Changes in 4.19.133
KVM: s390: reduce number of IO pins to 1
spi: spi-fsl-dspi: Adding shutdown hook
spi: spi-fsl-dspi: Fix lockup if device is removed during SPI transfer
spi: spi-fsl-dspi: use IRQF_SHARED mode to request IRQ
spi: spi-fsl-dspi: Fix external abort on interrupt in resume or exit paths
regmap: fix alignment issue
ARM: dts: omap4-droid4: Fix spi configuration and increase rate
drm/tegra: hub: Do not enable orphaned window group
gpu: host1x: Detach driver on unregister
spi: spidev: fix a race between spidev_release and spidev_remove
spi: spidev: fix a potential use-after-free in spidev_release()
ixgbe: protect ring accesses with READ- and WRITE_ONCE
i40e: protect ring accesses with READ- and WRITE_ONCE
drm: panel-orientation-quirks: Add quirk for Asus T101HA panel
drm: panel-orientation-quirks: Use generic orientation-data for Acer S1003
s390/kasan: fix early pgm check handler execution
cifs: update ctime and mtime during truncate
ARM: imx6: add missing put_device() call in imx6q_suspend_init()
scsi: mptscsih: Fix read sense data size
usb: dwc3: pci: Fix reference count leak in dwc3_pci_resume_work
block: release bip in a right way in error path
nvme-rdma: assign completion vector correctly
x86/entry: Increase entry_stack size to a full page
net: qrtr: Fix an out of bounds read qrtr_endpoint_post()
drm/mediatek: Check plane visibility in atomic_update
net: cxgb4: fix return error value in t4_prep_fw
smsc95xx: check return value of smsc95xx_reset
smsc95xx: avoid memory leak in smsc95xx_bind
net: hns3: fix use-after-free when doing self test
ALSA: compress: fix partial_drain completion state
arm64: kgdb: Fix single-step exception handling oops
nbd: Fix memory leak in nbd_add_socket
cxgb4: fix all-mask IP address comparison
bnxt_en: fix NULL dereference in case SR-IOV configuration fails
net: macb: mark device wake capable when "magic-packet" property present
mlxsw: spectrum_router: Remove inappropriate usage of WARN_ON()
ALSA: opl3: fix infoleak in opl3
ALSA: hda - let hs_mic be picked ahead of hp_mic
ALSA: usb-audio: add quirk for MacroSilicon MS2109
KVM: arm64: Fix definition of PAGE_HYP_DEVICE
KVM: arm64: Stop clobbering x0 for HVC_SOFT_RESTART
KVM: x86: bit 8 of non-leaf PDPEs is not reserved
KVM: x86: Inject #GP if guest attempts to toggle CR4.LA57 in 64-bit mode
KVM: x86: Mark CR4.TSD as being possibly owned by the guest
kallsyms: Refactor kallsyms_show_value() to take cred
kernel: module: Use struct_size() helper
module: Refactor section attr into bin attribute
module: Do not expose section addresses to non-CAP_SYSLOG
kprobes: Do not expose probe addresses to non-CAP_SYSLOG
bpf: Check correct cred for CAP_SYSLOG in bpf_dump_raw_ok()
Revert "ath9k: Fix general protection fault in ath9k_hif_usb_rx_cb"
btrfs: fix fatal extent_buffer readahead vs releasepage race
drm/radeon: fix double free
dm: use noio when sending kobject event
ARC: entry: fix potential EFA clobber when TIF_SYSCALL_TRACE
ARC: elf: use right ELF_ARCH
s390/mm: fix huge pte soft dirty copying
Linux 4.19.133
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I0a0198d501017d2bc701b653d75dc9cedd1ebbd9
commit 63960260457a02af2a6cb35d75e6bdb17299c882 upstream.
When evaluating access control over kallsyms visibility, credentials at
open() time need to be used, not the "current" creds (though in BPF's
case, this has likely always been the same). Plumb access to associated
file->f_cred down through bpf_dump_raw_ok() and its callers now that
kallsysm_show_value() has been refactored to take struct cred.
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: bpf@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: 7105e828c0 ("bpf: allow for correlation of maps and helpers in dump")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 160251842cd35a75edfb0a1d76afa3eb674ff40a upstream.
In order to perform future tests against the cred saved during open(),
switch kallsyms_show_value() to operate on a cred, and have all current
callers pass current_cred(). This makes it very obvious where callers
are checking the wrong credential in their "read" contexts. These will
be fixed in the coming patches.
Additionally switch return value to bool, since it is always used as a
direct permission check, not a 0-on-success, negative-on-error style
function return.
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With CONFIG_BPF_JIT, the kernel makes indirect calls to dynamically
generated code, which the compile-time Control-Flow Integrity (CFI)
checking cannot validate. This change adds basic sanity checking to
ensure we are jumping to a valid location, which narrows down the
attack surface on the stored pointer.
In addition, this change adds a weak arch_bpf_jit_check_func function,
which architectures that implement BPF JIT can override to perform
additional validation, such as verifying that the pointer points to
the correct memory region.
