_blast_icache = blast_icache16;
else if (ic_lsize == 32) {
if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
r4k_blast_icache = blast_r4600_v1_icache32;
else if (TX49XX_ICACHE_INDEX_INV_WAR)
r4k_blast_icache = tx49_blast_icache32;
else
r4k_blast_icache = blast_icache32;
} else if (ic_lsize == 64)
r4k_blast_icache = blast_icache64;
}
static void (* r4k_blast_scache_page)(unsigned long addr);
static void __cpuinit r4k_blast_scache_page_setup(void)
{
unsigned long sc_lsize = cpu_scache_line_size();
if (scache_size == 0)
r4k_blast_scache_page = (void *)cache_noop;
else if (sc_lsize == 16)
r4k_blast_scache_page = blast_scache16_page;
else if (sc_lsize == 32)
r4k_blast_scache_page = blast_scache32_page;
else if (sc_lsize == 64)
r4k_blast_scache_page = blast_scache64_page;
else if (sc_lsize == 128)
r4k_blast_scache_page = blast_scache128_page;
}
static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
static void __cpuinit r4k_blast_scache_page_indexed_setup(void)
{
unsigned long sc_lsize = cpu_scache_line_size();
if (scache_size == 0)
r4k_blast_scache_page_indexed = (void *)cache_noop;
else if (sc_lsize == 16)
r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
else if (sc_lsize == 32)
r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
else if (sc_lsize == 64)
r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
else if (sc_lsize == 128)
r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
}
static void (* r4k_blast_scache)(void);
static void __cpuinit r4k_blast_scache_setup(void)
{
unsigned long sc_lsize = cpu_scache_line_size();
if (scache_size == 0)
r4k_blast_scache = (void *)cache_noop;
else if (sc_lsize == 16)
r4k_blast_scache = blast_scache16;
else if (sc_lsize == 32)
r4k_blast_scache = blast_scache32;
else if (sc_lsize == 64)
r4k_blast_scache = blast_scache64;
else if (sc_lsize == 128)
r4k_blast_scache = blast_scache128;
}
static inline void local_r4k___flush_cache_all(void * args)
{
#if defined(CONFIG_CPU_LOONGSON2)
r4k_blast_scache();
return;
#endif
r4k_blast_dcache();
r4k_blast_icache();
switch (current_cpu_type()) {
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400SC:
case CPU_R4400MC:
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
r4k_blast_scache();
}
}
static void r4k___flush_cache_all(void)
{
r4k_on_each_cpu(local_r4k___flush_cache_all, NULL, 1);
}
[MIPS] MT: Fix bug in multithreaded kernels. When GDB writes a breakpoint into address area of inferior process the kernel needs to invalidate the modified memory in the inferior which is done by calling flush_cache_page which in turns calls r4k_flush_cache_page and local_r4k_flush_cache_page for VSMP or SMTC kernel via r4k_on_each_cpu(). As the VSMP and SMTC SMP kernels for 34K are running on a single shared caches it is possible to get away without interprocessor function calls. This optimization is implemented in r4k_on_each_cpu, so local_r4k_flush_cache_page is only ever called on the local CPU. This is where the following code in local_r4k_flush_cache_page() strikes: /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (cpu_context(smp_processor_id(), mm) == 0) return; On VSMP and SMTC had a function of cpu_context() for each CPU(TC). So in case another CPU than the CPU executing local_r4k_cache_flush_page has not accessed the mm but one of the other CPUs has there may be data to be flushed in the cache yet local_r4k_cache_flush_page will falsely return leaving the I-cache inconsistent for the breakpoint. While the issue was discovered with GDB it also exists in local_r4k_flush_cache_range() and local_r4k_flush_cache(). Fixed by introducing a new function has_valid_asid which on MT kernels returns true if a mm is active on any processor in the system. This is relativly expensive since for memory acccesses in that loop cache misses have to be assumed but it seems the most viable solution for 2.6.23 and older -stable kernels. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-08 09:38:37 -06:00
static inline int has_valid_asid(const struct mm_struct *mm)
{
#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
int i;
for_each_online_cpu(i)
if (cpu_context(i, mm))
return 1;
return 0;
#else
return cpu_context(smp_processor_id(), mm);
