Commit graph

19 commits

Author SHA1 Message Date
David Howells
c902ce1bfb FS-Cache: Add a helper to bulk uncache pages on an inode
Add an FS-Cache helper to bulk uncache pages on an inode.  This will
only work for the circumstance where the pages in the cache correspond
1:1 with the pages attached to an inode's page cache.

This is required for CIFS and NFS: When disabling inode cookie, we were
returning the cookie and setting cifsi->fscache to NULL but failed to
invalidate any previously mapped pages.  This resulted in "Bad page
state" errors and manifested in other kind of errors when running
fsstress.  Fix it by uncaching mapped pages when we disable the inode
cookie.

This patch should fix the following oops and "Bad page state" errors
seen during fsstress testing.

  ------------[ cut here ]------------
  kernel BUG at fs/cachefiles/namei.c:201!
  invalid opcode: 0000 [#1] SMP
  Pid: 5, comm: kworker/u:0 Not tainted 2.6.38.7-30.fc15.x86_64 #1 Bochs Bochs
  RIP: 0010: cachefiles_walk_to_object+0x436/0x745 [cachefiles]
  RSP: 0018:ffff88002ce6dd00  EFLAGS: 00010282
  RAX: ffff88002ef165f0 RBX: ffff88001811f500 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000282
  RBP: ffff88002ce6dda0 R08: 0000000000000100 R09: ffffffff81b3a300
  R10: 0000ffff00066c0a R11: 0000000000000003 R12: ffff88002ae54840
  R13: ffff88002ae54840 R14: ffff880029c29c00 R15: ffff88001811f4b0
  FS:  00007f394dd32720(0000) GS:ffff88002ef00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 00007fffcb62ddf8 CR3: 000000001825f000 CR4: 00000000000006e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/u:0 (pid: 5, threadinfo ffff88002ce6c000, task ffff88002ce55cc0)
  Stack:
   0000000000000246 ffff88002ce55cc0 ffff88002ce6dd58 ffff88001815dc00
   ffff8800185246c0 ffff88001811f618 ffff880029c29d18 ffff88001811f380
   ffff88002ce6dd50 ffffffff814757e4 ffff88002ce6dda0 ffffffff8106ac56
  Call Trace:
   cachefiles_lookup_object+0x78/0xd4 [cachefiles]
   fscache_lookup_object+0x131/0x16d [fscache]
   fscache_object_work_func+0x1bc/0x669 [fscache]
   process_one_work+0x186/0x298
   worker_thread+0xda/0x15d
   kthread+0x84/0x8c
   kernel_thread_helper+0x4/0x10
  RIP  cachefiles_walk_to_object+0x436/0x745 [cachefiles]
  ---[ end trace 1d481c9af1804caa ]---

I tested the uncaching by the following means:

 (1) Create a big file on my NFS server (104857600 bytes).

 (2) Read the file into the cache with md5sum on the NFS client.  Look in
     /proc/fs/fscache/stats:

	Pages  : mrk=25601 unc=0

 (3) Open the file for read/write ("bash 5<>/warthog/bigfile").  Look in proc
     again:

	Pages  : mrk=25601 unc=25601

Reported-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-Tested-by: Suresh Jayaraman <sjayaraman@suse.de>
cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-07 13:21:56 -07:00
Lucas De Marchi
25985edced Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-31 11:26:23 -03:00
Tejun Heo
8b8edefa2f fscache: convert object to use workqueue instead of slow-work
Make fscache object state transition callbacks use workqueue instead
of slow-work.  New dedicated unbound CPU workqueue fscache_object_wq
is created.  get/put callbacks are renamed and modified to take
@object and called directly from the enqueue wrapper and the work
function.  While at it, make all open coded instances of get/put to
use fscache_get/put_object().

* Unbound workqueue is used.

* work_busy() output is printed instead of slow-work flags in object
  debugging outputs.  They mean basically the same thing bit-for-bit.

* sysctl fscache.object_max_active added to control concurrency.  The
  default value is nr_cpus clamped between 4 and
  WQ_UNBOUND_MAX_ACTIVE.

* slow_work_sleep_till_thread_needed() is replaced with fscache
  private implementation fscache_object_sleep_till_congested() which
  waits on fscache_object_wq congestion.

* debugfs support is dropped for now.  Tracing API based debug
  facility is planned to be added.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
2010-07-22 22:58:34 +02:00
David Howells
fee096deb4 CacheFiles: Catch an overly long wait for an old active object
Catch an overly long wait for an old, dying active object when we want to
replace it with a new one.  The probability is that all the slow-work threads
are hogged, and the delete can't get a look in.

What we do instead is:

 (1) if there's nothing in the slow work queue, we sleep until either the dying
     object has finished dying or there is something in the slow work queue
     behind which we can queue our object.

 (2) if there is something in the slow work queue, we return ETIMEDOUT to
     fscache_lookup_object(), which then puts us back on the slow work queue,
     presumably behind the deletion that we're blocked by.  We are then
     deferred for a while until we work our way back through the queue -
     without blocking a slow-work thread unnecessarily.