Bug: 140377409
Change-Id: I8ebac6637ab6bd9db44716b1c742add267298669
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
[ Upstream commit fdadd04931c2d7cd294dc5b2b342863f94be53a3 ]
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f2c65fb3221adc6b73b0549fc7ba892022db9797 ]
When modules and BPF filters are loaded, there is a time window in
which some memory is both writable and executable. An attacker that has
already found another vulnerability (e.g., a dangling pointer) might be
able to exploit this behavior to overwrite kernel code. Prevent having
writable executable PTEs in this stage.
In addition, avoiding having W+X mappings can also slightly simplify the
patching of modules code on initialization (e.g., by alternatives and
static-key), as would be done in the next patch. This was actually the
main motivation for this patch.
To avoid having W+X mappings, set them initially as RW (NX) and after
they are set as RO set them as X as well. Setting them as executable is
done as a separate step to avoid one core in which the old PTE is cached
(hence writable), and another which sees the updated PTE (executable),
which would break the W^X protection.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20190426001143.4983-12-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ede95a63b5e84ddeea6b0c473b36ab8bfd8c6ce3 upstream.
Rick reported that the BPF JIT could potentially fill the entire module
space with BPF programs from unprivileged users which would prevent later
attempts to load normal kernel modules or privileged BPF programs, for
example. If JIT was enabled but unsuccessful to generate the image, then
before commit 290af86629 ("bpf: introduce BPF_JIT_ALWAYS_ON config")
we would always fall back to the BPF interpreter. Nowadays in the case
where the CONFIG_BPF_JIT_ALWAYS_ON could be set, then the load will abort
with a failure since the BPF interpreter was compiled out.
Add a global limit and enforce it for unprivileged users such that in case
of BPF interpreter compiled out we fail once the limit has been reached
or we fall back to BPF interpreter earlier w/o using module mem if latter
was compiled in. In a next step, fair share among unprivileged users can
be resolved in particular for the case where we would fail hard once limit
is reached.
Fixes: 290af86629 ("bpf: introduce BPF_JIT_ALWAYS_ON config")
Fixes: 0a14842f5a ("net: filter: Just In Time compiler for x86-64")
Co-Developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: LKML <linux-kernel@vger.kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 116bfa96a255123ed209da6544f74a4f2eaca5da ]
Compiling with W=1 generates warnings:
CC kernel/bpf/core.o
kernel/bpf/core.c:721:12: warning: no previous prototype for ?bpf_jit_alloc_exec_limit? [-Wmissing-prototypes]
721 | u64 __weak bpf_jit_alloc_exec_limit(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~
kernel/bpf/core.c:757:14: warning: no previous prototype for ?bpf_jit_alloc_exec? [-Wmissing-prototypes]
757 | void *__weak bpf_jit_alloc_exec(unsigned long size)
| ^~~~~~~~~~~~~~~~~~
kernel/bpf/core.c:762:13: warning: no previous prototype for ?bpf_jit_free_exec? [-Wmissing-prototypes]
762 | void __weak bpf_jit_free_exec(void *addr)
| ^~~~~~~~~~~~~~~~~
All three are weak functions that archs can override, provide
proper prototypes for when a new arch provides their own.
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ commit 9b73bfdd08e73231d6a90ae6db4b46b3fbf56c30 upstream ]
Right now we are using BPF ax register in JIT for constant blinding as
well as in interpreter as temporary variable. Verifier will not be able
to use it simply because its use will get overridden from the former in
bpf_jit_blind_insn(). However, it can be made to work in that blinding
will be skipped if there is prior use in either source or destination
register on the instruction. Taking constraints of ax into account, the
verifier is then open to use it in rewrites under some constraints. Note,
ax register already has mappings in every eBPF JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ commit 144cd91c4c2bced6eb8a7e25e590f6618a11e854 upstream ]
This change moves the on-stack 64 bit tmp variable in ___bpf_prog_run()
into the hidden ax register. The latter is currently only used in JITs
for constant blinding as a temporary scratch register, meaning the BPF
interpreter will never see the use of ax. Therefore it is safe to use
it for the cases where tmp has been used earlier. This is needed to later
on allow restricted hidden use of ax in both interpreter and JITs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 46f53a65d2de3e1591636c22b626b09d8684fd71 ]
Currently BPF verifier allows narrow loads for a context field only with
offset zero. E.g. if there is a __u32 field then only the following
loads are permitted:
* off=0, size=1 (narrow);
* off=0, size=2 (narrow);
* off=0, size=4 (full).
On the other hand LLVM can generate a load with offset different than
zero that make sense from program logic point of view, but verifier
doesn't accept it.
E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code:
#define DST_IP4 0xC0A801FEU /* 192.168.1.254 */
...
if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) &&
where ctx is struct bpf_sock_addr.
Some versions of LLVM can produce the following byte code for it:
8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7)
9: 67 02 00 00 18 00 00 00 r2 <<= 24
10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll
12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6>
where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1
and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently
rejected by verifier.
Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok()
what means any is_valid_access implementation, that uses the function,
works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or
sock_addr_is_valid_access() for bpf_sock_addr.
