Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
After commit 9ffc93f203 ("Remove all
CC init/main.o
In file included from include/linux/mm.h:15:0,
from include/linux/ring_buffer.h:5,
from include/linux/ftrace_event.h:4,
from include/trace/syscall.h:6,
from include/linux/syscalls.h:78,
from init/main.c:16:
include/linux/debug_locks.h: In function ‘__debug_locks_off’:
include/linux/debug_locks.h:16:2: error: implicit declaration of function ‘xchg’
There is no indirect inclusions of the new asm/cmpxchg.h for m68k here.
Looking at most other architectures they include asm/cmpxchg.h in their
asm/atomic.h. M68k currently does not do this. Including this in atomic.h
fixes all m68k build problems.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Pull x32 support for x86-64 from Ingo Molnar:
"This tree introduces the X32 binary format and execution mode for x86:
32-bit data space binaries using 64-bit instructions and 64-bit kernel
syscalls.
This allows applications whose working set fits into a 32 bits address
space to make use of 64-bit instructions while using a 32-bit address
space with shorter pointers, more compressed data structures, etc."
Fix up trivial context conflicts in arch/x86/{Kconfig,vdso/vma.c}
* 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
x32: Fix alignment fail in struct compat_siginfo
x32: Fix stupid ia32/x32 inversion in the siginfo format
x32: Add ptrace for x32
x32: Switch to a 64-bit clock_t
x32: Provide separate is_ia32_task() and is_x32_task() predicates
x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls
x86/x32: Fix the binutils auto-detect
x32: Warn and disable rather than error if binutils too old
x32: Only clear TIF_X32 flag once
x32: Make sure TS_COMPAT is cleared for x32 tasks
fs: Remove missed ->fds_bits from cessation use of fd_set structs internally
fs: Fix close_on_exec pointer in alloc_fdtable
x32: Drop non-__vdso weak symbols from the x32 VDSO
x32: Fix coding style violations in the x32 VDSO code
x32: Add x32 VDSO support
x32: Allow x32 to be configured
x32: If configured, add x32 system calls to system call tables
x32: Handle process creation
x32: Signal-related system calls
x86: Add #ifdef CONFIG_COMPAT to <asm/sys_ia32.h>
...
Fix the m68k versions of xchg() and cmpxchg() to fail to link if given an
inappropriately sized pointer rather than BUG()'ing at runtime.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
cc: linux-m68k@lists.linux-m68k.org
Pull m68knommu arch updates from Greg Ungerer:
"Includes a cleanup of the non-MMU linker script (it now almost
exclusively uses the well defined linker script support macros and
definitions). Some more merging of MMU and non-MMU common files
(specifically the arch process.c, ptrace and time.c). And a big
cleanup of the massively duplicated ColdFire device definition code.
Overall we remove about 2000 lines of code, and end up with a single
set of platform device definitions for the serial ports, ethernet
ports and QSPI ports common in most ColdFire SoCs.
I expect you will get a merge conflict on arch/m68k/kernel/process.c,
in cpu_idle(). It should be relatively strait forward to fixup."
And cpu_idle() conflict resolution was indeed trivial (merging the
nommu/mmu versions of process.c trivially conflicting with the
conversion to use the schedule_preempt_disabled() helper function)
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (57 commits)
m68knommu: factor more common ColdFire cpu reset code
m68knommu: make 528x CPU reset register addressing consistent
m68knommu: make 527x CPU reset register addressing consistent
m68knommu: make 523x CPU reset register addressing consistent
m68knommu: factor some common ColdFire cpu reset code
m68knommu: move old ColdFire timers init from CPU init to timers code
m68knommu: clean up init code in ColdFire 532x startup
m68knommu: clean up init code in ColdFire 528x startup
m68knommu: clean up init code in ColdFire 523x startup
m68knommu: merge common ColdFire QSPI platform setup code
m68knommu: make 532x QSPI platform addressing consistent
m68knommu: make 528x QSPI platform addressing consistent
m68knommu: make 527x QSPI platform addressing consistent
m68knommu: make 5249 QSPI platform addressing consistent
m68knommu: make 523x QSPI platform addressing consistent
m68knommu: make 520x QSPI platform addressing consistent
m68knommu: merge common ColdFire FEC platform setup code
m68knommu: make 532x FEC platform addressing consistent
m68knommu: make 528x FEC platform addressing consistent
m68knommu: make 527x FEC platform addressing consistent
...