A backtrace similar to the following may appear in the log without this patch:

	INFO: task kslowd004:5711 blocked for more than 120 seconds.
	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
	kslowd004     D 0000000000000000     0  5711      2 0x00000080
	 ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
	 ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
	 000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
	Call Trace:
	 [<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
	 [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
	 [<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
	 [<ffffffff81353153>] __wait_on_bit+0x43/0x76
	 [<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
	 [<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
	 [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
	 [<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
	 [<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
	 [<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
	 [<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
	 [<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
	 [<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
	 [<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
	 [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
	 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
	 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
	 [<ffffffff8104be91>] kthread+0x7a/0x82
	 [<ffffffff8100beda>] child_rip+0xa/0x20
	 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
	 [<ffffffff8104be17>] ? kthread+0x0/0x82
	 [<ffffffff8100bed0>] ? child_rip+0x0/0x20
	1 lock held by kslowd004/5711:
	 #0:  (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:12:05 +00:00
David Howells
60d543ca72 FS-Cache: Start processing an object's operations on that object's death
Start processing an object's operations when that object moves into the DYING
state as the object cannot be destroyed until all its outstanding operations
have completed.

Furthermore, make sure that read and allocation operations handle being woken
up on a dead object.  Such events are recorded in the Allocs.abt and
Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.

The code for waiting for object activation for the read and allocation
operations is also extracted into its own function as it is much the same in
all cases, differing only in the stats incremented.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:45 +00:00
David Howells
201a15428b FS-Cache: Handle pages pending storage that get evicted under OOM conditions
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache.  Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.

The problem is typified by the following trace of a stuck process:

	kslowd005     D 0000000000000000     0  4253      2 0x00000080
	 ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
	 0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
	 000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
	Call Trace:
	 [<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
	 [<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
	 [<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
	 [<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
	 [<ffffffff810885d3>] try_to_release_page+0x32/0x3b
	 [<ffffffff81093203>] shrink_page_list+0x316/0x4ac
	 [<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
	 [<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
	 [<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
	 [<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
	 [<ffffffff81093aa2>] shrink_list+0x8d/0x8f
	 [<ffffffff81093d1c>] shrink_zone+0x278/0x33c
	 [<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
	 [<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
	 [<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
	 [<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
	 [<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
	 [<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
	 [<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
	 [<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
	 [<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
	 [<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
	 [<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
	 [<ffffffff810b2e82>] do_sync_write+0xe3/0x120
	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
	 [<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
	 [<ffffffff810b1a76>] ? dentry_open+0x82/0x89
	 [<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
	 [<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
	 [<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
	 [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
	 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
	 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
	 [<ffffffff8104be91>] kthread+0x7a/0x82
	 [<ffffffff8100beda>] child_rip+0xa/0x20
	 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
	 [<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
	 [<ffffffff8104be17>] ? kthread+0x0/0x82
	 [<ffffffff8100bed0>] ? child_rip+0x0/0x20

In the above backtrace, the following is happening:

 (1) A page storage operation is being executed by a slow-work thread
     (fscache_write_op()).

 (2) FS-Cache farms the operation out to the cache to perform
     (cachefiles_write_page()).

 (3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
     standard write (do_sync_write()) under KERNEL_DS directly from the netfs
     page.

 (4) However, for Ext3 to perform the write, it must allocate some memory, in
     particular, it must allocate at least one page cache page into which it
     can copy the data from the netfs page.

 (5) Under OOM conditions, the memory allocator can't immediately come up with
     a page, so it uses vmscan to find something to discard
     (try_to_free_pages()).

 (6) vmscan finds a clean netfs page it might be able to discard (possibly the
     one it's trying to write out).

 (7) The netfs is called to throw the page away (nfs_release_page()) - but it's
     called with __GFP_WAIT, so the netfs decides to wait for the store to
     complete (__fscache_wait_on_page_write()).

 (8) This blocks a slow-work processing thread - possibly against itself.

The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.

To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed.  This means that some data won't make it into the
cache this time.  To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.

The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan".  There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.

What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages.  If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:35 +00:00
David Howells
e3d4d28b1c FS-Cache: Handle read request vs lookup, creation or other cache failure
FS-Cache doesn't correctly handle the netfs requesting a read from the cache
on an object that failed or was withdrawn by the cache.  A trace similar to
the following might be seen:

	CacheFiles: Lookup failed error -105
	[exe   ] unexpected submission OP165afe [OBJ6cac OBJECT_LC_DYING]
	[exe   ] objstate=OBJECT_LC_DYING [OBJECT_LC_DYING]
	[exe   ] objflags=0
	[exe   ] objevent=9 [fffffffffffffffb]
	[exe   ] ops=0 inp=0 exc=0
	Pid: 6970, comm: exe Not tainted 2.6.32-rc6-cachefs #50
	Call Trace:
	 [<ffffffffa0076477>] fscache_submit_op+0x3ff/0x45a [fscache]
	 [<ffffffffa0077997>] __fscache_read_or_alloc_pages+0x187/0x3c4 [fscache]
	 [<ffffffffa00b6480>] ? nfs_readpage_from_fscache_complete+0x0/0x66 [nfs]
	 [<ffffffffa00b6388>] __nfs_readpages_from_fscache+0x7e/0x176 [nfs]
	 [<ffffffff8108e483>] ? __alloc_pages_nodemask+0x11c/0x5cf
	 [<ffffffffa009d796>] nfs_readpages+0x114/0x1d7 [nfs]
	 [<ffffffff81090314>] __do_page_cache_readahead+0x15f/0x1ec
	 [<ffffffff81090228>] ? __do_page_cache_readahead+0x73/0x1ec
	 [<ffffffff810903bd>] ra_submit+0x1c/0x20
	 [<ffffffff810906bb>] ondemand_readahead+0x227/0x23a
	 [<ffffffff81090762>] page_cache_sync_readahead+0x17/0x19
	 [<ffffffff8108a99e>] generic_file_aio_read+0x236/0x5a0
	 [<ffffffffa00937bd>] nfs_file_read+0xe4/0xf3 [nfs]
	 [<ffffffff810b2fa2>] do_sync_read+0xe3/0x120
	 [<ffffffff81354cc3>] ? _spin_unlock_irq+0x2b/0x31
	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
	 [<ffffffff811848e5>] ? selinux_file_permission+0x5d/0x10f
	 [<ffffffff81352bdb>] ? thread_return+0x3e/0x101
	 [<ffffffff8117d7b0>] ? security_file_permission+0x11/0x13
	 [<ffffffff810b3b06>] vfs_read+0xaa/0x16f
	 [<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
	 [<ffffffff810b3c84>] sys_read+0x45/0x6c
	 [<ffffffff8100ae2b>] system_call_fastpath+0x16/0x1b