The patch makes such loads supported. Offset can be in [0; size_default)
but has to be multiple of load size. E.g. for __u32 field the following
loads are supported now:
* off=0, size=1 (narrow);
* off=1, size=1 (narrow);
* off=2, size=1 (narrow);
* off=3, size=1 (narrow);
* off=0, size=2 (narrow);
* off=2, size=2 (narrow);
* off=0, size=4 (full).
Reported-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Commits 109980b894 ("bpf: don't select potentially stale ri->map
from buggy xdp progs") and 7c30013133 ("bpf: fix ri->map_owner
pointer on bpf_prog_realloc") tried to mitigate that buggy programs
using bpf_redirect_map() helper call do not leave stale maps behind.
Idea was to add a map_owner cookie into the per CPU struct redirect_info
which was set to prog->aux by the prog making the helper call as a
proof that the map is not stale since the prog is implicitly holding
a reference to it. This owner cookie could later on get compared with
the program calling into BPF whether they match and therefore the
redirect could proceed with processing the map safely.
In (obvious) hindsight, this approach breaks down when tail calls are
involved since the original caller's prog->aux pointer does not have
to match the one from one of the progs out of the tail call chain,
and therefore the xdp buffer will be dropped instead of redirected.
A way around that would be to fix the issue differently (which also
allows to remove related work in fast path at the same time): once
the life-time of a redirect map has come to its end we use it's map
free callback where we need to wait on synchronize_rcu() for current
outstanding xdp buffers and remove such a map pointer from the
redirect info if found to be present. At that time no program is
using this map anymore so we simply invalidate the map pointers to
NULL iff they previously pointed to that instance while making sure
that the redirect path only reads out the map once.
Fixes: 97f91a7cf0 ("bpf: add bpf_redirect_map helper routine")
Fixes: 109980b894 ("bpf: don't select potentially stale ri->map from buggy xdp progs")
Reported-by: Sebastiano Miano <sebastiano.miano@polito.it>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch allows a BPF_PROG_TYPE_SK_REUSEPORT bpf prog to select a
SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY introduced in
the earlier patch. "bpf_run_sk_reuseport()" will return -ECONNREFUSED
when the BPF_PROG_TYPE_SK_REUSEPORT prog returns SK_DROP.
The callers, in inet[6]_hashtable.c and ipv[46]/udp.c, are modified to
handle this case and return NULL immediately instead of continuing the
sk search from its hashtable.
It re-uses the existing SO_ATTACH_REUSEPORT_EBPF setsockopt to attach
BPF_PROG_TYPE_SK_REUSEPORT. The "sk_reuseport_attach_bpf()" will check
if the attaching bpf prog is in the new SK_REUSEPORT or the existing
SOCKET_FILTER type and then check different things accordingly.
One level of "__reuseport_attach_prog()" call is removed. The
"sk_unhashed() && ..." and "sk->sk_reuseport_cb" tests are pushed
back to "reuseport_attach_prog()" in sock_reuseport.c. sock_reuseport.c
seems to have more knowledge on those test requirements than filter.c.
In "reuseport_attach_prog()", after new_prog is attached to reuse->prog,
the old_prog (if any) is also directly freed instead of returning the
old_prog to the caller and asking the caller to free.
The sysctl_optmem_max check is moved back to the
"sk_reuseport_attach_filter()" and "sk_reuseport_attach_bpf()".
As of other bpf prog types, the new BPF_PROG_TYPE_SK_REUSEPORT is only
bounded by the usual "bpf_prog_charge_memlock()" during load time
instead of bounded by both bpf_prog_charge_memlock and sysctl_optmem_max.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds a BPF_PROG_TYPE_SK_REUSEPORT which can select
a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY. Like other
non SK_FILTER/CGROUP_SKB program, it requires CAP_SYS_ADMIN.
BPF_PROG_TYPE_SK_REUSEPORT introduces "struct sk_reuseport_kern"
to store the bpf context instead of using the skb->cb[48].
At the SO_REUSEPORT sk lookup time, it is in the middle of transiting
from a lower layer (ipv4/ipv6) to a upper layer (udp/tcp). At this
point, it is not always clear where the bpf context can be appended
in the skb->cb[48] to avoid saving-and-restoring cb[]. Even putting
aside the difference between ipv4-vs-ipv6 and udp-vs-tcp. It is not
clear if the lower layer is only ipv4 and ipv6 in the future and
will it not touch the cb[] again before transiting to the upper
layer.
For example, in udp_gro_receive(), it uses the 48 byte NAPI_GRO_CB
instead of IP[6]CB and it may still modify the cb[] after calling
the udp[46]_lib_lookup_skb(). Because of the above reason, if
sk->cb is used for the bpf ctx, saving-and-restoring is needed
and likely the whole 48 bytes cb[] has to be saved and restored.
Instead of saving, setting and restoring the cb[], this patch opts
to create a new "struct sk_reuseport_kern" and setting the needed
values in there.
The new BPF_PROG_TYPE_SK_REUSEPORT and "struct sk_reuseport_(kern|md)"
will serve all ipv4/ipv6 + udp/tcp combinations. There is no protocol
specific usage at this point and it is also inline with the current
sock_reuseport.c implementation (i.e. no protocol specific requirement).
