mouse_m908/include/rd_mouse.cpp
2021-02-07 22:31:05 +01:00

1025 lines
No EOL
26 KiB
C++

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "rd_mouse.h"
/// Calls the function fn with an object of each type in the variant V
template< typename V, size_t I = std::variant_size_v<V>-1, typename F > void variant_loop(F fn){
V var = V(std::in_place_index<I>);
std::visit( fn, var );
if constexpr ( I > 0 ){
variant_loop< V, I-1, F >(fn);
}
}
rd_mouse::mouse_variant rd_mouse::detect(){
rd_mouse::mouse_variant mouse = rd_mouse::monostate();
// libusb init
if( libusb_init( NULL ) < 0 )
return mouse;
// get device list
libusb_device **dev_list; // device list
ssize_t num_devs = libusb_get_device_list(NULL, &dev_list);
if( num_devs < 0 )
return mouse;
for( ssize_t i = 0; i < num_devs; i++ ){
// get device descriptor
libusb_device_descriptor descriptor;
libusb_get_device_descriptor( dev_list[i], &descriptor );
// get vendor and product id from descriptor
uint16_t vid = descriptor.idVendor;
uint16_t pid = descriptor.idProduct;
// Compare the VID and PID of the current device against the IDs of all mice
variant_loop< rd_mouse::mouse_variant >( [&](auto m){
if( vid == m.get_vid() && pid == m.get_pid() )
mouse = m;
} );
// The mouse_generic class has no fixed VID/PID and therefore needs special handling
if( std::holds_alternative<rd_mouse::monostate>(mouse) ){
if( _c_all_vids.find(vid) != _c_all_vids.end() && _c_all_pids.find(pid) != _c_all_pids.end() ){
mouse_generic temp_mouse;
temp_mouse.set_vid(vid);
temp_mouse.set_pid(pid);
mouse = temp_mouse;
}
}
}
// free device list, unreference devices
libusb_free_device_list( dev_list, 1 );
// exit libusb
libusb_exit( NULL );
return mouse;
}
rd_mouse::mouse_variant rd_mouse::detect( std::string mouse_name ){
std::cout << mouse_name << "\n";
rd_mouse::mouse_variant mouse = rd_mouse::monostate();
// libusb init
if( libusb_init( NULL ) < 0 )
return mouse;
// get device list
libusb_device **dev_list; // device list
ssize_t num_devs = libusb_get_device_list(NULL, &dev_list);
if( num_devs < 0 )
return mouse;
for( ssize_t i = 0; i < num_devs; i++ ){
// get device descriptor
libusb_device_descriptor descriptor;
libusb_get_device_descriptor( dev_list[i], &descriptor );
// get vendor and product id from descriptor
uint16_t vid = descriptor.idVendor;
uint16_t pid = descriptor.idProduct;
// Compare the VID and PID of the current device against the IDs of all mice
variant_loop< rd_mouse::mouse_variant >( [&](auto m){
if( vid == m.get_vid() && pid == m.get_pid() && mouse_name == m.get_name() )
mouse = m;
} );
// The mouse_generic class has no fixed VID/PID and therefore needs special handling
if( std::holds_alternative<rd_mouse::monostate>(mouse) ){
if( _c_all_vids.find(vid) != _c_all_vids.end() && _c_all_pids.find(pid) != _c_all_pids.end() && mouse_name == mouse_generic::get_name() ){
mouse_generic temp_mouse;
temp_mouse.set_vid(vid);
temp_mouse.set_pid(pid);
mouse = temp_mouse;
}
}
}
// free device list, unreference devices
libusb_free_device_list( dev_list, 1 );
// exit libusb
libusb_exit( NULL );
return mouse;
}
//init libusb and open mouse
int rd_mouse::_i_open_mouse( const uint16_t vid, const uint16_t pid ){
//vars
int res = 0;
//libusb init
res = libusb_init( NULL );
if( res < 0 ){
return res;
}
//open device
_i_handle = libusb_open_device_with_vid_pid( NULL, vid, pid );
if( !_i_handle ){
return 1;
}
if( _i_detach_kernel_driver ){
//detach kernel driver on interface 0 if active