The object state might also be OBJECT_DYING or OBJECT_WITHDRAWING.

This should be handled by simply rejecting the new operation with ENOBUFS.
There's no need to log an error for it.  Events of this type now appear in the
stats file under Ops:rej.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:32 +00:00
David Howells
1bccf513ac FS-Cache: Fix lock misorder in fscache_write_op()
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state.  Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.

Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock.  Cache operations, on the other
hand, approach from the object side, and get the object lock first.  It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:

 (1) increment the cookie usage counter, drop the object lock and then get both
     locks in order, or

 (2) simply hold the object lock as certain parts of the cookie may not be
     altered whilst the object lock is held.

It is also not permitted to follow either pointer without holding the lock at
the end you start with.  To break the pointers between the cookie and the
object, both locks must be held.

fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it.  This is so that it can access the pending page store tree without
interference from __fscache_write_page().

This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.

The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:25 +00:00
David Howells
5753c44188 FS-Cache: Permit cache retrieval ops to be interrupted in the initial wait phase
Permit the operations to retrieve data from the cache or to allocate space in
the cache for future writes to be interrupted whilst they're waiting for
permission for the operation to proceed.  Typically this wait occurs whilst the
cache object is being looked up on disk in the background.

If an interruption occurs, and the operation has not yet been given the
go-ahead to run, the operation is dequeued and cancelled, and control returns
to the read operation of the netfs routine with none of the requested pages
having been read or in any way marked as known by the cache.

This means that the initial wait is done interruptibly rather than
uninterruptibly.

In addition, extra stats values are made available to show the number of ops
cancelled and the number of cache space allocations interrupted.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:19 +00:00
David Howells
52bd75fdb1 FS-Cache: Add counters for entry/exit to/from cache operation functions
Count entries to and exits from cache operation table functions.  Maintain
these as a single counter that's added to or removed from as appropriate.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:08 +00:00
David Howells
4fbf4291aa FS-Cache: Allow the current state of all objects to be dumped
Allow the current state of all fscache objects to be dumped by doing:

	cat /proc/fs/fscache/objects

By default, all objects and all fields will be shown.  This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):

	keyctl add user fscache:objlist "<restrictions>" @s

The <restrictions> are:

	K	Show hexdump of object key (don't show if not given)
	A	Show hexdump of object aux data (don't show if not given)

And paired restrictions:

	C	Show objects that have a cookie
	c	Show objects that don't have a cookie
	B	Show objects that are busy
	b	Show objects that aren't busy
	W	Show objects that have pending writes
	w	Show objects that don't have pending writes
	R	Show objects that have outstanding reads
	r	Show objects that don't have outstanding reads
	S	Show objects that have slow work queued
	s	Show objects that don't have slow work queued

If neither side of a restriction pair is given, then both are implied.  For
example:

	keyctl add user fscache:objlist KB @s

shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data.  It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:04 +00:00
Matt LaPlante
19f5946001 trivial: Miscellaneous documentation typo fixes
Fix various typos in documentation txts.

Signed-off-by: Matt LaPlante <kernel1@cyberdogtech.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2009-06-12 18:01:47 +02:00
Marc Dionne
91ac033d83 CacheFiles: Fix the documentation to use the correct credential pointer names
Adjust the CacheFiles documentation to use the correct names of the credential
pointers in task_struct.

The documentation was using names from the old versions of the credentials
patches.

Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-24 13:28:30 -07:00
David Howells
9ae326a690 CacheFiles: A cache that backs onto a mounted filesystem
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.

CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling.  This is called cachefilesd and lives in
/sbin.  The source for the daemon can be downloaded from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.c

And an example configuration from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf

The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services.  Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.

CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon.  Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence.  The daemon
opens this and sends commands down it to control the cache.

CacheFiles is currently limited to a single cache.

CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section.  This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.

============
REQUIREMENTS
============

The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:

	- dnotify.

	- extended attributes (xattrs).

	- openat() and friends.

	- bmap() support on files in the filesystem (FIBMAP ioctl).

	- The use of bmap() to detect a partial page at the end of the file.

It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.

=============
CONFIGURATION
=============

The cache is configured by a script in /etc/cachefilesd.conf.  These commands
set up cache ready for use.  The following script commands are available:

 (*) brun <N>%
 (*) bcull <N>%
 (*) bstop <N>%
 (*) frun <N>%
 (*) fcull <N>%
 (*) fstop <N>%

	Configure the culling limits.  Optional.  See the section on culling
	The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.

	The commands beginning with a 'b' are file space (block) limits, those
	beginning with an 'f' are file count limits.

 (*) dir <path>

	Specify the directory containing the root of the cache.  Mandatory.

 (*) tag <name>

	Specify a tag to FS-Cache to use in distinguishing multiple caches.
	Optional.  The default is "CacheFiles".

