This patch adds the ability to trace various aspects of the GFS2
filesystem. The trace points are divided into three groups,
glocks, logging and bmap. These points have been chosen because
they allow inspection of the major internal functions of GFS2
and they are also generic enough that they are unlikely to need
any major changes as the filesystem evolves.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (87 commits)
nilfs2: get rid of bd_mount_sem use from nilfs
nilfs2: correct exclusion control in nilfs_remount function
nilfs2: simplify remaining sget() use
nilfs2: get rid of sget use for checking if current mount is present
nilfs2: get rid of sget use for acquiring nilfs object
nilfs2: remove meaningless EBUSY case from nilfs_get_sb function
remove the call to ->write_super in __sync_filesystem
nilfs2: call nilfs2_write_super from nilfs2_sync_fs
jffs2: call jffs2_write_super from jffs2_sync_fs
ufs: add ->sync_fs
sysv: add ->sync_fs
hfsplus: add ->sync_fs
hfs: add ->sync_fs
fat: add ->sync_fs
ext2: add ->sync_fs
exofs: add ->sync_fs
bfs: add ->sync_fs
affs: add ->sync_fs
sanitize ->fsync() for affs
repair bfs_write_inode(), switch bfs to simple_fsync()
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu:
m68knommu: remove unecessary include of thread_info.h in entry.S
m68knommu: enumerate INIT_THREAD fields properly
headers_check fix: m68k, swab.h
arch/m68knommu: Convert #ifdef DEBUG printk(KERN_DEBUG to pr_debug(
m68knommu: remove obsolete reset code
m68knommu: move CPU reset code for the 5272 ColdFire into its platform code
m68knommu: move CPU reset code for the 528x ColdFire into its platform code
m68knommu: move CPU reset code for the 527x ColdFire into its platform code
m68knommu: move CPU reset code for the 523x ColdFire into its platform code
m68knommu: move CPU reset code for the 520x ColdFire into its platform code
m68knommu: add CPU reset code for the 532x ColdFire
m68knommu: add CPU reset code for the 5249 ColdFire
m68knommu: add CPU reset code for the 5206e ColdFire
m68knommu: add CPU reset code for the 5206 ColdFire
m68knommu: add CPU reset code for the 5407 ColdFire
m68knommu: add CPU reset code for the 5307 ColdFire
m68knommu: merge system reset for code ColdFire 523x family
m68knommu: fix system reset for ColdFire 527x family
So we make sure MAXSMP gets a cleared cpumask
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will remove every bd_mount_sem use in nilfs.
The intended exclusion control was replaced by the previous patch
("nilfs2: correct exclusion control in nilfs_remount function") for
nilfs_remount(), and this patch will replace remains with a new mutex
that this inserts in nilfs object.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
nilfs_remount() changes mount state of a superblock instance. Even
though nilfs accesses other superblock instances during mount or
remount, the mount state was not properly protected in
nilfs_remount().
Moreover, nilfs_remount() has a lock order reversal problem;
nilfs_get_sb() holds:
1. bdev->bd_mount_sem
2. sb->s_umount (sget acquires)
and nilfs_remount() holds:
1. sb->s_umount (locked by the caller in vfs)
2. bdev->bd_mount_sem
To avoid these problems, this patch divides a semaphore protecting
super block instances from nilfs->ns_sem, and applies it to the mount
state protection in nilfs_remount().
With this change, bd_mount_sem use is removed from nilfs_remount() and
the lock order reversal will be resolved. And the new rw-semaphore,
nilfs->ns_super_sem will properly protect the mount state except the
modification from nilfs_error function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This simplifies the test function passed on the remaining sget()
callsite in nilfs.
Instead of checking mount type (i.e. ro-mount/rw-mount/snapshot mount)
in the test function passed to sget(), this patch first looks up the
nilfs_sb_info struct which the given mount type matches, and then
acquires the super block instance holding the nilfs_sb_info.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This stops using sget() for checking if an r/w-mount or an r/o-mount
exists on the device. This elimination uses a back pointer to the
current mount added to nilfs object.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This will change the way to obtain nilfs object in nilfs_get_sb()
function.
Previously, a preliminary sget() call was performed, and the nilfs
object was acquired from a super block instance found by the sget()
call.
This patch, instead, instroduces a new dedicated function
find_or_create_nilfs(); as the name implies, the function finds an
existent nilfs object from a global list or creates a new one if no
object is found on the device.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The following EBUSY case in nilfs_get_sb() is meaningless. Indeed,
this error code is never returned to the caller.
if (!s->s_root) {
...