if( libusb_kernel_driver_active( _i_handle, 0 ) ){
res += libusb_detach_kernel_driver( _i_handle, 0 );
if( res == 0 ){
_i_detached_driver_0 = true;
} else{
return res;
}
}
//detach kernel driver on interface 1 if active
if( libusb_kernel_driver_active( _i_handle, 1 ) ){
res += libusb_detach_kernel_driver( _i_handle, 1 );
if( res == 0 ){
_i_detached_driver_1 = true;
} else{
return res;
}
}
//detach kernel driver on interface 2 if active
if( libusb_kernel_driver_active( _i_handle, 2 ) ){
res += libusb_detach_kernel_driver( _i_handle, 2 );
if( res == 0 ){
_i_detached_driver_2 = true;
} else{
return res;
}
}
}
//claim interface 0
res += libusb_claim_interface( _i_handle, 0 );
if( res != 0 ){
return res;
}
//claim interface 1
res += libusb_claim_interface( _i_handle, 1 );
if( res != 0 ){
return res;
}
//claim interface 2
res += libusb_claim_interface( _i_handle, 2 );
if( res != 0 ){
return res;
}
return res;
}
// init libusb and open mouse by bus and device
int rd_mouse::_i_open_mouse_bus_device( const uint8_t bus, const uint8_t device ){
//vars
int res = 0;
//libusb init
res = libusb_init( NULL );
if( res < 0 ){
return res;
}
//open device (_i_handle)
libusb_device **dev_list; // device list
ssize_t num_devs = libusb_get_device_list(NULL, &dev_list); //get device list
if( num_devs < 0 )
return 1;
for( ssize_t i = 0; i < num_devs; i++ ){
// check if correct bus and device
if( bus == libusb_get_bus_number( dev_list[i] ) &&
device == libusb_get_device_address( dev_list[i] ) ){
// open device
if( libusb_open( dev_list[i], &_i_handle ) != 0 ){
return 1;
} else{
break;
}
}
}
//free device list, unreference devices
libusb_free_device_list( dev_list, 1 );
if( _i_detach_kernel_driver ){
//detach kernel driver on interface 0 if active
if( libusb_kernel_driver_active( _i_handle, 0 ) ){
res += libusb_detach_kernel_driver( _i_handle, 0 );
if( res == 0 ){
_i_detached_driver_0 = true;
} else{
return res;
}
}
//detach kernel driver on interface 1 if active
if( libusb_kernel_driver_active( _i_handle, 1 ) ){
res += libusb_detach_kernel_driver( _i_handle, 1 );
if( res == 0 ){
_i_detached_driver_1 = true;
} else{
return res;
}
}
//detach kernel driver on interface 2 if active
if( libusb_kernel_driver_active( _i_handle, 2 ) ){
res += libusb_detach_kernel_driver( _i_handle, 2 );
if( res == 0 ){
_i_detached_driver_2 = true;
} else{
return res;
}
}
}
//claim interface 0
res += libusb_claim_interface( _i_handle, 0 );
if( res != 0 ){
return res;
}
//claim interface 1
res += libusb_claim_interface( _i_handle, 1 );
if( res != 0 ){
return res;
}
//claim interface 2
res += libusb_claim_interface( _i_handle, 2 );
if( res != 0 ){
return res;
}
return res;
}
//close mouse
int rd_mouse::_i_close_mouse(){
//release interfaces 0, 1 and 2
libusb_release_interface( _i_handle, 0 );
libusb_release_interface( _i_handle, 1 );
libusb_release_interface( _i_handle, 2 );
//attach kernel driver for interface 0
if( _i_detached_driver_0 ){
libusb_attach_kernel_driver( _i_handle, 0 );
}
//attach kernel driver for interface 1
if( _i_detached_driver_1 ){
libusb_attach_kernel_driver( _i_handle, 1 );
}
//attach kernel driver for interface 2
if( _i_detached_driver_2 ){
libusb_attach_kernel_driver( _i_handle, 2);
}
//exit libusb
libusb_exit( NULL );
return 0;
}
//decode macro bytecode
int rd_mouse::_i_decode_macro( std::vector< uint8_t >& macro_bytes, std::ostream& output, std::string prefix, size_t offset ){
// valid offset ?