 (*) debug <mask>

	Specify a numeric bitmask to control debugging in the kernel module.
	Optional.  The default is zero (all off).  The following values can be
	OR'd into the mask to collect various information:

		1	Turn on trace of function entry (_enter() macros)
		2	Turn on trace of function exit (_leave() macros)
		4	Turn on trace of internal debug points (_debug())

	This mask can also be set through sysfs, eg:

		echo 5 >/sys/modules/cachefiles/parameters/debug

==================
STARTING THE CACHE
==================

The cache is started by running the daemon.  The daemon opens the cache device,
configures the cache and tells it to begin caching.  At that point the cache
binds to fscache and the cache becomes live.

The daemon is run as follows:

	/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]

The flags are:

 (*) -d

	Increase the debugging level.  This can be specified multiple times and
	is cumulative with itself.

 (*) -s

	Send messages to stderr instead of syslog.

 (*) -n

	Don't daemonise and go into background.

 (*) -f <configfile>

	Use an alternative configuration file rather than the default one.

===============
THINGS TO AVOID
===============

Do not mount other things within the cache as this will cause problems.  The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.

Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.

Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).

Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.

Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.

Do not chmod files in the cache.  The module creates things with minimal
permissions to prevent random users being able to access them directly.

=============
CACHE CULLING
=============

The cache may need culling occasionally to make space.  This involves
discarding objects from the cache that have been used less recently than
anything else.  Culling is based on the access time of data objects.  Empty
directories are culled if not in use.

Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem.  There are six
"limits":

 (*) brun
 (*) frun

     If the amount of free space and the number of available files in the cache
     rises above both these limits, then culling is turned off.

 (*) bcull
 (*) fcull

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then culling is started.

 (*) bstop
 (*) fstop

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then no further allocation of
     disk space or files is permitted until culling has raised things above
     these limits again.

These must be configured thusly:

	0 <= bstop < bcull < brun < 100
	0 <= fstop < fcull < frun < 100

Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.

The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order.  A new scan of the cache is
started as soon as space is made in the table.  Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.

===============
CACHE STRUCTURE
===============

The CacheFiles module will create two directories in the directory it was
given:

 (*) cache/

 (*) graveyard/

The active cache objects all reside in the first directory.  The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.

The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.

The module represents index objects as directories with the filename "I..." or
"J...".  Note that the "cache/" directory is itself a special index.

Data objects are represented as files if they have no children, or directories
if they do.  Their filenames all begin "D..." or "E...".  If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.

Special objects are similar to data objects, except their filenames begin
"S..." or "T...".

If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended.  Into
this directory, if possible, will be placed the representations of the child
objects:

	INDEX     INDEX      INDEX                             DATA FILES
	========= ========== ================================= ================
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry

If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory.  The names of the intermediate directories will have
'+' prepended:

	J1223/@23/+xy...z/+kl...m/Epqr

Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.

To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable.  The two versions of
object filenames indicate the encoding:

	OBJECT TYPE	PRINTABLE	ENCODED
	===============	===============	===============
	Index		"I..."		"J..."
	Data		"D..."		"E..."
	Special		"S..."		"T..."

Intermediate directories are always "@" or "+" as appropriate.

Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs.  The latter is used to detect stale objects in the cache and update
or retire them.

Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).

==========================
SECURITY MODEL AND SELINUX
==========================

CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.

One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.

The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).

When the CacheFiles module is asked to bind to its cache, it:

 (1) Finds the security label attached to the root cache directory and uses
     that as the security label with which it will create files.  By default,
     this is:

	cachefiles_var_t

 (2) Finds the security label of the process which issued the bind request
     (presumed to be the cachefilesd daemon), which by default will be:

	cachefilesd_t

     and asks LSM to supply a security ID as which it should act given the
     daemon's label.  By default, this will be:

	cachefiles_kernel_t

     SELinux transitions the daemon's security ID to the module's security ID
     based on a rule of this form in the policy.

	type_transition <daemon's-ID> kernel_t : process <module's-ID>;

     For instance:

	type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;

The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.

The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories.  It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.

There are policy source files available in:

	http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2

and later versions.  In that tarball, see the files:

	cachefilesd.te
	cachefilesd.fc
	cachefilesd.if

They are built and installed directly by the RPM.

If a non-RPM based system is being used, then copy the above files to their own
directory and run:

	make -f /usr/share/selinux/devel/Makefile
	semodule -i cachefilesd.pp

You will need checkpolicy and selinux-policy-devel installed prior to the
build.

By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.

For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:

	/usr/share/doc/cachefilesd-*/move-cache.txt

When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.

==================
A NOTE ON SECURITY
==================

CacheFiles makes use of the split security in the task_struct.  It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.

The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly.  Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.

Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).

What is required is to temporarily override the security of the process that
issued the system call.  We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.

So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as).  The
objective security holds the intrinsic security properties of a process and is
never overridden.  This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).

The subjective security holds the active security properties of a process, and
may be overridden.  This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.

LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.

This documentation is added by the patch to:

	Documentation/filesystems/caching/cachefiles.txt

Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00
David Howells
952efe7b78 FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.

The following documentation is added to:

	Documentation/filesystems/caching/operations.txt

		       ================================
		       ASYNCHRONOUS OPERATIONS HANDLING
		       ================================

========
OVERVIEW
========

FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines.  Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.

This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.

To make use of this facility, <linux/fscache-cache.h> should be #included.