In "struct sk_reuseport_md", this patch exposes data/data_end/len
with semantic similar to other existing usages. Together
with "bpf_skb_load_bytes()" and "bpf_skb_load_bytes_relative()",
the bpf prog can peek anywhere in the skb. The "bind_inany" tells
the bpf prog that the reuseport group is bind-ed to a local
INANY address which cannot be learned from skb.
The new "bind_inany" is added to "struct sock_reuseport" which will be
used when running the new "BPF_PROG_TYPE_SK_REUSEPORT" bpf prog in order
to avoid repeating the "bind INANY" test on
"sk_v6_rcv_saddr/sk->sk_rcv_saddr" every time a bpf prog is run. It can
only be properly initialized when a "sk->sk_reuseport" enabled sk is
adding to a hashtable (i.e. during "reuseport_alloc()" and
"reuseport_add_sock()").
The new "sk_select_reuseport()" is the main helper that the
bpf prog will use to select a SO_REUSEPORT sk. It is the only function
that can use the new BPF_MAP_TYPE_REUSEPORT_ARRAY. As mentioned in
the earlier patch, the validity of a selected sk is checked in
run time in "sk_select_reuseport()". Doing the check in
verification time is difficult and inflexible (consider the map-in-map
use case). The runtime check is to compare the selected sk's reuseport_id
with the reuseport_id that we want. This helper will return -EXXX if the
selected sk cannot serve the incoming request (e.g. reuseport_id
not match). The bpf prog can decide if it wants to do SK_DROP as its
discretion.
When the bpf prog returns SK_PASS, the kernel will check if a
valid sk has been selected (i.e. "reuse_kern->selected_sk != NULL").
If it does , it will use the selected sk. If not, the kernel
will select one from "reuse->socks[]" (as before this patch).
The SK_DROP and SK_PASS handling logic will be in the next patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We need some mechanism to disable napi_direct on calling
xdp_return_frame_rx_napi() from some context.
When veth gets support of XDP_REDIRECT, it will redirects packets which
are redirected from other devices. On redirection veth will reuse
xdp_mem_info of the redirection source device to make return_frame work.
But in this case .ndo_xdp_xmit() called from veth redirection uses
xdp_mem_info which is not guarded by NAPI, because the .ndo_xdp_xmit()
is not called directly from the rxq which owns the xdp_mem_info.
This approach introduces a flag in bpf_redirect_info to indicate that
napi_direct should be disabled even when _rx_napi variant is used as
well as helper functions to use it.
A NAPI handler who wants to use this flag needs to call
xdp_set_return_frame_no_direct() before processing packets, and call
xdp_clear_return_frame_no_direct() after xdp_do_flush_map() before
exiting NAPI.
v4:
- Use bpf_redirect_info for storing the flag instead of xdp_mem_info to
avoid per-frame copy cost.
Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We are going to add kern_flags field in redirect_info for kernel
internal use.
In order to avoid function call to access the flags, make redirect_info
accessible from modules. Also as it is now non-static, add prefix bpf_
to redirect_info.
v6:
- Fix sparse warning around EXPORT_SYMBOL.
Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Otherwise we end up with attempting to send packets from down devices
or to send oversized packets, which may cause unexpected driver/device
behaviour. Generic XDP has already done this check, so reuse the logic
in native XDP.
Fixes: 814abfabef ("xdp: add bpf_redirect helper function")
Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Partially undo commit 9facc33687 ("bpf: reject any prog that failed
read-only lock") since it caused a regression, that is, syzkaller was
able to manage to cause a panic via fault injection deep in set_memory_ro()
path by letting an allocation fail: In x86's __change_page_attr_set_clr()
it was able to change the attributes of the primary mapping but not in
the alias mapping via cpa_process_alias(), so the second, inner call
to the __change_page_attr() via __change_page_attr_set_clr() had to split
a larger page and failed in the alloc_pages() with the artifically triggered
allocation error which is then propagated down to the call site.
Thus, for set_memory_ro() this means that it returned with an error, but
from debugging a probe_kernel_write() revealed EFAULT on that memory since
the primary mapping succeeded to get changed. Therefore the subsequent
hdr->locked = 0 reset triggered the panic as it was performed on read-only
memory, so call-site assumptions were infact wrong to assume that it would
either succeed /or/ not succeed at all since there's no such rollback in
set_memory_*() calls from partial change of mappings, in other words, we're
left in a state that is "half done". A later undo via set_memory_rw() is
succeeding though due to matching permissions on that part (aka due to the
try_preserve_large_page() succeeding). While reproducing locally with
explicitly triggering this error, the initial splitting only happens on
rare occasions and in real world it would additionally need oom conditions,
but that said, it could partially fail. Therefore, it is definitely wrong
to bail out on set_memory_ro() error and reject the program with the
set_memory_*() semantics we have today. Shouldn't have gone the extra mile
since no other user in tree today infact checks for any set_memory_*()
errors, e.g. neither module_enable_ro() / module_disable_ro() for module
RO/NX handling which is mostly default these days nor kprobes core with
alloc_insn_page() / free_insn_page() as examples that could be invoked long
after bootup and original 314beb9bca ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks") did neither when it got first introduced to BPF
so "improving" with bailing out was clearly not right when set_memory_*()
cannot handle it today.
