It's safe to drop the IRQ_INPROGRESS flag between action chain walks
as we are protected by desc->lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
IRQ_MASKED is set in mask_ack_irq() anyway. Remove it from
handle_edge_irq() to allow simpler ab^HHreuse of that function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20110202212551.918484270@linutronix.de>
Now that everything uses the wrappers, we can remove the default
functions. None of those functions is performance critical.
That makes the IRQ_MASKED flag tracking fully consistent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Aside of duplicated code some of the startup/shutdown sites do not
handle the MASKED/DISABLED flags and the depth field at all. Move that
to a helper function and take care of it there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20110202212551.787481468@linutronix.de>
With the chip.end() function gone we might run into a situation where
a poll call runs and the real interrupt comes in, sees IRQ_INPROGRESS
and disables the line. That might be a perfect working one, which will
then be masked forever.
So mark them polled while the poll runs. When the real handler sees
IRQ_INPROGRESS it checks the poll flag and waits for the polling to
complete. Add the necessary amount of sanity checks to it to avoid
deadlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The irq namespace has become quite convoluted. My bad. Clean it up
and deprecate the old functions. All new functions follow the scheme:
irq number based:
irq_set/get/xxx/_xxx(unsigned int irq, ...)
irq_data based:
irq_data_set/get/xxx/_xxx(struct irq_data *d, ....)
irq_desc based:
irq_desc_get_xxx(struct irq_desc *desc)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
chips behind a slow bus cannot update the chip under desc->lock, but
we miss the chip_buslock/chip_bus_sync_unlock() calls around the set
type and set wake functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the cleanup functions of the dynamic allocator. No need to have
separate implementations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Arch code sets it's own irq_desc.status flags right after boot and for
dynamically allocated interrupts. That might involve iterating over a
huge array.
Allow ARCH_IRQ_INIT_FLAGS to set separate flags aside of IRQ_DISABLED
which is the default.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Get the data structure from the core and provide inline wrappers to
access the irq_data members.
Provide accessor inlines for irq_data as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Provide a irq_desc.status modifier function to cleanup the direct
access to irq_desc in arch and driver code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
This option covers now the old chip functions and the irq_desc data
fields which are moving to struct irq_data. More stuff will follow.
Pretty handy for testing a conversion, whether something broke or not.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function retrigger() until the migration is complete
and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121843.025801092@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function set_wake() until the migration is complete
and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.927527393@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function set_type() until the migration is complete
and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.832261548@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function set_affinity() until the migration is
complete and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.732894108@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function startup() until the migration is complete and
the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.635152961@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip functions disable() and shutdown() until the
migration is complete and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.532070631@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function enable() until the migration is complete and
the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.437159182@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function eoi() until the migration is complete and
the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.339657617@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function mask_ack() until the migration is complete
and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.240806983@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function ack() until the migration is complete and
the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.142624725@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function unmask() until the migration is complete
and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121842.043608928@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip function mask() until the migration is complete and
the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121841.940355859@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Wrap the old chip functions for bus_lock/bus_sync_unlock until the
migration is complete and the old chip functions are removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100927121841.842536121@linutronix.de>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Convert all references in the core code to orq, chip, handler_data,
chip_data, msi_desc, affinity to irq_data.*
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
3 years transition phase is enough. Cleanup the last users and remove
the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Leo Chen <leochen@broadcom.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Chris Zankel <chris@zankel.net>
* 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
genirq: Move two IRQ functions from .init.text to .text
genirq: Protect access to irq_desc->action in can_request_irq()
genirq: Prevent oneshot irq thread race
Both functions should not be marked as __init, since they be called
from modules after the init section is freed.
Signed-off-by: Henrik Kretzschmar <henne@nachtwindheim.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
LKML-Reference: <1269431961-5731-1-git-send-email-henne@nachtwindheim.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Lars-Peter pointed out that the oneshot threaded interrupt handler
code has the following race:
CPU0 CPU1
hande_level_irq(irq X)
mask_ack_irq(irq X)
handle_IRQ_event(irq X)
wake_up(thread_handler)
thread handler(irq X) runs
finalize_oneshot(irq X)
does not unmask due to
!(desc->status & IRQ_MASKED)
return from irq
does not unmask due to
(desc->status & IRQ_ONESHOT)
This leaves the interrupt line masked forever.
The reason for this is the inconsistent handling of the IRQ_MASKED
flag. Instead of setting it in the mask function the oneshot support
sets the flag after waking up the irq thread.