===============================
OPERATION RECORD INITIALISATION
===============================

An operation is recorded in an fscache_operation struct:

	struct fscache_operation {
		union {
			struct work_struct fast_work;
			struct slow_work slow_work;
		};
		unsigned long		flags;
		fscache_operation_processor_t processor;
		...
	};

Someone wanting to issue an operation should allocate something with this
struct embedded in it.  They should initialise it by calling:

	void fscache_operation_init(struct fscache_operation *op,
				    fscache_operation_release_t release);

with the operation to be initialised and the release function to use.

The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).

The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).

FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.

==========
PARAMETERS
==========

There are a number of parameters that can be set in the operation record's flag
parameter.  There are three options for the provision of CPU time in these
operations:

 (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD).  A thread
     may decide it wants to handle an operation itself without deferring it to
     another thread.

     This is, for example, used in read operations for calling readpages() on
     the backing filesystem in CacheFiles.  Although readpages() does an
     asynchronous data fetch, the determination of whether pages exist is done
     synchronously - and the netfs does not proceed until this has been
     determined.

     If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
     before submitting the operation, and the operating thread must wait for it
     to be cleared before proceeding:

		wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
			    fscache_wait_bit, TASK_UNINTERRUPTIBLE);

 (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
     will be given to keventd to process.  Such an operation is not permitted
     to sleep on I/O.

     This is, for example, used by CacheFiles to copy data from a backing fs
     page to a netfs page after the backing fs has read the page in.

     If this option is used, op->fast_work and op->processor must be
     initialised before submitting the operation:

		INIT_WORK(&op->fast_work, do_some_work);

 (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
     will be given to the slow work facility to process.  Such an operation is
     permitted to sleep on I/O.

     This is, for example, used by FS-Cache to handle background writes of
     pages that have just been fetched from a remote server.

     If this option is used, op->slow_work and op->processor must be
     initialised before submitting the operation:

		fscache_operation_init_slow(op, processor)

Furthermore, operations may be one of two types:

 (1) Exclusive (FSCACHE_OP_EXCLUSIVE).  Operations of this type may not run in
     conjunction with any other operation on the object being operated upon.

     An example of this is the attribute change operation, in which the file
     being written to may need truncation.

 (2) Shareable.  Operations of this type may be running simultaneously.  It's
     up to the operation implementation to prevent interference between other
     operations running at the same time.

=========
PROCEDURE
=========

Operations are used through the following procedure:

 (1) The submitting thread must allocate the operation and initialise it
     itself.  Normally this would be part of a more specific structure with the
     generic op embedded within.

 (2) The submitting thread must then submit the operation for processing using
     one of the following two functions:

	int fscache_submit_op(struct fscache_object *object,
			      struct fscache_operation *op);

	int fscache_submit_exclusive_op(struct fscache_object *object,
					struct fscache_operation *op);

     The first function should be used to submit non-exclusive ops and the
     second to submit exclusive ones.  The caller must still set the
     FSCACHE_OP_EXCLUSIVE flag.

     If successful, both functions will assign the operation to the specified
     object and return 0.  -ENOBUFS will be returned if the object specified is
     permanently unavailable.

     The operation manager will defer operations on an object that is still
     undergoing lookup or creation.  The operation will also be deferred if an
     operation of conflicting exclusivity is in progress on the object.

     If the operation is asynchronous, the manager will retain a reference to
     it, so the caller should put their reference to it by passing it to:

	void fscache_put_operation(struct fscache_operation *op);

 (3) If the submitting thread wants to do the work itself, and has marked the
     operation with FSCACHE_OP_MYTHREAD, then it should monitor
     FSCACHE_OP_WAITING as described above and check the state of the object if
     necessary (the object might have died whilst the thread was waiting).

     When it has finished doing its processing, it should call
     fscache_put_operation() on it.

 (4) The operation holds an effective lock upon the object, preventing other
     exclusive ops conflicting until it is released.  The operation can be
     enqueued for further immediate asynchronous processing by adjusting the
     CPU time provisioning option if necessary, eg:

	op->flags &= ~FSCACHE_OP_TYPE;
	op->flags |= ~FSCACHE_OP_FAST;

     and calling:

	void fscache_enqueue_operation(struct fscache_operation *op)

     This can be used to allow other things to have use of the worker thread
     pools.

=====================
ASYNCHRONOUS CALLBACK
=====================

When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation.  This should then get at the
container struct by using container_of():

	static void fscache_write_op(struct fscache_operation *_op)
	{
		struct fscache_storage *op =
			container_of(_op, struct fscache_storage, op);
	...
	}

The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns.  The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:39 +01:00
David Howells
36c9559022 FS-Cache: Object management state machine
Implement the cache object management state machine.

The following documentation is added to illuminate the working of this state
machine.  It will also be added as:

	Documentation/filesystems/caching/object.txt

	     ====================================================
	     IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
	     ====================================================

==============
REPRESENTATION
==============

FS-Cache maintains an in-kernel representation of each object that a netfs is
currently interested in.  Such objects are represented by the fscache_cookie
struct and are referred to as cookies.

FS-Cache also maintains a separate in-kernel representation of the objects that
a cache backend is currently actively caching.  Such objects are represented by
the fscache_object struct.  The cache backends allocate these upon request, and
are expected to embed them in their own representations.  These are referred to
as objects.

There is a 1:N relationship between cookies and objects.  A cookie may be
represented by multiple objects - an index may exist in more than one cache -
or even by no objects (it may not be cached).