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 532x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 528x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 527x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 5249 QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 523x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 520x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 532x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 528x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 527x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 5272 FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 523x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 520x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Some ColdFire CPU UART hardware modules can configure the IRQ they use.
Currently the same setup code is duplicated in the init code for each of
these ColdFire CPUs. Merge all this code to a single instance.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 54xx UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5407 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 532x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 528x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5307 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 527x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5272 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5249 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 523x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 520x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5206 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
With a few small changes we can make the m68knommu timer init code the
same as the m68k code. By using the mach_sched_init function pointer
and reworking the current timer initializers to keep track of the common
m68k timer_interrupt() handler we end up with almost identical code for
m68knommu.
This will allow us to more easily merge the mmu and non-mmu m68k time.c
in future patches.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The read_persistent_clock() code is different on m68knommu, for really no
reason. With a few changes to support function names and some code
re-organization the code can be made the same.
This will make it easier to merge the arch/m68k/kernel/time.c for m68k and
m68knommu in a future patch.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Conflicts:
drivers/net/ethernet/sfc/rx.c
Overlapping changes in drivers/net/ethernet/sfc/rx.c, one to change
the rx_buf->is_page boolean into a set of u16 flags, and another to
adjust how ->ip_summed is initialized.
Signed-off-by: David S. Miller <davem@davemloft.net>
This is useful for testing RX handling of frames with bad
CRCs.
Requires driver support to actually put the packet on the
wire properly.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This one specifies where to start MSG_PEEK-ing queue data from. When
set to negative value means that MSG_PEEK works as ususally -- peeks
from the head of the queue always.
When some bytes are peeked from queue and the peeking offset is non
negative it is moved forward so that the next peek will return next
portion of data.
When non-peeking recvmsg occurs and the peeking offset is non negative
is is moved backward so that the next peek will still peek the proper
data (i.e. the one that would have been picked if there were no non
peeking recv in between).
The offset is set using per-proto opteration to let the protocol handle
the locking issues and to check whether the peeking offset feature is
supported by the protocol the socket belongs to.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We had problems accessing our NOR flash trough mtd. The system always got
stuck at attaching UBI using ubiattach if booted from NFS or after mounting
squashfs as rootfs directly from NOR flash.
After some testing of the new changes introduced from v3.2-rc1 to v3.2-rc7
we had to apply the following patch to get mtd working again.
[gerg: The problem was ultimately caused by allocated kernel pages not having
the shared (SG) bit set. Without the SG bit set the MMU will look for page
matches incorporating the ASID as well. Things like module regions allocated
using vmalloc would fault when other processes run. ]
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k: Fix assembler constraint to prevent overeager gcc optimisation
mac_esp: rename irq
mac_scsi: dont enable mac_scsi irq before requesting it
macfb: fix black and white modes
m68k/irq: Remove obsolete IRQ_FLG_* definitions
Fix up trivial conflict in arch/m68k/kernel/process_mm.c as per Geert.
* 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
PM / Hibernate: Implement compat_ioctl for /dev/snapshot
PM / Freezer: fix return value of freezable_schedule_timeout_killable()
PM / shmobile: Allow the A4R domain to be turned off at run time
PM / input / touchscreen: Make st1232 use device PM QoS constraints
PM / QoS: Introduce dev_pm_qos_add_ancestor_request()
PM / shmobile: Remove the stay_on flag from SH7372's PM domains
PM / shmobile: Don't include SH7372's INTCS in syscore suspend/resume
PM / shmobile: Add support for the sh7372 A4S power domain / sleep mode
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM/Devfreq: Add Exynos4-bus device DVFS driver for Exynos4210/4212/4412.
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
ARM: S3C64XX: Implement basic power domain support
PM / shmobile: Use common always on power domain governor
...