if( offset >= macro_bytes.size() )
offset = 0;
for( size_t i = offset; i < macro_bytes.size(); ){
bool unknown_code = false;
// failsafe
if( i >= macro_bytes.size() )
break;
// mouse buttons ( 0x81 = down, 0x01 = up )
if( macro_bytes[i] == 0x81 && macro_bytes[i+1] == 0x01 )
output << prefix << "down\tmouse_left\n";
else if( macro_bytes[i] == 0x81 && macro_bytes[i+1] == 0x02 )
output << prefix << "down\tmouse_right\n";
else if( macro_bytes[i] == 0x81 && macro_bytes[i+1] == 0x04 )
output << prefix << "down\tmouse_middle\n";
else if( macro_bytes[i] == 0x01 && macro_bytes[i+1] == 0x01 )
output << prefix << "up\tmouse_left\n";
else if( macro_bytes[i] == 0x01 && macro_bytes[i+1] == 0x02 )
output << prefix << "up\tmouse_right\n";
else if( macro_bytes[i] == 0x01 && macro_bytes[i+1] == 0x04 )
output << prefix << "up\tmouse_middle\n";
else if( macro_bytes[i] == 0x81 && macro_bytes[i+1] == 0x10 )
output << prefix << "down\tmouse_forward\n";
else if( macro_bytes[i] == 0x01 && macro_bytes[i+1] == 0x10 )
output << prefix << "up\tmouse_forward\n";
else if( macro_bytes[i] == 0x81 && macro_bytes[i+1] == 0x08 )
output << prefix << "down\tmouse_backward\n";
else if( macro_bytes[i] == 0x01 && macro_bytes[i+1] == 0x08 )
output << prefix << "up\tmouse_backward\n";
else if( macro_bytes[i] == 0x81 || macro_bytes[i] == 0x01 )
unknown_code = true; // unknown code
// keyboard key ( 0x84 = down, 0x04 = up )
else if( macro_bytes[i] == 0x84 || macro_bytes[i] == 0x04 ){
bool found_name = false;
std::string key = "";
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == macro_bytes[i+1] ){
key = keycode.first;
found_name = true;
break;
}
}
// if key found, print key action
if( found_name ){
if( macro_bytes[i] == 0x84 ) // keyboard key down
output << prefix << "down\t" << key << "\n";
else if( macro_bytes[i] == 0x04 ) // keyboard key up
output << prefix << "up\t" << key << "\n";
else // failsafe
unknown_code = true;
} else{ // unknown key
unknown_code = true;
}
}
// delay
else if( macro_bytes[i] == 0x06 ){
output << prefix << "delay\t" << (int)macro_bytes[i+1] << "\n";
}
// mouse movement
else if( macro_bytes[i] == 0x02 ){
// left/right
if( macro_bytes[i+2] == 0x00 ){
// left
if( macro_bytes[i+1] >= 0x88 )
output << prefix << "move_left\t" << (int)((int8_t)macro_bytes[i+1] * (-1)) << "\n";
// right
else if( macro_bytes[i+1] <= 0x78 )
output << prefix << "move_right\t" << (int)macro_bytes[i+1] << "\n";
else
unknown_code = true;
}
// up down
else if( macro_bytes[i+1] == 0x00 ){
// up
if( (int)macro_bytes[i+2] >= 0x88 )
output << prefix << "move_up\t" << (int)((int8_t)macro_bytes[i+2] * (-1)) << "\n";
// down
else if( macro_bytes[i+2] <= 0x78 )
output << prefix << "move_down\t" << (int)macro_bytes[i+2] << "\n";
else
unknown_code = true;
}
else
unknown_code = true;
}
// padding (increment by one until a code appears)
else if( macro_bytes[i] == 0x00 ){
i++;
}
// unknown code
else{
unknown_code = true;
}
// if unknown code, print message + code
if( unknown_code ){
output << prefix << "unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i] << " ";
output << std::hex << (int)macro_bytes[i+1] << " ";
output << std::hex << (int)macro_bytes[i+2];
output << std::dec << "\n";
}
// increment (each code is 3 bytes long)
i+=3;
}
return 0;
}
int rd_mouse::_i_encode_macro( std::array< uint8_t, 256 >& macro_bytes, std::istream& input, size_t offset ){