#endif
}
static void r4k__flush_cache_vmap(void)
{
r4k_blast_dcache();
}
static void r4k__flush_cache_vunmap(void)
{
r4k_blast_dcache();
}
static inline void local_r4k_flush_cache_range(void * args)
{
struct vm_area_struct *vma = args;
int exec = vma->vm_flags & VM_EXEC;
[MIPS] MT: Fix bug in multithreaded kernels. When GDB writes a breakpoint into address area of inferior process the kernel needs to invalidate the modified memory in the inferior which is done by calling flush_cache_page which in turns calls r4k_flush_cache_page and local_r4k_flush_cache_page for VSMP or SMTC kernel via r4k_on_each_cpu(). As the VSMP and SMTC SMP kernels for 34K are running on a single shared caches it is possible to get away without interprocessor function calls. This optimization is implemented in r4k_on_each_cpu, so local_r4k_flush_cache_page is only ever called on the local CPU. This is where the following code in local_r4k_flush_cache_page() strikes: /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (cpu_context(smp_processor_id(), mm) == 0) return; On VSMP and SMTC had a function of cpu_context() for each CPU(TC). So in case another CPU than the CPU executing local_r4k_cache_flush_page has not accessed the mm but one of the other CPUs has there may be data to be flushed in the cache yet local_r4k_cache_flush_page will falsely return leaving the I-cache inconsistent for the breakpoint. While the issue was discovered with GDB it also exists in local_r4k_flush_cache_range() and local_r4k_flush_cache(). Fixed by introducing a new function has_valid_asid which on MT kernels returns true if a mm is active on any processor in the system. This is relativly expensive since for memory acccesses in that loop cache misses have to be assumed but it seems the most viable solution for 2.6.23 and older -stable kernels. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-08 09:38:37 -06:00
if (!(has_valid_asid(vma->vm_mm)))
return;
r4k_blast_dcache();
if (exec)
r4k_blast_icache();
}
static void r4k_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int exec = vma->vm_flags & VM_EXEC;
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
r4k_on_each_cpu(local_r4k_flush_cache_range, vma, 1);
}
static inline void local_r4k_flush_cache_mm(void * args)
{
struct mm_struct *mm = args;
[MIPS] MT: Fix bug in multithreaded kernels. When GDB writes a breakpoint into address area of inferior process the kernel needs to invalidate the modified memory in the inferior which is done by calling flush_cache_page which in turns calls r4k_flush_cache_page and local_r4k_flush_cache_page for VSMP or SMTC kernel via r4k_on_each_cpu(). As the VSMP and SMTC SMP kernels for 34K are running on a single shared caches it is possible to get away without interprocessor function calls. This optimization is implemented in r4k_on_each_cpu, so local_r4k_flush_cache_page is only ever called on the local CPU. This is where the following code in local_r4k_flush_cache_page() strikes: /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (cpu_context(smp_processor_id(), mm) == 0) return; On VSMP and SMTC had a function of cpu_context() for each CPU(TC). So in case another CPU than the CPU executing local_r4k_cache_flush_page has not accessed the mm but one of the other CPUs has there may be data to be flushed in the cache yet local_r4k_cache_flush_page will falsely return leaving the I-cache inconsistent for the breakpoint. While the issue was discovered with GDB it also exists in local_r4k_flush_cache_range() and local_r4k_flush_cache(). Fixed by introducing a new function has_valid_asid which on MT kernels returns true if a mm is active on any processor in the system. This is relativly expensive since for memory acccesses in that loop cache misses have to be assumed but it seems the most viable solution for 2.6.23 and older -stable kernels. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-08 09:38:37 -06:00
if (!has_valid_asid(mm))
return;
/*
* Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
* only flush the primary caches but R10000 and R12000 behave sane ...
* R4000SC and R4400SC indexed S-cache ops also invalidate primary
* caches, so we can bail out early.