Furthermore, both cookies and objects are hierarchical.  The two hierarchies
correspond, but the cookies tree is a superset of the union of the object trees
of multiple caches:

	    NETFS INDEX TREE               :      CACHE 1     :      CACHE 2
	                                   :                  :
	                                   :   +-----------+  :
	                          +----------->|  IObject  |  :
	      +-----------+       |        :   +-----------+  :
	      |  ICookie  |-------+        :         |        :
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	            |                      :         |        :   +-----------+
	            |                      :         V        :         |
	            |                      :   +-----------+  :         |
	            V             +----------->|  IObject  |  :         |
	      +-----------+       |        :   +-----------+  :         |
	      |  ICookie  |-------+        :         |        :         V
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	      +-----+-----+                :         |        :   +-----------+
	      |           |                :         |        :         |
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  ICookie  |------------------------->|  IObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	      |           V                :         |        :         V
	      |     +-----------+          :         |        :   +-----------+
	      |     |  ICookie  |-------------------------------->|  IObject  |
	      |     +-----------+          :         |        :   +-----------+
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  DCookie  |------------------------->|  DObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	                  |                :                  :         |
	          +-------+-------+        :                  :         |
	          |               |        :                  :         |
	          V               V        :                  :         V
	    +-----------+   +-----------+  :                  :   +-----------+
	    |  DCookie  |   |  DCookie  |------------------------>|  DObject  |
	    +-----------+   +-----------+  :                  :   +-----------+
	                                   :                  :

In the above illustration, ICookie and IObject represent indices and DCookie
and DObject represent data storage objects.  Indices may have representation in
multiple caches, but currently, non-index objects may not.  Objects of any type
may also be entirely unrepresented.

As far as the netfs API goes, the netfs is only actually permitted to see
pointers to the cookies.  The cookies themselves and any objects attached to
those cookies are hidden from it.

===============================
OBJECT MANAGEMENT STATE MACHINE
===============================

Within FS-Cache, each active object is managed by its own individual state
machine.  The state for an object is kept in the fscache_object struct, in
object->state.  A cookie may point to a set of objects that are in different
states.

Each state has an action associated with it that is invoked when the machine
wakes up in that state.  There are four logical sets of states:

 (1) Preparation: states that wait for the parent objects to become ready.  The
     representations are hierarchical, and it is expected that an object must
     be created or accessed with respect to its parent object.

 (2) Initialisation: states that perform lookups in the cache and validate
     what's found and that create on disk any missing metadata.

 (3) Normal running: states that allow netfs operations on objects to proceed
     and that update the state of objects.

 (4) Termination: states that detach objects from their netfs cookies, that
     delete objects from disk, that handle disk and system errors and that free
     up in-memory resources.

In most cases, transitioning between states is in response to signalled events.
When a state has finished processing, it will usually set the mask of events in
which it is interested (object->event_mask) and relinquish the worker thread.
Then when an event is raised (by calling fscache_raise_event()), if the event
is not masked, the object will be queued for processing (by calling
fscache_enqueue_object()).

PROVISION OF CPU TIME
---------------------

The work to be done by the various states is given CPU time by the threads of
the slow work facility (see Documentation/slow-work.txt).  This is used in
preference to the workqueue facility because:

 (1) Threads may be completely occupied for very long periods of time by a
     particular work item.  These state actions may be doing sequences of
     synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
     getxattr, truncate, unlink, rmdir, rename).

 (2) Threads may do little actual work, but may rather spend a lot of time
     sleeping on I/O.  This means that single-threaded and 1-per-CPU-threaded
     workqueues don't necessarily have the right numbers of threads.

LOCKING SIMPLIFICATION
----------------------

Because only one worker thread may be operating on any particular object's
state machine at once, this simplifies the locking, particularly with respect
to disconnecting the netfs's representation of a cache object (fscache_cookie)
from the cache backend's representation (fscache_object) - which may be
requested from either end.

=================
THE SET OF STATES
=================

The object state machine has a set of states that it can be in.  There are
preparation states in which the object sets itself up and waits for its parent
object to transit to a state that allows access to its children:

 (1) State FSCACHE_OBJECT_INIT.

     Initialise the object and wait for the parent object to become active.  In
     the cache, it is expected that it will not be possible to look an object
     up from the parent object, until that parent object itself has been looked
     up.

There are initialisation states in which the object sets itself up and accesses
disk for the object metadata:

 (2) State FSCACHE_OBJECT_LOOKING_UP.

     Look up the object on disk, using the parent as a starting point.
     FS-Cache expects the cache backend to probe the cache to see whether this
     object is represented there, and if it is, to see if it's valid (coherency
     management).

     The cache should call fscache_object_lookup_negative() to indicate lookup
     failure for whatever reason, and should call fscache_obtained_object() to
     indicate success.

     At the completion of lookup, FS-Cache will let the netfs go ahead with
     read operations, no matter whether the file is yet cached.  If not yet
     cached, read operations will be immediately rejected with ENODATA until
     the first known page is uncached - as to that point there can be no data
     to be read out of the cache for that file that isn't currently also held
     in the pagecache.

 (3) State FSCACHE_OBJECT_CREATING.

     Create an object on disk, using the parent as a starting point.  This
     happens if the lookup failed to find the object, or if the object's
     coherency data indicated what's on disk is out of date.  In this state,
     FS-Cache expects the cache to create

     The cache should call fscache_obtained_object() if creation completes
     successfully, fscache_object_lookup_negative() otherwise.

     At the completion of creation, FS-Cache will start processing write
     operations the netfs has queued for an object.  If creation failed, the
     write ops will be transparently discarded, and nothing recorded in the
     cache.

There are some normal running states in which the object spends its time
servicing netfs requests:

 (4) State FSCACHE_OBJECT_AVAILABLE.