macro_bytes.fill( 0x00 );
// process macro
std::string value1 = "";
std::string value2 = "";
std::size_t position = 0; // position in line
int data_offset = offset; // position in macro_bytes
for( std::string line; std::getline(input, line); ){
// process individual line
if( line.length() == 0 )
continue;
// maximum length reached
if(data_offset > 212)
return 0;
position = 0;
position = line.find("\t", position);
value1 = line.substr(0, position);
value2 = line.substr(position+1);
// keyboard key down
if( value1 == "down" && _c_keyboard_key_values.find(value2) != _c_keyboard_key_values.end() ){
macro_bytes[data_offset] = 0x84;
macro_bytes[data_offset+1] = _c_keyboard_key_values[value2];
data_offset += 3;
// keyboard key up
} else if( value1 == "up" && _c_keyboard_key_values.find(value2) != _c_keyboard_key_values.end() ){
macro_bytes[data_offset] = 0x04;
macro_bytes[data_offset+1] = _c_keyboard_key_values[value2];
data_offset += 3;
// mouse button down
} else if( value1 == "down" && _c_keyboard_key_values.find(value2) == _c_keyboard_key_values.end() ){
if( value2 == "mouse_left" ){
macro_bytes[data_offset] = 0x81;
macro_bytes[data_offset+1] = 0x01;
data_offset += 3;
} else if( value2 == "mouse_right" ){
macro_bytes[data_offset] = 0x81;
macro_bytes[data_offset+1] = 0x02;
data_offset += 3;
} else if( value2 == "mouse_middle" ){
macro_bytes[data_offset] = 0x81;
macro_bytes[data_offset+1] = 0x04;
data_offset += 3;
} else if( value2 == "mouse_backward" ){
macro_bytes[data_offset] = 0x81;
macro_bytes[data_offset+1] = 0x08;
data_offset += 3;
} else if( value2 == "mouse_forward" ){
macro_bytes[data_offset] = 0x81;
macro_bytes[data_offset+1] = 0x10;
data_offset += 3;
}
// mouse button up
} else if( value1 == "up" && _c_keyboard_key_values.find(value2) == _c_keyboard_key_values.end() ){
if( value2 == "mouse_left" ){
macro_bytes[data_offset] = 0x01;
macro_bytes[data_offset+1] = 0x01;
data_offset += 3;
} else if( value2 == "mouse_right" ){
macro_bytes[data_offset] = 0x01;
macro_bytes[data_offset+1] = 0x02;
data_offset += 3;
} else if( value2 == "mouse_middle" ){
macro_bytes[data_offset] = 0x01;
macro_bytes[data_offset+1] = 0x04;
data_offset += 3;
} else if( value2 == "mouse_backward" ){
macro_bytes[data_offset] = 0x01;
macro_bytes[data_offset+1] = 0x08;
data_offset += 3;
} else if( value2 == "mouse_forward" ){
macro_bytes[data_offset] = 0x01;
macro_bytes[data_offset+1] = 0x10;
data_offset += 3;
}
// mouse movement left
} else if( value1 == "move_left" ){
int distance = (uint8_t)(int8_t)(std::stoi( value2, 0, 10) * (-1));
if( distance >= 0x88 ){
macro_bytes[data_offset] = 0x02;
macro_bytes[data_offset+1] = distance;
macro_bytes[data_offset+2] = 0x00;
data_offset += 3;
}
// mouse movement right
} else if( value1 == "move_right" ){
int distance = (uint8_t)std::stoi( value2, 0, 10);
if( distance <= 0x78 ){
macro_bytes[data_offset] = 0x02;
macro_bytes[data_offset+1] = distance;
macro_bytes[data_offset+2] = 0x00;
data_offset += 3;
}
// mouse movement up
} else if( value1 == "move_up" ){
int distance = (uint8_t)(int8_t)(std::stoi( value2, 0, 10) * (-1));
if( distance >= 0x88 ){
macro_bytes[data_offset] = 0x02;
macro_bytes[data_offset+1] = 0x00;
macro_bytes[data_offset+2] = distance;
data_offset += 3;
}
// mouse movement down
} else if( value1 == "move_down" ){
int distance = (uint8_t)std::stoi( value2, 0, 10);