*/
if (current_cpu_type() == CPU_R4000SC ||
current_cpu_type() == CPU_R4000MC ||
current_cpu_type() == CPU_R4400SC ||
current_cpu_type() == CPU_R4400MC) {
r4k_blast_scache();
return;
}
r4k_blast_dcache();
}
static void r4k_flush_cache_mm(struct mm_struct *mm)
{
if (!cpu_has_dc_aliases)
return;
r4k_on_each_cpu(local_r4k_flush_cache_mm, mm, 1);
}
struct flush_cache_page_args {
struct vm_area_struct *vma;
unsigned long addr;
unsigned long pfn;
};
static inline void local_r4k_flush_cache_page(void *args)
{
struct flush_cache_page_args *fcp_args = args;
struct vm_area_struct *vma = fcp_args->vma;
unsigned long addr = fcp_args->addr;
struct page *page = pfn_to_page(fcp_args->pfn);
int exec = vma->vm_flags & VM_EXEC;
struct mm_struct *mm = vma->vm_mm;
int map_coherent = 0;
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
void *vaddr;
/*
* If ownes no valid ASID yet, cannot possibly have gotten
* this page into the cache.
*/
[MIPS] MT: Fix bug in multithreaded kernels. When GDB writes a breakpoint into address area of inferior process the kernel needs to invalidate the modified memory in the inferior which is done by calling flush_cache_page which in turns calls r4k_flush_cache_page and local_r4k_flush_cache_page for VSMP or SMTC kernel via r4k_on_each_cpu(). As the VSMP and SMTC SMP kernels for 34K are running on a single shared caches it is possible to get away without interprocessor function calls. This optimization is implemented in r4k_on_each_cpu, so local_r4k_flush_cache_page is only ever called on the local CPU. This is where the following code in local_r4k_flush_cache_page() strikes: /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (cpu_context(smp_processor_id(), mm) == 0) return; On VSMP and SMTC had a function of cpu_context() for each CPU(TC). So in case another CPU than the CPU executing local_r4k_cache_flush_page has not accessed the mm but one of the other CPUs has there may be data to be flushed in the cache yet local_r4k_cache_flush_page will falsely return leaving the I-cache inconsistent for the breakpoint. While the issue was discovered with GDB it also exists in local_r4k_flush_cache_range() and local_r4k_flush_cache(). Fixed by introducing a new function has_valid_asid which on MT kernels returns true if a mm is active on any processor in the system. This is relativly expensive since for memory acccesses in that loop cache misses have to be assumed but it seems the most viable solution for 2.6.23 and older -stable kernels. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-08 09:38:37 -06:00
if (!has_valid_asid(mm))
return;
addr &= PAGE_MASK;
pgdp = pgd_offset(mm, addr);
pudp = pud_offset(pgdp, addr);
pmdp = pmd_offset(pudp, addr);
ptep = pte_offset(pmdp, addr);
/*
* If the page isn't marked valid, the page cannot possibly be
* in the cache.
*/
if (!(pte_present(*ptep)))
return;
if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
vaddr = NULL;
else {
/*
* Use kmap_coherent or kmap_atomic to do flushes for
* another ASID than the current one.
*/
map_coherent = (cpu_has_dc_aliases &&
page_mapped(page) && !Page_dcache_dirty(page));
if (map_coherent)
vaddr = kmap_coherent(page, addr);
else
vaddr = kmap_atomic(page, KM_USER0);
addr = (unsigned long)vaddr;
}
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
r4k_blast_dcache_page(addr);
if (exec && !cpu_icache_snoops_remote_store)
r4k_blast_scache_page(addr);
}
if (exec) {
if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
int cpu = smp_processor_id();
if (cpu_context(cpu, mm) != 0)
drop_mmu_context(mm, cpu);
} else
r4k_blast_icache_page(addr);
}
if (vaddr) {
if (map_coherent)
kunmap_coherent();
else
kunmap_atomic(vaddr, KM_USER0);
}
}
static void r4k_flush_cache_page(struct vm_area_struct *vma,
unsigned long addr, unsigned long pfn)
{
struct flush_cache_page_args args;
args.vma = vma;
args.addr = addr;
args.pfn = pfn;
r4k_on_each_cpu(local_r4k_flush_cache_page, &args, 1);
}
static inline void local_r4k_flush_data_cache_page(void * addr)
{
r4k_blast_dcache_page((unsigned long) addr);
}
static void r4k_flush_data_cache_page(unsigned long addr)