Kees suggested that if set_memory_*() can fail, we should annotate it with
__must_check, and all callers need to deal with it gracefully given those
set_memory_*() markings aren't "advisory", but they're expected to actually
do what they say. This might be an option worth to move forward in future
but would at the same time require that set_memory_*() calls from supporting
archs are guaranteed to be "atomic" in that they provide rollback if part
of the range fails, once that happened, the transition from RW -> RO could
be made more robust that way, while subsequent RO -> RW transition /must/
continue guaranteeing to always succeed the undo part.
Reported-by: syzbot+a4eb8c7766952a1ca872@syzkaller.appspotmail.com
Reported-by: syzbot+d866d1925855328eac3b@syzkaller.appspotmail.com
Fixes: 9facc33687 ("bpf: reject any prog that failed read-only lock")
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After commit 9facc33687 ("bpf: reject any prog that failed read-only lock")
offsetof(struct bpf_binary_header, image) became 3 instead of 4,
breaking powerpc BPF badly, since instructions need to be word aligned.
Fixes: 9facc33687 ("bpf: reject any prog that failed read-only lock")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 67f29e07e1 ("bpf: devmap introduce dev_map_enqueue") changed
the return value type of __devmap_lookup_elem() from struct net_device *
to struct bpf_dtab_netdev * but forgot to modify generic XDP code
accordingly.
Thus generic XDP incorrectly used struct bpf_dtab_netdev where struct
net_device is expected, then skb->dev was set to invalid value.
v2:
- Fix compiler warning without CONFIG_BPF_SYSCALL.
Fixes: 67f29e07e1 ("bpf: devmap introduce dev_map_enqueue")
Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We currently lock any JITed image as read-only via bpf_jit_binary_lock_ro()
as well as the BPF image as read-only through bpf_prog_lock_ro(). In
the case any of these would fail we throw a WARN_ON_ONCE() in order to
yell loudly to the log. Perhaps, to some extend, this may be comparable
to an allocation where __GFP_NOWARN is explicitly not set.
Added via 65869a47f3 ("bpf: improve read-only handling"), this behavior
is slightly different compared to any of the other in-kernel set_memory_ro()
users who do not check the return code of set_memory_ro() and friends /at
all/ (e.g. in the case of module_enable_ro() / module_disable_ro()). Given
in BPF this is mandatory hardening step, we want to know whether there
are any issues that would leave both BPF data writable. So it happens
that syzkaller enabled fault injection and it triggered memory allocation
failure deep inside x86's change_page_attr_set_clr() which was triggered
from set_memory_ro().
Now, there are two options: i) leaving everything as is, and ii) reworking
the image locking code in order to have a final checkpoint out of the
central bpf_prog_select_runtime() which probes whether any of the calls
during prog setup weren't successful, and then bailing out with an error.
Option ii) is a better approach since this additional paranoia avoids
altogether leaving any potential W+X pages from BPF side in the system.
Therefore, lets be strict about it, and reject programs in such unlikely
occasion. While testing I noticed also that one bpf_prog_lock_ro()
call was missing on the outer dummy prog in case of calls, e.g. in the
destructor we call bpf_prog_free_deferred() on the main prog where we
try to bpf_prog_unlock_free() the program, and since we go via
bpf_prog_select_runtime() do that as well.
Reported-by: syzbot+3b889862e65a98317058@syzkaller.appspotmail.com
Reported-by: syzbot+9e762b52dd17e616a7a5@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While testing I found that when hitting error path in bpf_prog_load()
where we jump to free_used_maps and prog contained BPF to BPF calls
that were JITed earlier, then we never clean up the bpf_prog_kallsyms_add()
done under jit_subprogs(). Add proper API to make BPF kallsyms deletion
more clear and fix that.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Wang reported that all the testcases for BPF_PROG_TYPE_PERF_EVENT
program type in test_verifier report the following errors on x86_32:
172/p unpriv: spill/fill of different pointers ldx FAIL
Unexpected error message!
0: (bf) r6 = r10
1: (07) r6 += -8
2: (15) if r1 == 0x0 goto pc+3
R1=ctx(id=0,off=0,imm=0) R6=fp-8,call_-1 R10=fp0,call_-1
3: (bf) r2 = r10
4: (07) r2 += -76
5: (7b) *(u64 *)(r6 +0) = r2
6: (55) if r1 != 0x0 goto pc+1
R1=ctx(id=0,off=0,imm=0) R2=fp-76,call_-1 R6=fp-8,call_-1 R10=fp0,call_-1 fp-8=fp
7: (7b) *(u64 *)(r6 +0) = r1
8: (79) r1 = *(u64 *)(r6 +0)
9: (79) r1 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8
378/p check bpf_perf_event_data->sample_period byte load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (71) r0 = *(u8 *)(r1 +68)
invalid bpf_context access off=68 size=1
379/p check bpf_perf_event_data->sample_period half load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (69) r0 = *(u16 *)(r1 +68)
invalid bpf_context access off=68 size=2
380/p check bpf_perf_event_data->sample_period word load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (61) r0 = *(u32 *)(r1 +68)
invalid bpf_context access off=68 size=4
381/p check bpf_perf_event_data->sample_period dword load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (79) r0 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8
Reason is that struct pt_regs on x86_32 doesn't fully align to 8 byte
boundary due to its size of 68 bytes. Therefore, bpf_ctx_narrow_access_ok()
will then bail out saying that off & (size_default - 1) which is 68 & 7
doesn't cleanly align in the case of sample_period access from struct
bpf_perf_event_data, hence verifier wrongly thinks we might be doing an
unaligned access here though underlying arch can handle it just fine.
