/* * SuperH Timer Support - TMU * * Copyright (C) 2009 Magnus Damm * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sh_tmu_device; struct sh_tmu_channel { struct sh_tmu_device *tmu; unsigned int index; void __iomem *base; int irq; unsigned long rate; unsigned long periodic; struct clock_event_device ced; struct clocksource cs; bool cs_enabled; unsigned int enable_count; }; struct sh_tmu_device { struct platform_device *pdev; void __iomem *mapbase; struct clk *clk; struct sh_tmu_channel channel; }; static DEFINE_RAW_SPINLOCK(sh_tmu_lock); #define TSTR -1 /* shared register */ #define TCOR 0 /* channel register */ #define TCNT 1 /* channel register */ #define TCR 2 /* channel register */ static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr) { unsigned long offs; if (reg_nr == TSTR) return ioread8(ch->tmu->mapbase); offs = reg_nr << 2; if (reg_nr == TCR) return ioread16(ch->base + offs); else return ioread32(ch->base + offs); } static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr, unsigned long value) { unsigned long offs; if (reg_nr == TSTR) { iowrite8(value, ch->tmu->mapbase); return; } offs = reg_nr << 2; if (reg_nr == TCR) iowrite16(value, ch->base + offs); else iowrite32(value, ch->base + offs); } static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start) { unsigned long flags, value; /* start stop register shared by multiple timer channels */ raw_spin_lock_irqsave(&sh_tmu_lock, flags); value = sh_tmu_read(ch, TSTR); if (start) value |= 1 << ch->index; else value &= ~(1 << ch->index); sh_tmu_write(ch, TSTR, value); raw_spin_unlock_irqrestore(&sh_tmu_lock, flags); } static int __sh_tmu_enable(struct sh_tmu_channel *ch) { int ret; /* enable clock */ ret = clk_enable(ch->tmu->clk); if (ret) { dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n", ch->index); return ret; } /* make sure channel is disabled */ sh_tmu_start_stop_ch(ch, 0); /* maximum timeout */ sh_tmu_write(ch, TCOR, 0xffffffff); sh_tmu_write(ch, TCNT, 0xffffffff); /* configure channel to parent clock / 4, irq off */ ch->rate = clk_get_rate(ch->tmu->clk) / 4; sh_tmu_write(ch, TCR, 0x0000); /* enable channel */ sh_tmu_start_stop_ch(ch, 1); return 0; } static int sh_tmu_enable(struct sh_tmu_channel *ch) { if (ch->enable_count++ > 0) return 0; pm_runtime_get_sync(&ch->tmu->pdev->dev); dev_pm_syscore_device(&ch->tmu->pdev->dev, true); return __sh_tmu_enable(ch); } static void __sh_tmu_disable(struct sh_tmu_channel *ch) { /* disable channel */ sh_tmu_start_stop_ch(ch, 0); /* disable interrupts in TMU block */ sh_tmu_write(ch, TCR, 0x0000); /* stop clock */ clk_disable(ch->tmu->clk); } static void sh_tmu_disable(struct sh_tmu_channel *ch) { if (WARN_ON(ch->enable_count == 0)) return; if (--ch->enable_count > 0) return; __sh_tmu_disable(ch); dev_pm_syscore_device(&ch->tmu->pdev->dev, false); pm_runtime_put(&ch->tmu->pdev->dev); } static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta, int periodic) { /* stop timer */ sh_tmu_start_stop_ch(ch, 0); /* acknowledge interrupt */ sh_tmu_read(ch, TCR); /* enable interrupt */ sh_tmu_write(ch, TCR, 0x0020); /* reload delta value in case of periodic timer */ if (periodic) sh_tmu_write(ch, TCOR, delta); else sh_tmu_write(ch, TCOR, 0xffffffff); sh_tmu_write(ch, TCNT, delta); /* start timer */ sh_tmu_start_stop_ch(ch, 1); } static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) { struct sh_tmu_channel *ch = dev_id; /* disable or acknowledge interrupt */ if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) sh_tmu_write(ch, TCR, 0x0000); else sh_tmu_write(ch, TCR, 0x0020); /* notify clockevent layer */ ch->ced.event_handler(&ch->ced); return IRQ_HANDLED; } static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs) { return container_of(cs, struct sh_tmu_channel, cs); } static cycle_t sh_tmu_clocksource_read(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); return