{
if (in_atomic())
local_r4k_flush_data_cache_page((void *)addr);
else
r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr,
1);
}
struct flush_icache_range_args {
unsigned long start;
unsigned long end;
};
static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
{
if (!cpu_has_ic_fills_f_dc) {
if (end - start >= dcache_size) {
r4k_blast_dcache();
} else {
R4600_HIT_CACHEOP_WAR_IMPL;
protected_blast_dcache_range(start, end);
}
}
if (end - start > icache_size)
r4k_blast_icache();
else
protected_blast_icache_range(start, end);
}
static inline void local_r4k_flush_icache_range_ipi(void *args)
{
struct flush_icache_range_args *fir_args = args;
unsigned long start = fir_args->start;
unsigned long end = fir_args->end;
local_r4k_flush_icache_range(start, end);
}
static void r4k_flush_icache_range(unsigned long start, unsigned long end)
{
struct flush_icache_range_args args;
args.start = start;
args.end = end;
r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args, 1);
instruction_hazard();
}
#ifdef CONFIG_DMA_NONCOHERENT
static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
{
/* Catch bad driver code */
BUG_ON(size == 0);
if (cpu_has_inclusive_pcaches) {
if (size >= scache_size)
r4k_blast_scache();
else
blast_scache_range(addr, addr + size);
return;
}
/*
* Either no secondary cache or the available caches don't have the
* subset property so we have to flush the primary caches
* explicitly
*/
if (cpu_has_safe_index_cacheops && size >= dcache_size) {
r4k_blast_dcache();
} else {
R4600_HIT_CACHEOP_WAR_IMPL;
blast_dcache_range(addr, addr + size);
}
bc_wback_inv(addr, size);
}
static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
{
/* Catch bad driver code */
BUG_ON(size == 0);
if (cpu_has_inclusive_pcaches) {
if (size >= scache_size)
r4k_blast_scache();
else {
unsigned long lsize = cpu_scache_line_size();
unsigned long almask = ~(lsize - 1);
/*
* There is no clearly documented alignment requirement
* for the cache instruction on MIPS processors and
* some processors, among them the RM5200 and RM7000
* QED processors will throw an address error for cache
* hit ops with insufficient alignment. Solved by
* aligning the address to cache line size.
*/
cache_op(Hit_Writeback_Inv_SD, addr & almask);
cache_op(Hit_Writeback_Inv_SD,
(addr + size - 1) & almask);
blast_inv_scache_range(addr, addr + size);
}
return;
}
if (cpu_has_safe_index_cacheops && size >= dcache_size) {
r4k_blast_dcache();
} else {
unsigned long lsize = cpu_dcache_line_size();
unsigned long almask = ~(lsize - 1);
R4600_HIT_CACHEOP_WAR_IMPL;
cache_op(Hit_Writeback_Inv_D, addr & almask);
cache_op(Hit_Writeback_Inv_D, (addr + size - 1) & almask);
blast_inv_dcache_range(addr, addr + size);
}
bc_inv(addr, size);
}
#endif /* CONFIG_DMA_NONCOHERENT */
/*
* While we're protected against bad userland addresses we don't care
* very much about what happens in that case. Usually a segmentation
* fault will dump the process later on anyway ...
*/
static void local_r4k_flush_cache_sigtramp(void * arg)
{
unsigned long ic_lsize = cpu_icache_line_size();
unsigned long dc_lsize = cpu_dcache_line_size();
unsigned long sc_lsize = cpu_scache_line_size();
unsigned long addr = (unsigned long) arg;
R4600_HIT_CACHEOP_WAR_IMPL;
if (dc_lsize)
protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
if (!cpu_icache_snoops_remote_store && scache_size)
protected_writeback_scache_line(addr & ~(sc_lsize - 1));
if (ic_lsize)
protected_flush_icache_line(addr & ~(ic_lsize - 1));
if (MIPS4K_ICACHE_REFILL_WAR) {
__asm__ __volatile__ (
".set push\n\t"
".set noat\n\t"
".set mips3\n\t"
#ifdef CONFIG_32BIT
"la $at,1f\n\t"
#endif
#ifdef CONFIG_64BIT
"dla $at,1f\n\t"
#endif
"cache %0,($at)\n\t"
"nop; nop; nop\n"
"1:\n\t"
".set pop"
:
: "i" (Hit_Invalidate_I));
}
if (MIPS_CACHE_SYNC_WAR)
__asm__ __volatile__ ("sync");
}
static void r4k_flush_cache_sigtramp(unsigned long addr)
{
r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1);
}
static void r4k_flush_icache_all(void)
{
if (cpu_has_vtag_icache)
r4k_blast_icache();
}
static inline void rm7k_erratum31(void)