Therefore adjust this down to machine size and check and rewrite the
offset for narrow access on that basis. We also need to fix corresponding
pe_prog_is_valid_access(), since we hit the check for off % size != 0
(e.g. 68 % 8 -> 4) in the first and last test. With that in place, progs
for tracing work on x86_32.
Reported-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While some of the BPF map lookup helpers provide a ->map_gen_lookup()
callback for inlining the map lookup altogether it is not available
for every map, so the remaining ones have to call bpf_map_lookup_elem()
helper which does a dispatch to map->ops->map_lookup_elem(). In
times of retpolines, this will control and trap speculative execution
rather than letting it do its work for the indirect call and will
therefore cause a slowdown. Likewise, bpf_map_update_elem() and
bpf_map_delete_elem() do not have an inlined version and need to call
into their map->ops->map_update_elem() resp. map->ops->map_delete_elem()
handlers.
Before:
# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#232656
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call bpf_map_delete_elem#215008 <-- indirect call via
16: (95) exit helper
After:
# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#233328
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call htab_lru_map_delete_elem#238240 <-- direct call
16: (95) exit
In all three lookup/update/delete cases however we can use the actual
address of the map callback directly if we find that there's only a
single path with a map pointer leading to the helper call, meaning
when the map pointer has not been poisoned from verifier side.
Example code can be seen above for the delete case.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add several test cases where the same or different map pointers
originate from different paths in the program and execute a map
lookup or tail call at a common location.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In addition to already existing BPF hooks for sys_bind and sys_connect,
the patch provides new hooks for sys_sendmsg.
It leverages existing BPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR`
that provides access to socket itlself (properties like family, type,
protocol) and user-passed `struct sockaddr *` so that BPF program can
override destination IP and port for system calls such as sendto(2) or
sendmsg(2) and/or assign source IP to the socket.
The hooks are implemented as two new attach types:
`BPF_CGROUP_UDP4_SENDMSG` and `BPF_CGROUP_UDP6_SENDMSG` for UDPv4 and
UDPv6 correspondingly.
UDPv4 and UDPv6 separate attach types for same reason as sys_bind and
sys_connect hooks, i.e. to prevent reading from / writing to e.g.
user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound.
The difference with already existing hooks is sys_sendmsg are
implemented only for unconnected UDP.
For TCP it doesn't make sense to change user-provided `struct sockaddr *`
at sendto(2)/sendmsg(2) time since socket either was already connected
and has source/destination set or wasn't connected and call to
sendto(2)/sendmsg(2) would lead to ENOTCONN anyway.
Connected UDP is already handled by sys_connect hooks that can override
source/destination at connect time and use fast-path later, i.e. these
hooks don't affect UDP fast-path.
Rewriting source IP is implemented differently than that in sys_connect
hooks. When sys_sendmsg is used with unconnected UDP it doesn't work to
just bind socket to desired local IP address since source IP can be set
on per-packet basis by using ancillary data (cmsg(3)). So no matter if
socket is bound or not, source IP has to be rewritten on every call to
sys_sendmsg.
To do so two new fields are added to UAPI `struct bpf_sock_addr`;
* `msg_src_ip4` to set source IPv4 for UDPv4;
* `msg_src_ip6` to set source IPv6 for UDPv6.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently sk_msg programs only have access to the raw data. However,
it is often useful when building policies to have the policies specific
to the socket endpoint. This allows using the socket tuple as input
into filters, etc.
This patch adds ctx access to the sock fields.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch only refactors the existing sockmap code. This will allow
much of the psock initialization code path and bpf helper codes to
work for both sockmap bpf map types that are backed by an array, the
currently supported type, and the new hash backed bpf map type
sockhash.
Most the fallout comes from three changes,
- Pushing bpf programs into an independent structure so we
can use it from the htab struct in the next patch.
- Generalizing helpers to use void *key instead of the hardcoded
u32.
- Instead of passing map/key through the metadata we now do
the lookup inline. This avoids storing the key in the metadata
which will be useful when keys can be longer than 4 bytes. We
rename the sk pointers to sk_redir at this point as well to
avoid any confusion between the current sk pointer and the
redirect pointer sk_redir.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:
* fdfaf64e75 ("x86: bpf_jit: support negative offsets")
* 35607b02db ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c1215 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee94394 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf7 ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2c ("bpf, ppc64: do not reload skb pointers in non-skb context")
For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.
In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.
The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:
test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113
For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit wires up the xskmap to XDP_SKB layer.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, stackmap and bpf_get_stackid helper are provided
for bpf program to get the stack trace. This approach has
a limitation though. If two stack traces have the same hash,
only one will get stored in the stackmap table,
so some stack traces are missing from user perspective.
