kernel-fxtec-pro1x/drivers/clocksource/sh_tmu.c
Laurent Pinchart 3b77a83eea clocksource: sh_tmu: Replace kmalloc + memset with kzalloc
One kzalloc a day keeps the bugs away.

Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
2014-04-16 12:03:20 +02:00

599 lines
13 KiB
C

/*
* SuperH Timer Support - TMU
*
* Copyright (C) 2009 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
struct sh_tmu_device;
struct sh_tmu_channel {
struct sh_tmu_device *tmu;
unsigned int index;
void __iomem *base;
int irq;
unsigned long rate;
unsigned long periodic;
struct clock_event_device ced;
struct clocksource cs;
bool cs_enabled;
unsigned int enable_count;
};
struct sh_tmu_device {
struct platform_device *pdev;
void __iomem *mapbase;
struct clk *clk;
struct sh_tmu_channel channel;
};
static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
#define TSTR -1 /* shared register */
#define TCOR 0 /* channel register */
#define TCNT 1 /* channel register */
#define TCR 2 /* channel register */
static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
{
unsigned long offs;
if (reg_nr == TSTR)
return ioread8(ch->tmu->mapbase);
offs = reg_nr << 2;
if (reg_nr == TCR)
return ioread16(ch->base + offs);
else
return ioread32(ch->base + offs);
}
static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
unsigned long value)
{
unsigned long offs;
if (reg_nr == TSTR) {
iowrite8(value, ch->tmu->mapbase);
return;
}
offs = reg_nr << 2;
if (reg_nr == TCR)
iowrite16(value, ch->base + offs);
else
iowrite32(value, ch->base + offs);
}
static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
{
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&sh_tmu_lock, flags);
value = sh_tmu_read(ch, TSTR);
if (start)
value |= 1 << ch->index;
else
value &= ~(1 << ch->index);
sh_tmu_write(ch, TSTR, value);
raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
}
static int __sh_tmu_enable(struct sh_tmu_channel *ch)
{
int ret;
/* enable clock */
ret = clk_enable(ch->tmu->clk);
if (ret) {
dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
return ret;
}
/* make sure channel is disabled */
sh_tmu_start_stop_ch(ch, 0);
/* maximum timeout */
sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(ch, TCNT, 0xffffffff);
/* configure channel to parent clock / 4, irq off */
ch->rate = clk_get_rate(ch->tmu->clk) / 4;
sh_tmu_write(ch, TCR, 0x0000);
/* enable channel */
sh_tmu_start_stop_ch(ch, 1);
return 0;
}
static int sh_tmu_enable(struct sh_tmu_channel *ch)
{
if (ch->enable_count++ > 0)
return 0;
pm_runtime_get_sync(&ch->tmu->pdev->dev);
dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
return __sh_tmu_enable(ch);
}
static void __sh_tmu_disable(struct sh_tmu_channel *ch)
{
/* disable channel */
sh_tmu_start_stop_ch(ch, 0);
/* disable interrupts in TMU block */
sh_tmu_write(ch, TCR, 0x0000);
/* stop clock */
clk_disable(ch->tmu->clk);
}
static void sh_tmu_disable(struct sh_tmu_channel *ch)
{
if (WARN_ON(ch->enable_count == 0))
return;
if (--ch->enable_count > 0)
return;
__sh_tmu_disable(ch);
dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
pm_runtime_put(&ch->tmu->pdev->dev);
}
static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
int periodic)
{
/* stop timer */
sh_tmu_start_stop_ch(ch, 0);
/* acknowledge interrupt */
sh_tmu_read(ch, TCR);
/* enable interrupt */
sh_tmu_write(ch, TCR, 0x0020);
/* reload delta value in case of periodic timer */
if (periodic)
sh_tmu_write(ch, TCOR, delta);
else
sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(ch, TCNT, delta);
/* start timer */
sh_tmu_start_stop_ch(ch, 1);
}
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
{
struct sh_tmu_channel *ch = dev_id;
/* disable or acknowledge interrupt */
if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
sh_tmu_write(ch, TCR, 0x0000);
else
sh_tmu_write(ch, TCR, 0x0020);
/* notify clockevent layer */
ch->ced.event_handler(&ch->ced);
return IRQ_HANDLED;
}
static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
{
return container_of(cs, struct sh_tmu_channel, cs);
}
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
}
static int sh_tmu_clocksource_enable(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
int ret;
if (WARN_ON(ch->cs_enabled))
return 0;
ret = sh_tmu_enable(ch);
if (!ret) {
__clocksource_updatefreq_hz(cs, ch->rate);
ch->cs_enabled = true;
}
return ret;
}
static void sh_tmu_clocksource_disable(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (WARN_ON(!ch->cs_enabled))
return;
sh_tmu_disable(ch);
ch->cs_enabled = false;
}
static void sh_tmu_clocksource_suspend(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (--ch->enable_count == 0) {
__sh_tmu_disable(ch);
pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
}
}
static void sh_tmu_clocksource_resume(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (ch->enable_count++ == 0) {
pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
__sh_tmu_enable(ch);
}
}
static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
const char *name, unsigned long rating)
{
struct clocksource *cs = &ch->cs;
cs->name = name;
cs->rating = rating;
cs->read = sh_tmu_clocksource_read;
cs->enable = sh_tmu_clocksource_enable;
cs->disable = sh_tmu_clocksource_disable;
cs->suspend = sh_tmu_clocksource_suspend;
cs->resume = sh_tmu_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(32);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
ch->index);
/* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1);
return 0;
}