{
const unsigned long ic_lsize = 32;
unsigned long addr;
/* RM7000 erratum #31. The icache is screwed at startup. */
write_c0_taglo(0);
write_c0_taghi(0);
for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
__asm__ __volatile__ (
".set push\n\t"
".set noreorder\n\t"
".set mips3\n\t"
"cache\t%1, 0(%0)\n\t"
"cache\t%1, 0x1000(%0)\n\t"
"cache\t%1, 0x2000(%0)\n\t"
"cache\t%1, 0x3000(%0)\n\t"
"cache\t%2, 0(%0)\n\t"
"cache\t%2, 0x1000(%0)\n\t"
"cache\t%2, 0x2000(%0)\n\t"
"cache\t%2, 0x3000(%0)\n\t"
"cache\t%1, 0(%0)\n\t"
"cache\t%1, 0x1000(%0)\n\t"
"cache\t%1, 0x2000(%0)\n\t"
"cache\t%1, 0x3000(%0)\n\t"
".set pop\n"
:
: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
}
}
static char *way_string[] __cpuinitdata = { NULL, "direct mapped", "2-way",
"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
};
static void __cpuinit probe_pcache(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
unsigned int config = read_c0_config();
unsigned int prid = read_c0_prid();
unsigned long config1;
unsigned int lsize;
switch (c->cputype) {
case CPU_R4600: /* QED style two way caches? */
case CPU_R4700:
case CPU_R5000:
case CPU_NEVADA:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit = __ffs(icache_size/2);
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit= __ffs(dcache_size/2);
c->options |= MIPS_CPU_CACHE_CDEX_P;
break;
case CPU_R5432:
case CPU_R5500:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit= 0;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit = 0;
c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
break;
case CPU_TX49XX:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 4;
c->icache.waybit= 0;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 4;
c->dcache.waybit = 0;
c->options |= MIPS_CPU_CACHE_CDEX_P;
c->options |= MIPS_CPU_PREFETCH;
break;
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
case CPU_R4300:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 1;
c->icache.waybit = 0; /* doesn't matter */
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
c->options |= MIPS_CPU_CACHE_CDEX_P;
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
c->icache.linesz = 64;
c->icache.ways = 2;
c->icache.waybit = 0;
dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
c->dcache.linesz = 32;
c->dcache.ways = 2;
c->dcache.waybit = 0;
c->options |= MIPS_CPU_PREFETCH;
break;
case CPU_VR4133:
write_c0_config(config & ~VR41_CONF_P4K);
case CPU_VR4131:
/* Workaround for cache instruction bug of VR4131 */
if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
c->processor_id == 0x0c82U) {
config |= 0x00400000U;
if (c->processor_id == 0x0c80U)
config |= VR41_CONF_BP;
write_c0_config(config);
} else
c->options |= MIPS_CPU_CACHE_CDEX_P;
icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit = __ffs(icache_size/2);
dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit = __ffs(dcache_size/2);
break;
case CPU_VR41XX:
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4181:
case CPU_VR4181A:
icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 1;
c->icache.waybit = 0; /* doesn't matter */
dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
c->options |= MIPS_CPU_CACHE_CDEX_P;
break;
case CPU_RM7000:
rm7k_erratum31();
case CPU_RM9000:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 4;
c->icache.waybit = __ffs(icache_size / c->icache.ways);
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 4;
c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
#if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
c->options |= MIPS_CPU_CACHE_CDEX_P;
#endif
c->options |= MIPS_CPU_PREFETCH;
break;
case CPU_LOONGSON2:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
if (prid & 0x3)
c->icache.ways = 4;
else
c->icache.ways = 2;
c->icache.waybit = 0;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
if (prid & 0x3)
c->dcache.ways = 4;
else
c->dcache.ways = 2;
c->dcache.waybit = 0;
break;
default:
if (!(config & MIPS_CONF_M))
panic("Don't know how to probe P-caches on this cpu.");
/*
* So we seem to be a MIPS32 or MIPS64 CPU
* So let's probe the I-cache ...