This patch implements a new helper, bpf_get_stack, will
send stack traces directly to bpf program. The bpf program
is able to see all stack traces, and then can do in-kernel
processing or send stack traces to user space through
shared map or bpf_perf_event_output.
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is done to prepare for the next patch, and it is also
nice to move this XDP related struct out of filter.h.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
== The problem ==
There is a use-case when all processes inside a cgroup should use one
single IP address on a host that has multiple IP configured. Those
processes should use the IP for both ingress and egress, for TCP and UDP
traffic. So TCP/UDP servers should be bound to that IP to accept
incoming connections on it, and TCP/UDP clients should make outgoing
connections from that IP. It should not require changing application
code since it's often not possible.
Currently it's solved by intercepting glibc wrappers around syscalls
such as `bind(2)` and `connect(2)`. It's done by a shared library that
is preloaded for every process in a cgroup so that whenever TCP/UDP
server calls `bind(2)`, the library replaces IP in sockaddr before
passing arguments to syscall. When application calls `connect(2)` the
library transparently binds the local end of connection to that IP
(`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty).
Shared library approach is fragile though, e.g.:
* some applications clear env vars (incl. `LD_PRELOAD`);
* `/etc/ld.so.preload` doesn't help since some applications are linked
with option `-z nodefaultlib`;
* other applications don't use glibc and there is nothing to intercept.
== The solution ==
The patch provides much more reliable in-kernel solution for the 1st
part of the problem: binding TCP/UDP servers on desired IP. It does not
depend on application environment and implementation details (whether
glibc is used or not).
It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and
attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND`
(similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`).
The new program type is intended to be used with sockets (`struct sock`)
in a cgroup and provided by user `struct sockaddr`. Pointers to both of
them are parts of the context passed to programs of newly added types.
The new attach types provides hooks in `bind(2)` system call for both
IPv4 and IPv6 so that one can write a program to override IP addresses
and ports user program tries to bind to and apply such a program for
whole cgroup.
== Implementation notes ==
[1]
Separate attach types for `AF_INET` and `AF_INET6` are added
intentionally to prevent reading/writing to offsets that don't make
sense for corresponding socket family. E.g. if user passes `sockaddr_in`
it doesn't make sense to read from / write to `user_ip6[]` context
fields.
[2]
The write access to `struct bpf_sock_addr_kern` is implemented using
special field as an additional "register".
There are just two registers in `sock_addr_convert_ctx_access`: `src`
with value to write and `dst` with pointer to context that can't be
changed not to break later instructions. But the fields, allowed to
write to, are not available directly and to access them address of
corresponding pointer has to be loaded first. To get additional register
the 1st not used by `src` and `dst` one is taken, its content is saved
to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load
address of pointer field, and finally the register's content is restored
from the temporary field after writing `src` value.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
There are use-cases when a program of some type can be attached to
multiple attach points and those attach points must have different
permissions to access context or to call helpers.
E.g. context structure may have fields for both IPv4 and IPv6 but it
doesn't make sense to read from / write to IPv6 field when attach point
is somewhere in IPv4 stack.
Same applies to BPF-helpers: it may make sense to call some helper from
some attach point, but not from other for same prog type.
== The solution ==
Introduce `expected_attach_type` field in in `struct bpf_attr` for
`BPF_PROG_LOAD` command. If scenario described in "The problem" section
is the case for some prog type, the field will be checked twice:
1) At load time prog type is checked to see if attach type for it must
be known to validate program permissions correctly. Prog will be
rejected with EINVAL if it's the case and `expected_attach_type` is
not specified or has invalid value.
2) At attach time `attach_type` is compared with `expected_attach_type`,
if prog type requires to have one, and, if they differ, attach will
be rejected with EINVAL.
The `expected_attach_type` is now available as part of `struct bpf_prog`
in both `bpf_verifier_ops->is_valid_access()` and
`bpf_verifier_ops->get_func_proto()` () and can be used to check context
accesses and calls to helpers correspondingly.
Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and
Daniel Borkmann <daniel@iogearbox.net> here:
https://marc.info/?l=linux-netdev&m=152107378717201&w=2
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add support for the BPF_F_INGRESS flag in skb redirect helper. To
do this convert skb into a scatterlist and push into ingress queue.
This is the same logic that is used in the sk_msg redirect helper
so it should feel familiar.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add support for the BPF_F_INGRESS flag in sk_msg redirect helper.
To do this add a scatterlist ring for receiving socks to check
before calling into regular recvmsg call path. Additionally, because
the poll wakeup logic only checked the skb recv queue we need to
add a hook in TCP stack (similar to write side) so that we have
a way to wake up polling socks when a scatterlist is redirected
to that sock.
After this all that is needed is for the redirect helper to
push the scatterlist into the psock receive queue.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
BPF_LDST_BYTES() does not put it's argument in parenthesis
when referencing it. This makes it impossible to pass pointers
obtained by address-of operator (e.g. BPF_LDST_BYTES(&insn)).
Add the parenthesis.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.
Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.
