The per-sb shrinker has the same requirement as the writeback
threads of ensuring that the superblock is usable and pinned for the
time it takes to run the work. Both need to take a passive reference
to the sb, take a read lock on the s_umount lock and then only
continue if an unmount is not in progress.
pin_sb_for_writeback() does this exactly, so move it to fs/super.c
and rename it to grab_super_passive() and exporting it via
fs/internal.h for all the VFS code to be able to use.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the inode LRUs moving to per-sb structures, there is no longer
a need for a global inode_lru_lock. The locking can be made more
fine-grained by moving to a per-sb LRU lock, isolating the LRU
operations of different filesytsems completely from each other.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The inode unused list is currently a global LRU. This does not match
the other global filesystem cache - the dentry cache - which uses
per-superblock LRU lists. Hence we have related filesystem object
types using different LRU reclaimation schemes.
To enable a per-superblock filesystem cache shrinker, both of these
caches need to have per-sb unused object LRU lists. Hence this patch
converts the global inode LRU to per-sb LRUs.
The patch only does rudimentary per-sb propotioning in the shrinker
infrastructure, as this gets removed when the per-sb shrinker
callouts are introduced later on.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Before we split up the inode_lru_lock, the unused inode counter
needs to be made independent of the global inode_lru_lock. Convert
it to per-cpu counters to do this.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For shrinkers that have their own cond_resched* calls, having
shrink_slab break the work down into small batches is not
paticularly efficient. Add a custom batchsize field to the struct
shrinker so that shrinkers can use a larger batch size if they
desire.
A value of zero (uninitialised) means "use the default", so
behaviour is unchanged by this patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When a shrinker returns -1 to shrink_slab() to indicate it cannot do
any work given the current memory reclaim requirements, it adds the
entire total_scan count to shrinker->nr. The idea ehind this is that
whenteh shrinker is next called and can do work, it will do the work
of the previously aborted shrinker call as well.
However, if a filesystem is doing lots of allocation with GFP_NOFS
set, then we get many, many more aborts from the shrinkers than we
do successful calls. The result is that shrinker->nr winds up to
it's maximum permissible value (twice the current cache size) and
then when the next shrinker call that can do work is issued, it
has enough scan count built up to free the entire cache twice over.
This manifests itself in the cache going from full to empty in a
matter of seconds, even when only a small part of the cache is
needed to be emptied to free sufficient memory.
Under metadata intensive workloads on ext4 and XFS, I'm seeing the
VFS caches increase memory consumption up to 75% of memory (no page
cache pressure) over a period of 30-60s, and then the shrinker
empties them down to zero in the space of 2-3s. This cycle repeats
over and over again, with the shrinker completely trashing the inode
and dentry caches every minute or so the workload continues.
This behaviour was made obvious by the shrink_slab tracepoints added
earlier in the series, and made worse by the patch that corrected
the concurrent accounting of shrinker->nr.
To avoid this problem, stop repeated small increments of the total
scan value from winding shrinker->nr up to a value that can cause
the entire cache to be freed. We still need to allow it to wind up,
so use the delta as the "large scan" threshold check - if the delta
is more than a quarter of the entire cache size, then it is a large
scan and allowed to cause lots of windup because we are clearly
needing to free lots of memory.
If it isn't a large scan then limit the total scan to half the size
of the cache so that windup never increases to consume the whole
cache. Reducing the total scan limit further does not allow enough
wind-up to maintain the current levels of performance, whilst a
higher threshold does not prevent the windup from freeing the entire
cache under sustained workloads.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
shrink_slab() allows shrinkers to be called in parallel so the
struct shrinker can be updated concurrently. It does not provide any
exclusio for such updates, so we can get the shrinker->nr value
increasing or decreasing incorrectly.
As a result, when a shrinker repeatedly returns a value of -1 (e.g.
a VFS shrinker called w/ GFP_NOFS), the shrinker->nr goes haywire,
sometimes updating with the scan count that wasn't used, sometimes
losing it altogether. Worse is when a shrinker does work and that
update is lost due to racy updates, which means the shrinker will do
the work again!
Fix this by making the total_scan calculations independent of
shrinker->nr, and making the shrinker->nr updates atomic w.r.t. to
other updates via cmpxchg loops.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It is impossible to understand what the shrinkers are actually doing
without instrumenting the code, so add a some tracepoints to allow
insight to be gained.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
d_splice_alias(NULL, dentry) is equivalent to d_add(dentry, NULL), NULL
so no need for that if (inode) ... in there (or ERR_PTR(0), for that
matter)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New helper (non-exported, fs/internal.h-only): __d_alloc(sb, name).
Allocates dentry, sets its ->d_sb to given superblock and sets
->d_op accordingly. Old d_alloc(NULL, name) callers are converted
to that (all of them know what superblock they want). d_alloc()
itself is left only for parent != NULl case; uses __d_alloc(),
inserts result into the list of parent's children.
Note that now ->d_sb is assign-once and never NULL *and*
->d_parent is never NULL either.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We do _NOT_ want to mkdir the path itself - we are preparing to
mknod it, after all. Normally it'll fail with -ENOENT and
just do nothing, but if somebody has created the parent in
the meanwhile, we'll get buggered...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and give it a namespace where devtmpfs would be mounted on root,
thus avoiding abuses of vfs_path_lookup() (it was never intended to
be used with LOOKUP_PARENT). Games with credentials are also gone.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
combination of kern_path_parent() and lookup_create(). Does *not*
expose struct nameidata to caller. Syscalls converted to that...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of playing with removal of LOOKUP_OPEN, mangling (and
restoring) nd->path, just pass NULL to vfs_create(). The whole
point of what's being done there is to suppress any attempts
to open file by underlying fs, which is what nd == NULL indicates.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) check the right flags in ->create() (LOOKUP_OPEN, not LOOKUP_CREATE)
b) default (!LOOKUP_OPEN) open_flags is O_CREAT|O_EXCL|FMODE_READ, not 0
c) lookup_instantiate_filp() should be done only with LOOKUP_OPEN;
otherwise we need to issue CLOSE, lest we leak stateid on server.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and get rid of a bogus typecast, while we are at it; it's not
just that we want a function returning int and not void, but cast
to pointer to function taking void * and returning void would be
(void (*)(void *)) and not (void *)(void *), TYVM...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
pass mask instead; kill security_inode_exec_permission() since we can use
security_inode_permission() instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>