*/
config1 = read_c0_config1();
if ((lsize = ((config1 >> 19) & 7)))
c->icache.linesz = 2 << lsize;
else
c->icache.linesz = lsize;
c->icache.sets = 64 << ((config1 >> 22) & 7);
c->icache.ways = 1 + ((config1 >> 16) & 7);
icache_size = c->icache.sets *
c->icache.ways *
c->icache.linesz;
c->icache.waybit = __ffs(icache_size/c->icache.ways);
if (config & 0x8) /* VI bit */
c->icache.flags |= MIPS_CACHE_VTAG;
/*
* Now probe the MIPS32 / MIPS64 data cache.
*/
c->dcache.flags = 0;
if ((lsize = ((config1 >> 10) & 7)))
c->dcache.linesz = 2 << lsize;
else
c->dcache.linesz= lsize;
c->dcache.sets = 64 << ((config1 >> 13) & 7);
c->dcache.ways = 1 + ((config1 >> 7) & 7);
dcache_size = c->dcache.sets *
c->dcache.ways *
c->dcache.linesz;
c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
c->options |= MIPS_CPU_PREFETCH;
break;
}
/*
* Processor configuration sanity check for the R4000SC erratum
* #5. With page sizes larger than 32kB there is no possibility
* to get a VCE exception anymore so we don't care about this
* misconfiguration. The case is rather theoretical anyway;
* presumably no vendor is shipping his hardware in the "bad"
* configuration.
*/
if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
!(config & CONF_SC) && c->icache.linesz != 16 &&
PAGE_SIZE <= 0x8000)
panic("Improper R4000SC processor configuration detected");
/* compute a couple of other cache variables */
c->icache.waysize = icache_size / c->icache.ways;
c->dcache.waysize = dcache_size / c->dcache.ways;
c->icache.sets = c->icache.linesz ?
icache_size / (c->icache.linesz * c->icache.ways) : 0;
c->dcache.sets = c->dcache.linesz ?
dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
/*
* R10000 and R12000 P-caches are odd in a positive way. They're 32kB
* 2-way virtually indexed so normally would suffer from aliases. So
* normally they'd suffer from aliases but magic in the hardware deals
* with that for us so we don't need to take care ourselves.
*/
switch (c->cputype) {
case CPU_20KC:
case CPU_25KF:
case CPU_SB1:
case CPU_SB1A:
c->dcache.flags |= MIPS_CACHE_PINDEX;
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
break;
case CPU_24K:
case CPU_34K:
case CPU_74K:
case CPU_1004K:
if ((read_c0_config7() & (1 << 16))) {
/* effectively physically indexed dcache,
thus no virtual aliases. */
c->dcache.flags |= MIPS_CACHE_PINDEX;
break;
}
default:
if (c->dcache.waysize > PAGE_SIZE)
c->dcache.flags |= MIPS_CACHE_ALIASES;
}
switch (c->cputype) {
case CPU_20KC:
/*
* Some older 20Kc chips doesn't have the 'VI' bit in
* the config register.
*/
c->icache.flags |= MIPS_CACHE_VTAG;
break;
case CPU_ALCHEMY:
c->icache.flags |= MIPS_CACHE_IC_F_DC;
break;
}
#ifdef CONFIG_CPU_LOONGSON2
/*
* LOONGSON2 has 4 way icache, but when using indexed cache op,
* one op will act on all 4 ways
*/
c->icache.ways = 1;
#endif
printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
icache_size >> 10,
cpu_has_vtag_icache ? "VIVT" : "VIPT",
way_string[c->icache.ways], c->icache.linesz);
printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
dcache_size >> 10, way_string[c->dcache.ways],
(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
(c->dcache.flags & MIPS_CACHE_ALIASES) ?
"cache aliases" : "no aliases",
c->dcache.linesz);
}
/*
* If you even _breathe_ on this function, look at the gcc output and make sure
* it does not pop things on and off the stack for the cache sizing loop that
* executes in KSEG1 space or else you will crash and burn badly. You have
* been warned.
*/
static int __cpuinit probe_scache(void)
{
unsigned long flags, addr, begin, end, pow2;
unsigned int config = read_c0_config();
struct cpuinfo_mips *c = &current_cpu_data;
int tmp;
if (config & CONF_SC)
return 0;
begin = (unsigned long) &_stext;
begin &= ~((4 * 1024 * 1024) - 1);
end = begin + (4 * 1024 * 1024);
/*
* This is such a bitch, you'd think they would make it easy to do
* this. Away you daemons of stupidity!