static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
{
return container_of(ced, struct sh_tmu_channel, ced);
}
static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
{
struct clock_event_device *ced = &ch->ced;
sh_tmu_enable(ch);
clockevents_config(ced, ch->rate);
if (periodic) {
ch->periodic = (ch->rate + HZ/2) / HZ;
sh_tmu_set_next(ch, ch->periodic, 1);
}
}
static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced)
{
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
int disabled = 0;
/* deal with old setting first */
switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
sh_tmu_disable(ch);
disabled = 1;
break;
default:
break;
}
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for periodic clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 1);
break;
case CLOCK_EVT_MODE_ONESHOT:
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for oneshot clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 0);
break;
case CLOCK_EVT_MODE_UNUSED:
if (!disabled)
sh_tmu_disable(ch);
break;
case CLOCK_EVT_MODE_SHUTDOWN:
default:
break;
}
}
static int sh_tmu_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
/* program new delta value */
sh_tmu_set_next(ch, delta, 0);
return 0;
}
static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
{
pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
{
pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
const char *name, unsigned long rating)
{
struct clock_event_device *ced = &ch->ced;
int ret;
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = rating;
ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_tmu_clock_event_next;
ced->set_mode = sh_tmu_clock_event_mode;
ced->suspend = sh_tmu_clock_event_suspend;
ced->resume = sh_tmu_clock_event_resume;
dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
ret = request_irq(ch->irq, sh_tmu_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->tmu->pdev->dev), ch);
if (ret) {
dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, ch->irq);
return;
}
}
static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
unsigned long clockevent_rating,
unsigned long clocksource_rating)
{
if (clockevent_rating)
sh_tmu_register_clockevent(ch, name, clockevent_rating);
else if (clocksource_rating)
sh_tmu_register_clocksource(ch, name, clocksource_rating);
return 0;
}
static int sh_tmu_channel_setup(struct sh_tmu_channel *ch,
struct sh_tmu_device *tmu)
{
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
ch->tmu = tmu;
/*
* The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps channel
* registers blocks at base + 2 + 12 * index, while all other variants
* map them at base + 4 + 12 * index. We can compute the index by just
* dividing by 12, the 2 bytes or 4 bytes offset being hidden by the
* integer division.
*/
ch->index = cfg->channel_offset / 12;
ch->irq = platform_get_irq(tmu->pdev, 0);
if (ch->irq < 0) {
dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return ch->irq;
}
ch->cs_enabled = false;
ch->enable_count = 0;
return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
cfg->clockevent_rating,
cfg->clocksource_rating);
}
static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
{
struct sh_timer_config *cfg = pdev->dev.platform_data;
struct resource *res;
int ret;
ret = -ENXIO;
tmu->pdev = pdev;
if (!cfg) {
dev_err(&tmu->pdev->dev, "missing platform data\n");
goto err0;
}
platform_set_drvdata(pdev, tmu);
res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
goto err0;
}
/*
* Map memory, let channel.base point to our channel and mapbase to the
* start/stop shared register.
*/
tmu->channel.base = ioremap_nocache(res->start, resource_size(res));
if (tmu->channel.base == NULL) {
dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
goto err0;
}
tmu->mapbase = tmu->channel.base - cfg->channel_offset;
/* get hold of clock */
tmu->clk = clk_get(&tmu->pdev->dev, "tmu_fck");
if (IS_ERR(tmu->clk)) {
dev_err(&tmu->pdev->dev, "cannot get clock\n");
ret = PTR_ERR(tmu->clk);
goto err1;
}
ret = clk_prepare(tmu->clk);
if (ret < 0)
goto err2;
ret = sh_tmu_channel_setup(&tmu->channel, tmu);
if (ret < 0)
goto err3;
return 0;
err3:
clk_unprepare(tmu->clk);
err2:
clk_put(tmu->clk);
err1:
iounmap(tmu->channel.base);
err0:
return ret;
}
static int sh_tmu_probe(struct platform_device *pdev)
{
struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
struct sh_timer_config *cfg = pdev->dev.platform_data;
int ret;
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (tmu) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
if (tmu == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
ret = sh_tmu_setup(tmu, pdev);
if (ret) {
kfree(tmu);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_early_platform_device(pdev))
return 0;
out:
if (cfg->clockevent_rating || cfg->clocksource_rating)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static int sh_tmu_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static struct platform_driver sh_tmu_device_driver = {
.probe = sh_tmu_probe,
.remove = sh_tmu_remove,
.driver = {
.name = "sh_tmu",
}
};
static int __init sh_tmu_init(void)
{
return platform_driver_register(&sh_tmu_device_driver);
}
static void __exit sh_tmu_exit(void)
{
platform_driver_unregister(&sh_tmu_device_driver);
}
early_platform_init("earlytimer", &sh_tmu_device_driver);
subsys_initcall(sh_tmu_init);
module_exit(sh_tmu_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH TMU Timer Driver");
MODULE_LICENSE("GPL v2");