} else if (!(s->s_flags & MS_RDONLY)) {
err = -EBUSY;
}
This simply removes the else case.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that all filesystems provide ->sync_fs methods we can change
__sync_filesystem to only call ->sync_fs.
This gives us a clear separation between periodic writeouts which
are driven by ->write_super and data integrity syncs that go
through ->sync_fs. (modulo file_fsync which is also going away)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The call to ->write_super from __sync_filesystem will go away, so make
sure nilfs2 performs the same actions from inside ->sync_fs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The call to ->write_super from __sync_filesystem will go away, so make
sure jffs2 performs the same actions from inside ->sync_fs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs, and reimplement
->write_super ontop of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs. Factor out common code
between affs_put_super, affs_write_super and the new affs_sync_fs into
a helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
unfortunately, for affs (especially for affs directories) we have
no real way to keep track of metadata ownership. So we have to
do more or less what file_fsync() does, but we do *not* need to
call write_super() there.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
kill ext2_sync_file() (along with ext2/fsync.c), get rid of
ext2_update_inode() - it's an alias of ext2_write_inode().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* mark directory data blocks as assoc. metadata
* add new inode to deal with FAT, mark FAT blocks as assoc. metadata of that
* now ->fsync() is trivial both for files and directories
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fs-internal parts of qnx4_fs.h taken to fs/qnx4/qnx4.h, includes adjusted,
qnx4_fs.h doesn't need unifdef anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* have directory operations use mark_buffer_dirty_inode(),
so that sync_mapping_buffers() would get those.
* make qnx4_write_inode() honour its last argument.
* get rid of insane copies of very ancient "walk the indirect blocks"
in qnx4/fsync - they never matched the actual fs layout and, fortunately,
never'd been called. Again, all this junk is not needed; ->fsync()
should just do sync_mapping_buffers + sync_inode (and if we implement
block allocation for qnx4, we'll need to use mark_buffer_dirty_inode()
for extent blocks)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
writes associated buffers, then does sync_inode() to write
the inode itself (and to make it clean). Depends on
->write_inode() honouring the second argument.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
I think the block_dump output in __mark_inode_dirty is missing dentry locking.
Surely the i_dentry list can change any time, so we may not even *get* a
dentry there. If we do get one by chance, then it would appear to be able to
go away or get renamed at any time...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some filesystems can call in to sync an inode that is still in the
I_NEW state (eg. ext family, when mounted with -osync). This is OK
because the filesystem has sole access to the new inode, so it can
modify i_state without races (because no other thread should be
modifying it, by definition of I_NEW). Ie. a false positive, so
remove the warnings.
The races are described here 7ef0d7377c,
which is also where the warnings were introduced.
Reported-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
the write_super method is used for
(1) writing back the superblock periodically from pdflush
(2) called just before ->sync_fs for data integerity syncs
We don't need (1) because we have our own peridoc writeout through xfssyncd,
and we don't need (2) because xfs_fs_sync_fs performs a proper synchronous
superblock writeout after all other data and metadata has been written out.
Also remove ->s_dirt tracking as it's only used to decide when too call
->write_super.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This should not trigger anymore, so kill it.
Acked-by: Anton Altaparmakov <aia21@cam.ac.uk>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only user of the i_cindex element in the inode structure is used
is by the firewire drivers. As part of an attempt to slim down the
inode structure to save memory --- since a typical Linux system will
have hundreds of thousands if not millions of inodes cached, a
reduction in the size inode has high leverage.
The firewire driver does not need i_cindex in any fast path, so it's
simple enough to calculate when it is needed, instead of wasting space
in the inode structure.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: krh@redhat.com
Cc: stefanr@s5r6.in-berlin.de
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Push down lock_super into ->write_super instances and remove it from the
caller.
Following filesystem don't need ->s_lock in ->write_super and are skipped:
* bfs, nilfs2 - no other uses of s_lock and have internal locks in
->write_super
* ext2 - uses BKL in ext2_write_super and has internal calls without s_lock
* reiserfs - no other uses of s_lock as has reiserfs_write_lock (BKL) in
->write_super
* xfs - no other uses of s_lock and uses internal lock (buffer lock on
superblock buffer) to serialize ->write_super. Also xfs_fs_write_super
is superflous and will go away in the next merge window
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
jffs2_write_super is only called from super.c and doesn't use any
functionality from fs.c. So move it over to super.c and make it
static there.
[should go in through the vfs tree as it is a requirement for the
next patch]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>