*/
local_irq_save(flags);
/* Fill each size-multiple cache line with a valid tag. */
pow2 = (64 * 1024);
for (addr = begin; addr < end; addr = (begin + pow2)) {
unsigned long *p = (unsigned long *) addr;
__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
pow2 <<= 1;
}
/* Load first line with zero (therefore invalid) tag. */
write_c0_taglo(0);
write_c0_taghi(0);
__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
cache_op(Index_Store_Tag_I, begin);
cache_op(Index_Store_Tag_D, begin);
cache_op(Index_Store_Tag_SD, begin);
/* Now search for the wrap around point. */
pow2 = (128 * 1024);
tmp = 0;
for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
cache_op(Index_Load_Tag_SD, addr);
__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
if (!read_c0_taglo())
break;
pow2 <<= 1;
}
local_irq_restore(flags);
addr -= begin;
scache_size = addr;
c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
c->scache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
return 1;
}
#if defined(CONFIG_CPU_LOONGSON2)
static void __init loongson2_sc_init(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
scache_size = 512*1024;
c->scache.linesz = 32;
c->scache.ways = 4;
c->scache.waybit = 0;
c->scache.waysize = scache_size / (c->scache.ways);
c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
}
#endif
extern int r5k_sc_init(void);
extern int rm7k_sc_init(void);
extern int mips_sc_init(void);
static void __cpuinit setup_scache(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
unsigned int config = read_c0_config();
int sc_present = 0;
/*
* Do the probing thing on R4000SC and R4400SC processors. Other
* processors don't have a S-cache that would be relevant to the
* Linux memory management.
*/
switch (c->cputype) {
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400SC:
case CPU_R4400MC:
sc_present = run_uncached(probe_scache);
if (sc_present)
c->options |= MIPS_CPU_CACHE_CDEX_S;
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
c->scache.linesz = 64 << ((config >> 13) & 1);
c->scache.ways = 2;
c->scache.waybit= 0;
sc_present = 1;
break;
case CPU_R5000:
case CPU_NEVADA:
#ifdef CONFIG_R5000_CPU_SCACHE
r5k_sc_init();
#endif
return;
case CPU_RM7000:
case CPU_RM9000:
#ifdef CONFIG_RM7000_CPU_SCACHE
rm7k_sc_init();
#endif
return;
#if defined(CONFIG_CPU_LOONGSON2)
case CPU_LOONGSON2:
loongson2_sc_init();
return;
#endif
default:
if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
c->isa_level == MIPS_CPU_ISA_M32R2 ||
c->isa_level == MIPS_CPU_ISA_M64R1 ||
c->isa_level == MIPS_CPU_ISA_M64R2) {
#ifdef CONFIG_MIPS_CPU_SCACHE
if (mips_sc_init ()) {
scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
scache_size >> 10,
way_string[c->scache.ways], c->scache.linesz);
}
#else
if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
#endif
return;
}
sc_present = 0;
}
if (!sc_present)
return;
/* compute a couple of other cache variables */
c->scache.waysize = scache_size / c->scache.ways;
c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
}
void au1x00_fixup_config_od(void)
{
/*
* c0_config.od (bit 19) was write only (and read as 0)
* on the early revisions of Alchemy SOCs. It disables the bus
* transaction overlapping and needs to be set to fix various errata.
*/
switch (read_c0_prid()) {
case 0x00030100: /* Au1000 DA */
case 0x00030201: /* Au1000 HA */
case 0x00030202: /* Au1000 HB */
case 0x01030200: /* Au1500 AB */
/*
* Au1100 errata actually keeps silence about this bit, so we set it
* just in case for those revisions that require it to be set according
* to the (now gone) cpu table.