The solution for this is to set/clear the IRQ_MASKED status whenever
we mask/unmask an interrupt line. That's the easy part, but that
cleanup opens another race:
CPU0 CPU1
hande_level_irq(irq)
mask_ack_irq(irq)
handle_IRQ_event(irq)
wake_up(thread_handler)
thread handler(irq) runs
finalize_oneshot_irq(irq)
unmask(irq)
irq triggers again
handle_level_irq(irq)
mask_ack_irq(irq)
return from irq due to IRQ_INPROGRESS
return from irq
does not unmask due to
(desc->status & IRQ_ONESHOT)
This requires that we synchronize finalize_oneshot_irq() with the
primary handler. If IRQ_INPROGESS is set we wait until the primary
handler on the other CPU has returned before unmasking the interrupt
line again.
We probably have never seen that problem because it does not happen on
UP and on SMP the irqbalancer protects us by pinning the primary
handler and the thread to the same CPU.
Reported-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Keep chip_data in create_irq_nr and destroy_irq.
When two drivers are setting up MSI-X at the same time via
pci_enable_msix() there is a race. See this dmesg excerpt:
[ 85.170610] ixgbe 0000:02:00.1: irq 97 for MSI/MSI-X
[ 85.170611] alloc irq_desc for 99 on node -1
[ 85.170613] igb 0000:08:00.1: irq 98 for MSI/MSI-X
[ 85.170614] alloc kstat_irqs on node -1
[ 85.170616] alloc irq_2_iommu on node -1
[ 85.170617] alloc irq_desc for 100 on node -1
[ 85.170619] alloc kstat_irqs on node -1
[ 85.170621] alloc irq_2_iommu on node -1
[ 85.170625] ixgbe 0000:02:00.1: irq 99 for MSI/MSI-X
[ 85.170626] alloc irq_desc for 101 on node -1
[ 85.170628] igb 0000:08:00.1: irq 100 for MSI/MSI-X
[ 85.170630] alloc kstat_irqs on node -1
[ 85.170631] alloc irq_2_iommu on node -1
[ 85.170635] alloc irq_desc for 102 on node -1
[ 85.170636] alloc kstat_irqs on node -1
[ 85.170639] alloc irq_2_iommu on node -1
[ 85.170646] BUG: unable to handle kernel NULL pointer dereference
at 0000000000000088
As you can see igb and ixgbe are both alternating on create_irq_nr()
via pci_enable_msix() in their probe function.
ixgbe: While looping through irq_desc_ptrs[] via create_irq_nr() ixgbe
choses irq_desc_ptrs[102] and exits the loop, drops vector_lock and
calls dynamic_irq_init. Then it sets irq_desc_ptrs[102]->chip_data =
NULL via dynamic_irq_init().
igb: Grabs the vector_lock now and starts looping over irq_desc_ptrs[]
via create_irq_nr(). It gets to irq_desc_ptrs[102] and does this:
cfg_new = irq_desc_ptrs[102]->chip_data;
if (cfg_new->vector != 0)
continue;
This hits the NULL deref.
Another possible race exists via pci_disable_msix() in a driver or in
the number of error paths that call free_msi_irqs():
destroy_irq()
dynamic_irq_cleanup() which sets desc->chip_data = NULL
...race window...
desc->chip_data = cfg;
Remove the save and restore code for cfg in create_irq_nr() and
destroy_irq() and take the desc->lock when checking the irq_cfg.
Reported-and-analyzed-by: Brandon Philips <bphilips@suse.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <1265793639-15071-3-git-send-email-yinghai@kernel.org>
Signed-off-by: Brandon Phililps <bphilips@suse.de>
Cc: stable@kernel.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Fix docbook comments to match the actual function names
(set_irq_msi, handle_percpu_irq).
Signed-off-by: Liuwenyi <qingshenlwy@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Masking oneshot edge type interrupts is wrong as we might lose an
interrupt which is issued when the threaded handler is handling the
device. We can keep the irq unmasked safely as with edge type
interrupts there is no danger of interrupt floods. If the threaded
handler has not yet finished then IRQTF_RUNTHREAD is set which will
keep the handler thread active.
Debugged and verified in preempt-rt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Interrupt chips which are behind a slow bus (i2c, spi ...) and
demultiplex other interrupt sources need to run their interrupt
handler in a thread.
The demultiplexed interrupt handlers need to run in thread context as
well and need to finish before the demux handler thread can reenable
the interrupt line. So the easiest way is to run the sub device
handlers in the context of the demultiplexing handler thread.
To avoid that a separate thread is created for the subdevices the
function set_nested_irq_thread() is provided which sets the
IRQ_NESTED_THREAD flag in the interrupt descriptor.
A driver which calls request_threaded_irq() must not be aware of the
fact that the threaded handler is called in the context of the
demultiplexing handler thread. The setup code checks the
IRQ_NESTED_THREAD flag which was set from the irq chip setup code and
does not setup a separate thread for the interrupt. The primary
function which is provided by the device driver is replaced by an
internal dummy function which warns when it is called.