BPF_PROG_TYPE_SK_MSG Semantics/API:
BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.
In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.
In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.
The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.
The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.
Pseudo code simple example:
The basic logic to attach a program to a socket is as follows,
// load the programs
bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
&obj, &msg_prog);
// lookup the sockmap
bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");
// get fd for sockmap
map_fd_msg = bpf_map__fd(bpf_map_msg);
// attach program to sockmap
bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);
Adding sockets to the map is done in the normal way,
// Add a socket 'fd' to sockmap at location 'i'
bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);
After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.
For a complete example see BPF selftests or sockmap samples.
Implementation notes:
It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.
Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.
Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
If is sufficient with a forward declaration of struct xdp_rxq_info in
linux/filter.h, which avoids including net/xdp.h. This was originally
suggested by John Fastabend during the review phase, but wasn't
included in the final patchset revision. Thus, this followup.
Suggested-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recent findings by syzcaller fixed in 7891a87efc ("bpf: arsh is
not supported in 32 bit alu thus reject it") triggered a warning
in the interpreter due to unknown opcode not being rejected by
the verifier. The 'return 0' for an unknown opcode is really not
optimal, since with BPF to BPF calls, this would go untracked by
the verifier.
Do two things here to improve the situation: i) perform basic insn
sanity check early on in the verification phase and reject every
non-uapi insn right there. The bpf_opcode_in_insntable() table
reuses the same mapping as the jumptable in ___bpf_prog_run() sans
the non-public mappings. And ii) in ___bpf_prog_run() we do need
to BUG in the case where the verifier would ever create an unknown
opcode due to some rewrites.
Note that JITs do not have such issues since they would punt to
interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON
would also help to avoid such unknown opcodes in the first place.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Adds support for passing up to 4 arguments to sock_ops bpf functions. It
reusues the reply union, so the bpf_sock_ops structures are not
increased in size.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a macro, SOCK_OPS_SET_FIELD, for writing to
struct tcp_sock or struct sock fields. This required adding a new
field "temp" to struct bpf_sock_ops_kern for temporary storage that
is used by sock_ops_convert_ctx_access. It is used to store and recover
the contents of a register, so the register can be used to store the
address of the sk. Since we cannot overwrite the dst_reg because it
contains the pointer to ctx, nor the src_reg since it contains the value
we want to store, we need an extra register to contain the address
of the sk.
Also adds the macro SOCK_OPS_GET_OR_SET_FIELD that calls one of the
GET or SET macros depending on the value of the TYPE field.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch only introduce the core data structures and API functions.
All XDP enabled drivers must use the API before this info can used.
There is a need for XDP to know more about the RX-queue a given XDP
frames have arrived on. For both the XDP bpf-prog and kernel side.
Instead of extending xdp_buff each time new info is needed, the patch
creates a separate read-mostly struct xdp_rxq_info, that contains this
info. We stress this data/cache-line is for read-only info. This is
NOT for dynamic per packet info, use the data_meta for such use-cases.
The performance advantage is this info can be setup at RX-ring init
time, instead of updating N-members in xdp_buff. A possible (driver
level) micro optimization is that xdp_buff->rxq assignment could be
done once per XDP/NAPI loop. The extra pointer deref only happens for
program needing access to this info (thus, no slowdown to existing
use-cases).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Adds read access to snd_cwnd and srtt_us fields of tcp_sock. Since these
fields are only valid if the socket associated with the sock_ops program
call is a full socket, the field is_fullsock is also added to the
bpf_sock_ops struct. If the socket is not a full socket, reading these
fields returns 0.
Note that in most cases it will not be necessary to check is_fullsock to
know if there is a full socket. The context of the call, as specified by
the 'op' field, can sometimes determine whether there is a full socket.
The struct bpf_sock_ops has the following fields added:
__u32 is_fullsock; /* Some TCP fields are only valid if
* there is a full socket. If not, the
* fields read as zero.
*/
__u32 snd_cwnd;
__u32 srtt_us; /* Averaged RTT << 3 in usecs */
There is a new macro, SOCK_OPS_GET_TCP32(NAME), to make it easier to add
read access to more 32 bit tcp_sock fields.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2 updates
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (131 commits)
memory hotplug: fix comments when adding section
mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
mm: simplify nodemask printing
mm,oom_reaper: remove pointless kthread_run() error check
mm/page_ext.c: check if page_ext is not prepared
writeback: remove unused function parameter
mm: do not rely on preempt_count in print_vma_addr
mm, sparse: do not swamp log with huge vmemmap allocation failures
mm/hmm: remove redundant variable align_end
mm/list_lru.c: mark expected switch fall-through
mm/shmem.c: mark expected switch fall-through
mm/page_alloc.c: broken deferred calculation
mm: don't warn about allocations which stall for too long
fs: fuse: account fuse_inode slab memory as reclaimable
mm, page_alloc: fix potential false positive in __zone_watermark_ok
mm: mlock: remove lru_add_drain_all()
mm, sysctl: make NUMA stats configurable
shmem: convert shmem_init_inodecache() to void
Unify migrate_pages and move_pages access checks
mm, pagevec: rename pagevec drained field
...