*/
case 0x02030200: /* Au1100 AB */
case 0x02030201: /* Au1100 BA */
case 0x02030202: /* Au1100 BC */
set_c0_config(1 << 19);
break;
}
}
/* CP0 hazard avoidance. */
#define NXP_BARRIER() \
__asm__ __volatile__( \
".set noreorder\n\t" \
"nop; nop; nop; nop; nop; nop;\n\t" \
".set reorder\n\t")
static void nxp_pr4450_fixup_config(void)
{
unsigned long config0;
config0 = read_c0_config();
/* clear all three cache coherency fields */
config0 &= ~(0x7 | (7 << 25) | (7 << 28));
config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
((_page_cachable_default >> _CACHE_SHIFT) << 25) |
((_page_cachable_default >> _CACHE_SHIFT) << 28));
write_c0_config(config0);
NXP_BARRIER();
}
static int __cpuinitdata cca = -1;
static int __init cca_setup(char *str)
{
get_option(&str, &cca);
return 1;
}
__setup("cca=", cca_setup);
static void __cpuinit coherency_setup(void)
{
if (cca < 0 || cca > 7)
cca = read_c0_config() & CONF_CM_CMASK;
_page_cachable_default = cca << _CACHE_SHIFT;
pr_debug("Using cache attribute %d\n", cca);
change_c0_config(CONF_CM_CMASK, cca);
/*
* c0_status.cu=0 specifies that updates by the sc instruction use
* the coherency mode specified by the TLB; 1 means cachable
* coherent update on write will be used. Not all processors have
* this bit and; some wire it to zero, others like Toshiba had the
* silly idea of putting something else there ...
*/
switch (current_cpu_type()) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
clear_c0_config(CONF_CU);
break;
/*
* We need to catch the early Alchemy SOCs with
* the write-only co_config.od bit and set it back to one on:
* Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
*/
case CPU_ALCHEMY:
au1x00_fixup_config_od();
break;
case PRID_IMP_PR4450:
nxp_pr4450_fixup_config();
break;
}
}
#if defined(CONFIG_DMA_NONCOHERENT)
static int __cpuinitdata coherentio;
static int __init setcoherentio(char *str)
{
coherentio = 1;
return 1;
}
__setup("coherentio", setcoherentio);
#endif
void __cpuinit r4k_cache_init(void)
{
extern void build_clear_page(void);
extern void build_copy_page(void);
extern char __weak except_vec2_generic;
extern char __weak except_vec2_sb1;
struct cpuinfo_mips *c = &current_cpu_data;
switch (c->cputype) {
case CPU_SB1:
case CPU_SB1A:
set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
break;
default:
set_uncached_handler(0x100, &except_vec2_generic, 0x80);
break;
}
probe_pcache();
setup_scache();
r4k_blast_dcache_page_setup();
r4k_blast_dcache_page_indexed_setup();
r4k_blast_dcache_setup();
r4k_blast_icache_page_setup();
r4k_blast_icache_page_indexed_setup();
r4k_blast_icache_setup();
r4k_blast_scache_page_setup();
r4k_blast_scache_page_indexed_setup();
r4k_blast_scache_setup();
/*
* Some MIPS32 and MIPS64 processors have physically indexed caches.
* This code supports virtually indexed processors and will be
* unnecessarily inefficient on physically indexed processors.
*/
if (c->dcache.linesz)
shm_align_mask = max_t( unsigned long,
c->dcache.sets * c->dcache.linesz - 1,
PAGE_SIZE - 1);
else
shm_align_mask = PAGE_SIZE-1;
__flush_cache_vmap = r4k__flush_cache_vmap;
__flush_cache_vunmap = r4k__flush_cache_vunmap;
flush_cache_all = cache_noop;
__flush_cache_all = r4k___flush_cache_all;
flush_cache_mm = r4k_flush_cache_mm;
flush_cache_page = r4k_flush_cache_page;
flush_cache_range = r4k_flush_cache_range;
flush_cache_sigtramp = r4k_flush_cache_sigtramp;
flush_icache_all = r4k_flush_icache_all;
local_flush_data_cache_page = local_r4k_flush_data_cache_page;
flush_data_cache_page = r4k_flush_data_cache_page;
flush_icache_range = r4k_flush_icache_range;
local_flush_icache_range = local_r4k_flush_icache_range;
#if defined(CONFIG_DMA_NONCOHERENT)
if (coherentio) {
_dma_cache_wback_inv = (void *)cache_noop;
_dma_cache_wback = (void *)cache_noop;
_dma_cache_inv = (void *)cache_noop;
} else {
_dma_cache_wback_inv = r4k_dma_cache_wback_inv;
_dma_cache_wback = r4k_dma_cache_wback_inv;
_dma_cache_inv = r4k_dma_cache_inv;
}
#endif
build_clear_page();
build_copy_page();
#if !defined(CONFIG_MIPS_CMP)
local_r4k___flush_cache_all(NULL);
#endif
coherency_setup();
}