For the demultiplexing handler a helper function handle_nested_irq()
is provided which calls the demux interrupt thread function in the
context of the caller and does the proper interrupt accounting and
takes the interrupt disabled status of the demultiplexed subdevice
into account.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Trilok Soni <soni.trilok@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Brian Swetland <swetland@google.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: m.szyprowski@samsung.com
Cc: t.fujak@samsung.com
Cc: kyungmin.park@samsung.com,
Cc: David Brownell <david-b@pacbell.net>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Cc: arve@android.com
Cc: Barry Song <21cnbao@gmail.com>
Some interrupt chips are connected to a "slow" bus (i2c, spi ...). The
bus access needs to sleep and therefor cannot be called in atomic
contexts.
Some of the generic interrupt management functions like disable_irq(),
enable_irq() ... call interrupt chip functions with the irq_desc->lock
held and interrupts disabled. This does not work for such devices.
Provide a separate synchronization mechanism for such interrupt
chips. The irq_chip structure is extended by two optional functions
(bus_lock and bus_sync_and_unlock).
The idea is to serialize the bus access for those operations in the
core code so that drivers which are behind that bus operated interrupt
controller do not have to worry about it and just can use the normal
interfaces. To achieve this we add two function pointers to the
irq_chip: bus_lock and bus_sync_unlock.
bus_lock() is called to serialize access to the interrupt controller
bus.
Now the core code can issue chip->mask/unmask ... commands without
changing the fast path code at all. The chip implementation merily
stores that information in a chip private data structure and
returns. No bus interaction as these functions are called from atomic
context.
After that bus_sync_unlock() is called outside the atomic context. Now
the chip implementation issues the bus commands, waits for completion
and unlocks the interrupt controller bus.
The irq_chip implementation as pseudo code:
struct irq_chip_data {
struct mutex mutex;
unsigned int irq_offset;
unsigned long mask;
unsigned long mask_status;
}
static void bus_lock(unsigned int irq)
{
struct irq_chip_data *data = get_irq_desc_chip_data(irq);
mutex_lock(&data->mutex);
}
static void mask(unsigned int irq)
{
struct irq_chip_data *data = get_irq_desc_chip_data(irq);
irq -= data->irq_offset;
data->mask |= (1 << irq);
}
static void unmask(unsigned int irq)
{
struct irq_chip_data *data = get_irq_desc_chip_data(irq);
irq -= data->irq_offset;
data->mask &= ~(1 << irq);
}
static void bus_sync_unlock(unsigned int irq)
{
struct irq_chip_data *data = get_irq_desc_chip_data(irq);
if (data->mask != data->mask_status) {
do_bus_magic_to_set_mask(data->mask);
data->mask_status = data->mask;
}
mutex_unlock(&data->mutex);
}
The device drivers can use request_threaded_irq, free_irq, disable_irq
and enable_irq as usual with the only restriction that the calls need
to come from non atomic context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Trilok Soni <soni.trilok@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Brian Swetland <swetland@google.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: m.szyprowski@samsung.com
Cc: t.fujak@samsung.com
Cc: kyungmin.park@samsung.com,
Cc: David Brownell <david-b@pacbell.net>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Cc: arve@android.com
Cc: Barry Song <21cnbao@gmail.com>
For threaded interrupt handlers we expect the hard interrupt handler
part to mask the interrupt on the originating device. The interrupt
line itself is reenabled after the hard interrupt handler has
executed.
This requires access to the originating device from hard interrupt
context which is not always possible. There are devices which can only
be accessed via a bus (i2c, spi, ...). The bus access requires thread
context. For such devices we need to keep the interrupt line masked
until the threaded handler has executed.
Add a new flag IRQF_ONESHOT which allows drivers to request that the
interrupt is not unmasked after the hard interrupt context handler has
been executed and the thread has been woken. The interrupt line is
unmasked after the thread handler function has been executed.
Note that for now IRQF_ONESHOT cannot be used with IRQF_SHARED to
avoid complex accounting mechanisms.
For oneshot interrupts the primary handler simply returns
IRQ_WAKE_THREAD and does nothing else. A generic implementation
irq_default_primary_handler() is provided to avoid useless copies all
over the place. It is automatically installed when
request_threaded_irq() is called with handler=NULL and
thread_fn!=NULL.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Trilok Soni <soni.trilok@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Brian Swetland <swetland@google.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: m.szyprowski@samsung.com
Cc: t.fujak@samsung.com
Cc: kyungmin.park@samsung.com,
Cc: David Brownell <david-b@pacbell.net>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Cc: arve@android.com
Cc: Barry Song <21cnbao@gmail.com>
The original feature of migrating irq_desc dynamic was too fragile
and was causing problems: it caused crashes on systems with lots of
cards with MSI-X when user-space irq-balancer was enabled.
We now have new patches that create irq_desc according to device
numa node. This patch removes the leftover bits of the dynamic balancer.
[ Impact: remove dead code ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <49F654AF.8000808@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>