sh_tmu_read(ch, TCNT) ^ 0xffffffff; } static int sh_tmu_clocksource_enable(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); int ret; if (WARN_ON(ch->cs_enabled)) return 0; ret = sh_tmu_enable(ch); if (!ret) { __clocksource_updatefreq_hz(cs, ch->rate); ch->cs_enabled = true; } return ret; } static void sh_tmu_clocksource_disable(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (WARN_ON(!ch->cs_enabled)) return; sh_tmu_disable(ch); ch->cs_enabled = false; } static void sh_tmu_clocksource_suspend(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (!ch->cs_enabled) return; if (--ch->enable_count == 0) { __sh_tmu_disable(ch); pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev); } } static void sh_tmu_clocksource_resume(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (!ch->cs_enabled) return; if (ch->enable_count++ == 0) { pm_genpd_syscore_poweron(&ch->tmu->pdev->dev); __sh_tmu_enable(ch); } } static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch, const char *name, unsigned long rating) { struct clocksource *cs = &ch->cs; cs->name = name; cs->rating = rating; cs->read = sh_tmu_clocksource_read; cs->enable = sh_tmu_clocksource_enable; cs->disable = sh_tmu_clocksource_disable; cs->suspend = sh_tmu_clocksource_suspend; cs->resume = sh_tmu_clocksource_resume; cs->mask = CLOCKSOURCE_MASK(32); cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n", ch->index); /* Register with dummy 1 Hz value, gets updated in ->enable() */ clocksource_register_hz(cs, 1); return 0; } static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced) { return container_of(ced, struct sh_tmu_channel, ced); } static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic) { struct clock_event_device *ced = &ch->ced; sh_tmu_enable(ch); clockevents_config(ced, ch->rate); if (periodic) { ch->periodic = (ch->rate + HZ/2) / HZ; sh_tmu_set_next(ch, ch->periodic, 1); } } static void sh_tmu_clock_event_mode(enum clock_event_mode mode, struct clock_event_device *ced) { struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); int disabled = 0; /* deal with old setting first */ switch (ced->mode) { case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_ONESHOT: sh_tmu_disable(ch); disabled = 1; break; default: break; } switch (mode) { case CLOCK_EVT_MODE_PERIODIC: dev_info(&ch->tmu->pdev->dev, "ch%u: used for periodic clock events\n", ch->index); sh_tmu_clock_event_start(ch, 1); break; case CLOCK_EVT_MODE_ONESHOT: dev_info(&ch->tmu->pdev->dev, "ch%u: used for oneshot clock events\n", ch->index); sh_tmu_clock_event_start(ch, 0); break; case CLOCK_EVT_MODE_UNUSED: if (!disabled) sh_tmu_disable(ch); break; case CLOCK_EVT_MODE_SHUTDOWN: default: break; } } static int sh_tmu_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); /* program new delta value */ sh_tmu_set_next(ch, delta, 0); return 0; } static void sh_tmu_clock_event_suspend(struct clock_event_device *ced) { pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev); } static void sh_tmu_clock_event_resume(struct clock_event_device *ced) { pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev); } static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch, const char *name, unsigned long rating) { struct clock_event_device *ced = &ch->ced; int ret; ced->name = name; ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features |= CLOCK_EVT_FEAT_ONESHOT; ced->rating = rating; ced->cpumask = cpumask_of(0); ced->set_next_event = sh_tmu_clock_event_next; ced->set_mode = sh_tmu_clock_event_mode; ced->suspend = sh_tmu_clock_event_suspend; ced->resume = sh_tmu_clock_event_resume; dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n", ch->index); clockevents_config_and_register(ced, 1, 0x300, 0xffffffff); ret = request_irq(ch->irq, sh_tmu_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&ch->tmu->pdev->dev), ch); if (ret) { dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n", ch->index, ch->irq); return; } } static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name, unsigned long clockevent_rating, unsigned long clocksource_rating) { if (clockevent_rating) sh_tmu_register_clockevent(ch, name, clockevent_rating); else if (clocksource_rating) sh_tmu_register_clocksource(ch, name, clocksource_rating); return 0; } static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, struct sh_tmu_device *tmu) { struct sh_timer_config *cfg = tmu->pdev->dev.platform_data; ch->tmu = tmu; /* * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps channel * registers blocks at base + 2 + 12 * index, while all other variants * map them at base + 4 + 12 * index. We can compute the index by just * dividing by 12, the 2 bytes or 4 bytes offset being hidden by the * integer division. */ ch->index = cfg->channel_offset / 12; ch->irq = platform_get_irq(tmu->pdev, 0); if (ch->irq < 0) { dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n", ch->index); return ch->irq; } ch->cs_enabled = false; ch->enable_count = 0; return sh_tmu_register(ch, dev_name(&tmu->pdev->dev), cfg->clockevent_rating, cfg->clocksource_rating); } static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev) { struct sh_timer_config *cfg = pdev->dev.platform_data; struct resource *res; int ret; ret = -ENXIO; tmu->pdev = pdev; if (!cfg) { dev_err(&tmu->pdev->dev, "missing platform data\n"); goto err0; } platform_set_drvdata(pdev, tmu); res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&tmu->pdev->dev, "failed to get I/O memory\n"); goto err0; } /* * Map memory, let channel.base point to our channel and mapbase to the * start/stop shared register. */ tmu->channel.base = ioremap_nocache(res->start, resource_size(res)); if (tmu->channel.base == NULL) { dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n"); goto err0; } tmu->mapbase = tmu->channel.base - cfg->channel_offset; /* get hold of clock */ tmu->clk = clk_get(&tmu->pdev->dev, "tmu_fck"); if (IS_ERR(tmu->clk)) { dev_err(&tmu->pdev->dev, "cannot get clock\n"); ret = PTR_ERR(tmu->clk); goto err1; } ret = clk_prepare(tmu->clk); if (ret < 0) goto err2; ret = sh_tmu_channel_setup(&tmu->channel, tmu); if (ret < 0) goto err3; return 0; err3: clk_unprepare(tmu->clk); err2: clk_put(tmu->clk); err1: iounmap(tmu->channel.base); err0: return ret; } static int sh_tmu_probe(struct platform_device *pdev) { struct sh_tmu_device *tmu = platform_get_drvdata(pdev); struct sh_timer_config *cfg = pdev->dev.platform_data; int ret; if (!is_early_platform_device(pdev)) { pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); } if (tmu) { dev_info(&pdev->dev, "kept as earlytimer\n"); goto out; } tmu = kzalloc(sizeof(*tmu), GFP_KERNEL); if (tmu == NULL) { dev_err(&pdev->dev, "failed to allocate driver data\n"); return -ENOMEM; } ret = sh_tmu_setup(tmu, pdev); if (ret) { kfree(tmu); pm_runtime_idle(&pdev->dev); return ret; } if (is_early_platform_device(pdev)) return 0; out: if (cfg->clockevent_rating || cfg->clocksource_rating) pm_runtime_irq_safe(&pdev->dev); else pm_runtime_idle(&pdev->dev); return 0; } static int sh_tmu_remove(struct platform_device *pdev) { return -EBUSY; /* cannot unregister clockevent and clocksource */ } static struct platform_driver sh_tmu_device_driver = { .probe = sh_tmu_probe, .remove = sh_tmu_remove, .driver = { .name = "sh_tmu", } }; static int __init sh_tmu_init(void) { return platform_driver_register(&sh_tmu_device_driver); } static void __exit sh_tmu_exit(void) { platform_driver_unregister(&sh_tmu_device_driver); } early_platform_init("earlytimer", &sh_tmu_device_driver); subsys_initcall(sh_tmu_init); module_exit(sh_tmu_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("SuperH TMU Timer Driver"); MODULE_LICENSE("GPL v2");