     A transient state in which pending operations are started, child objects
     are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
     lookup data is freed.

 (5) State FSCACHE_OBJECT_ACTIVE.

     The normal running state.  In this state, requests the netfs makes will be
     passed on to the cache.

 (6) State FSCACHE_OBJECT_UPDATING.

     The state machine comes here to update the object in the cache from the
     netfs's records.  This involves updating the auxiliary data that is used
     to maintain coherency.

And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:

 (7) State FSCACHE_OBJECT_LC_DYING.

     The object comes here if it is dying because of a lookup or creation
     error.  This would be due to a disk error or system error of some sort.
     Temporary data is cleaned up, and the parent is released.

 (8) State FSCACHE_OBJECT_DYING.

     The object comes here if it is dying due to an error, because its parent
     cookie has been relinquished by the netfs or because the cache is being
     withdrawn.

     Any child objects waiting on this one are given CPU time so that they too
     can destroy themselves.  This object waits for all its children to go away
     before advancing to the next state.

 (9) State FSCACHE_OBJECT_ABORT_INIT.

     The object comes to this state if it was waiting on its parent in
     FSCACHE_OBJECT_INIT, but its parent died.  The object will destroy itself
     so that the parent may proceed from the FSCACHE_OBJECT_DYING state.

(10) State FSCACHE_OBJECT_RELEASING.
(11) State FSCACHE_OBJECT_RECYCLING.

     The object comes to one of these two states when dying once it is rid of
     all its children, if it is dying because the netfs relinquished its
     cookie.  In the first state, the cached data is expected to persist, and
     in the second it will be deleted.

(12) State FSCACHE_OBJECT_WITHDRAWING.

     The object transits to this state if the cache decides it wants to
     withdraw the object from service, perhaps to make space, but also due to
     error or just because the whole cache is being withdrawn.

(13) State FSCACHE_OBJECT_DEAD.

     The object transits to this state when the in-memory object record is
     ready to be deleted.  The object processor shouldn't ever see an object in
     this state.

THE SET OF EVENTS
-----------------

There are a number of events that can be raised to an object state machine:

 (*) FSCACHE_OBJECT_EV_UPDATE

     The netfs requested that an object be updated.  The state machine will ask
     the cache backend to update the object, and the cache backend will ask the
     netfs for details of the change through its cookie definition ops.

 (*) FSCACHE_OBJECT_EV_CLEARED

     This is signalled in two circumstances:

     (a) when an object's last child object is dropped and

     (b) when the last operation outstanding on an object is completed.

     This is used to proceed from the dying state.

 (*) FSCACHE_OBJECT_EV_ERROR

     This is signalled when an I/O error occurs during the processing of some
     object.

 (*) FSCACHE_OBJECT_EV_RELEASE
 (*) FSCACHE_OBJECT_EV_RETIRE

     These are signalled when the netfs relinquishes a cookie it was using.
     The event selected depends on whether the netfs asks for the backing
     object to be retired (deleted) or retained.

 (*) FSCACHE_OBJECT_EV_WITHDRAW

     This is signalled when the cache backend wants to withdraw an object.
     This means that the object will have to be detached from the netfs's
     cookie.

Because the withdrawing releasing/retiring events are all handled by the object
state machine, it doesn't matter if there's a collision with both ends trying
to sever the connection at the same time.  The state machine can just pick
which one it wants to honour, and that effects the other.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells
7394daa8c6 FS-Cache: Add use of /proc and presentation of statistics
Make FS-Cache create its /proc interface and present various statistical
information through it.  Also provide the functions for updating this
information.

These features are enabled by:

	CONFIG_FSCACHE_PROC
	CONFIG_FSCACHE_STATS
	CONFIG_FSCACHE_HISTOGRAM

The /proc directory for FS-Cache is also exported so that caching modules can
add their own statistics there too.

The FS-Cache module is loadable at this point, and the statistics files can be
examined by userspace:

	cat /proc/fs/fscache/stats
	cat /proc/fs/fscache/histogram

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells
0dfc41d1ef FS-Cache: Add the FS-Cache cache backend API and documentation
Add the API for a generic facility (FS-Cache) by which caches may declare them
selves open for business, and may obtain work to be done from network
filesystems.  The header file is included by:

	#include <linux/fscache-cache.h>

Documentation for the API is also added to:

	Documentation/filesystems/caching/backend-api.txt

This API is not usable without the implementation of the utility functions
which will be added in further patches.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
David Howells
2d6fff6370 FS-Cache: Add the FS-Cache netfs API and documentation
Add the API for a generic facility (FS-Cache) by which filesystems (such as AFS
or NFS) may call on local caching capabilities without having to know anything
about how the cache works, or even if there is a cache:

	+---------+
	|         |                        +--------------+
	|   NFS   |--+                     |              |
	|         |  |                 +-->|   CacheFS    |
	+---------+  |   +----------+  |   |  /dev/hda5   |
	             |   |          |  |   +--------------+
	+---------+  +-->|          |  |
	|         |      |          |--+
	|   AFS   |----->| FS-Cache |
	|         |      |          |--+
	+---------+  +-->|          |  |
	             |   |          |  |   +--------------+
	+---------+  |   +----------+  |   |              |
	|         |  |                 +-->|  CacheFiles  |
	|  ISOFS  |--+                     |  /var/cache  |
	|         |                        +--------------+
	+---------+

General documentation and documentation of the netfs specific API are provided
in addition to the header files.