Fix up trivial conflict in fs/xfs/xfs_buf.c due to removal of unused
XBT_FORCE_SLEEP bit
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (165 commits)
reiserfs: Properly display mount options in /proc/mounts
vfs: prevent remount read-only if pending removes
vfs: count unlinked inodes
vfs: protect remounting superblock read-only
vfs: keep list of mounts for each superblock
vfs: switch ->show_options() to struct dentry *
vfs: switch ->show_path() to struct dentry *
vfs: switch ->show_devname() to struct dentry *
vfs: switch ->show_stats to struct dentry *
switch security_path_chmod() to struct path *
vfs: prefer ->dentry->d_sb to ->mnt->mnt_sb
vfs: trim includes a bit
switch mnt_namespace ->root to struct mount
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
vfs: opencode mntget() mnt_set_mountpoint()
vfs: spread struct mount - remaining argument of next_mnt()
vfs: move fsnotify junk to struct mount
vfs: move mnt_devname
vfs: move mnt_list to struct mount
vfs: switch pnode.h macros to struct mount *
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k: (21 commits)
m68k/mac: Make CONFIG_HEARTBEAT unavailable on Mac
m68k/serial: Remove references to obsolete serial config options
m68k/net: Remove obsolete IRQ_FLG_* users
m68k: Don't comment out syscalls used by glibc
m68k/atari: Move declaration of atari_SCC_reset_done to header file
m68k/serial: Remove references to obsolete CONFIG_SERIAL167
m68k/hp300: Export hp300_ledstate
m68k: Initconst section fixes
m68k/mac: cleanup macro case
mac_scsi: fix mac_scsi on some powerbooks
m68k/mac: fix powerbook 150 adb_type
m68k/mac: fix baboon irq disable and shutdown
m68k/mac: oss irq fixes
m68k/mac: fix nubus slot irq disable and shutdown
m68k/mac: enable via_alt_mapping on performa 580
m68k/mac: cleanup forward declarations
m68k/mac: cleanup mac_irq_pending
m68k/mac: cleanup mac_clear_irq
m68k/mac: early console
m68k/mvme16x: Add support for EARLY_PRINTK
...
Fix up trivial conflict in arch/m68k/Kconfig.debug due to new
EARLY_PRINTK config option addition clashing with movement of the
BOOTPARAM options.
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (56 commits)
m68k: allow ColdFire 547x and 548x CPUs to be built with MMU enabled
m68k/Kconfig: Separate classic m68k and coldfire early
m68k: add ColdFire with MMU enabled support to the m68k mem init code
m68k: do not use m68k startup or interrupt code for ColdFire CPUs
m68k: add ColdFire FPU support for the V4e ColdFire CPUs
m68k: adjustments to stack frame for ColdFire with MMU enabled
m68k: use non-MMU linker script for ColdFire MMU builds
m68k: ColdFire with MMU enabled uses same clocking code as non-MMU
m68k: add code to setup a ColdFire 54xx platform when MMU enabled
m68k: use non-MMU entry.S code when compiling for ColdFire CPU
m68k: create ColdFire MMU pgalloc code
m68k: compile appropriate mm arch files for ColdFire MMU support
m68k: ColdFire V4e MMU paging init code and miss handler
m68k: use ColdFire MMU read/write bit flags when ioremapping
m68k: modify cache push and clear code for ColdFire with MMU enable
m68k: use tracehook_report_syscall_entry/exit for ColdFire MMU ptrace path
m68k: ColdFire V4e MMU context support code
m68k: MMU enabled ColdFire needs 8k ELF alignment
m68k: set ColdFire MMU page size
m68k: define PAGE_OFFSET_RAW for ColdFire CPU with MMU enabled
...
The V4e ColdFire CPU family also has an integrated FPU (as well as the MMU).
So add code to support this hardware along side the existing m68k FPU code.
The ColdFire FPU is of course different to all previous 68k FP units. It is
close in operation to the 68060, but not completely compatible. The biggest
issue to deal with is that the ColdFire FPU multi-move instructions are
different. It does not support multi-moving the FP control registers, and
the multi-move of the FP data registers uses a different instruction
mnemonic.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>