As this patch stands, it is possible to build a filesystem against the facility
and attempt to use it.  All that will happen is that all requests will be
immediately denied as if no cache is present.

Further patches will implement the core of the facility.  The facility will
transfer requests from networking filesystems to appropriate caches if
possible, or else gracefully deny them.

If this facility is disabled in the kernel configuration, then all its
operations will trivially reduce to nothing during compilation.

WHY NOT I_MAPPING?
==================

I have added my own API to implement caching rather than using i_mapping to do
this for a number of reasons.  These have been discussed a lot on the LKML and
CacheFS mailing lists, but to summarise the basics:

 (1) Most filesystems don't do hole reportage.  Holes in files are treated as
     blocks of zeros and can't be distinguished otherwise, making it difficult
     to distinguish blocks that have been read from the network and cached from
     those that haven't.

 (2) The backing inode must be fully populated before being exposed to
     userspace through the main inode because the VM/VFS goes directly to the
     backing inode and does not interrogate the front inode's VM ops.

     Therefore:

     (a) The backing inode must fit entirely within the cache.

     (b) All backed files currently open must fit entirely within the cache at
     	 the same time.

     (c) A working set of files in total larger than the cache may not be
     	 cached.

     (d) A file may not grow larger than the available space in the cache.

     (e) A file that's open and cached, and remotely grows larger than the
     	 cache is potentially stuffed.

 (3) Writes go to the backing filesystem, and can only be transferred to the
     network when the file is closed.

 (4) There's no record of what changes have been made, so the whole file must
     be written back.

 (5) The pages belong to the backing filesystem, and all metadata associated
     with that page are relevant only to the backing filesystem, and not
     anything stacked atop it.

OVERVIEW
========

FS-Cache provides (or will provide) the following facilities:

 (1) Caches can be added / removed at any time, even whilst in use.

 (2) Adds a facility by which tags can be used to refer to caches, even if
     they're not available yet.

 (3) More than one cache can be used at once.  Caches can be selected
     explicitly by use of tags.

 (4) The netfs is provided with an interface that allows either party to
     withdraw caching facilities from a file (required for (1)).

 (5) A netfs may annotate cache objects that belongs to it.  This permits the
     storage of coherency maintenance data.

 (6) Cache objects will be pinnable and space reservations will be possible.

 (7) The interface to the netfs returns as few errors as possible, preferring
     rather to let the netfs remain oblivious.

 (8) Cookies are used to represent indices, files and other objects to the
     netfs.  The simplest cookie is just a NULL pointer - indicating nothing
     cached there.

 (9) The netfs is allowed to propose - dynamically - any index hierarchy it
     desires, though it must be aware that the index search function is
     recursive, stack space is limited, and indices can only be children of
     indices.

(10) Indices can be used to group files together to reduce key size and to make
     group invalidation easier.  The use of indices may make lookup quicker,
     but that's cache dependent.

(11) Data I/O is effectively done directly to and from the netfs's pages.  The
     netfs indicates that page A is at index B of the data-file represented by
     cookie C, and that it should be read or written.  The cache backend may or
     may not start I/O on that page, but if it does, a netfs callback will be
     invoked to indicate completion.  The I/O may be either synchronous or
     asynchronous.

(12) Cookies can be "retired" upon release.  At this point FS-Cache will mark
     them as obsolete and the index hierarchy rooted at that point will get
     recycled.

(13) The netfs provides a "match" function for index searches.  In addition to
     saying whether a match was made or not, this can also specify that an
     entry should be updated or deleted.

FS-Cache maintains a virtual index tree in which all indices, files, objects
and pages are kept.  Bits of this tree may actually reside in one or more
caches.

                                           FSDEF
                                             |
                        +------------------------------------+
                        |                                    |
                       NFS                                  AFS
                        |                                    |
           +--------------------------+                +-----------+
           |                          |                |           |
        homedir                     mirror          afs.org   redhat.com
           |                          |                            |
     +------------+           +---------------+              +----------+
     |            |           |               |              |          |
   00001        00002       00007           00125        vol00001   vol00002
     |            |           |               |                         |
 +---+---+     +-----+      +---+      +------+------+            +-----+----+
 |   |   |     |     |      |   |      |      |      |            |     |    |
PG0 PG1 PG2   PG0  XATTR   PG0 PG1   DIRENT DIRENT DIRENT        R/W   R/O  Bak
                     |                                            |
                    PG0                                       +-------+
                                                              |       |
                                                            00001   00003
                                                              |
                                                          +---+---+
                                                          |   |   |
                                                         PG0 PG1 PG2

In the example above, two netfs's can be seen to be backed: NFS and AFS.  These
have different index hierarchies:

 (*) The NFS primary index will probably contain per-server indices.  Each
     server index is indexed by NFS file handles to get data file objects.
     Each data file objects can have an array of pages, but may also have
     further child objects, such as extended attributes and directory entries.
     Extended attribute objects themselves have page-array contents.

 (*) The AFS primary index contains per-cell indices.  Each cell index contains
     per-logical-volume indices.  Each of volume index contains up to three
     indices for the read-write, read-only and backup mirrors of those volumes.
     Each of these contains vnode data file objects, each of which contains an
     array of pages.

The very top index is the FS-Cache master index in which individual netfs's
have entries.

Any index object may reside in more than one cache, provided it only has index
children.  Any index with non-index object children will be assumed to only
reside in one cache.

The FS-Cache overview can be found in:

	Documentation/filesystems/caching/fscache.txt

The netfs API to FS-Cache can be found in:

	Documentation/filesystems/caching/netfs-api.txt

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00