if( distance <= 0x78 ){
macro_bytes[data_offset] = 0x02;
macro_bytes[data_offset+1] = 0x00;
macro_bytes[data_offset+2] = distance;
data_offset += 3;
}
// delay
} else if( value1 == "delay" ){
int duration = (uint8_t)stoi( value2, 0, 10);
if( duration >= 1 && duration <= 255 ){
macro_bytes[data_offset] = 0x06;
macro_bytes[data_offset+1] = duration;
data_offset += 3;
}
}
}
return 0;
}
int rd_mouse::_i_decode_button_mapping( std::array<uint8_t, 4>& bytes, std::string& mapping ){
std::stringstream output;
bool found_name = false;
int return_value = 0;
// fire button
if( bytes.at(0) == 0x99 ){
output << "fire:";
// button
if( bytes.at(1) == 0x81 )
output << "mouse_left:";
else if( bytes.at(1) == 0x82 )
output << "mouse_right:";
else if( bytes.at(1) == 0x84 )
output << "mouse_middle:";
else{
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == bytes.at(1) ){
output << keycode.first;
break;
}
}
output << ":";
}
// repeats
output << (int)bytes.at(2) << ":";
// delay
output << (int)bytes.at(3);
found_name = true;
// snipe button
} else if( bytes.at(0) == 0x9a && bytes.at(1) == 0x01 ){
// iterate over _c_snipe_dpi_values
for( auto dpi : _c_snipe_dpi_values ){
if( dpi.second == bytes.at(2) && dpi.second == bytes.at(3) ){
output << "snipe:" << dpi.first;
found_name = true;
break;
}
}
// macro
} else if( bytes.at(0) == 0x91 ){
// no repeats
if( bytes.at(1) <= 0x0e && bytes.at(2) == 0x01 ){
output << "macro" << (int)bytes.at(1) + 1;
found_name = true;
// repeats
} else if( bytes.at(1) <= 0x0e && bytes.at(2) >= 0x01 ){
output << "macro" << (int)bytes.at(1) + 1 << ":" << (int)bytes.at(2);
found_name = true;
// repeat until button is pressed again
} else if( bytes.at(1) >= 0x40 && bytes.at(1) <= 0x4e ){
output << "macro" << (int)bytes.at(1) - 0x3f << ":until";
found_name = true;
// repeat while button is held down
} else if( bytes.at(1) >= 0x80 && bytes.at(1) <= 0x8e ){
output << "macro" << (int)bytes.at(1) - 0x7f << ":while";
found_name = true;
}
// keyboard key
} else if( bytes.at(0) == 0x90 ){
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == bytes.at(2) ){
output << keycode.first;
found_name = true;
break;
}
}
// modifiers + keyboard key
} else if( bytes.at(0) == 0x8f ){
// iterate over _c_keyboard_modifier_values
for( auto modifier : _c_keyboard_modifier_values ){
if( modifier.second & bytes.at(1) ){
output << modifier.first;
}
}
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == bytes.at(2) ){
output << keycode.first;
found_name = true;
break;
}
}
} else{ // mousebutton or special function ?
// iterate over _c_keycodes
for( auto keycode : _c_keycodes ){
if( keycode.second[0] == bytes.at(0) &&
keycode.second[1] == bytes.at(1) &&
keycode.second[2] == bytes.at(2) ){
output << keycode.first;
found_name = true;
break;
}
}
}
if( !found_name ){
output << "unknown, please report as bug: ";
output << " " << std::hex << (int)bytes.at(0) << " ";
output << " " << std::hex << (int)bytes.at(1) << " ";
output << " " << std::hex << (int)bytes.at(2) << " ";
output << " " << std::hex << (int)bytes.at(3);
output << std::dec;
return_value = 1;
}
mapping = output.str();
return return_value;
}
int rd_mouse::_i_encode_button_mapping( std::string& mapping, std::array<uint8_t, 4>& bytes ){
// is string in _c_keycodes? mousebuttons/special functions and media controls
if( _c_keycodes.find(mapping) != _c_keycodes.end() ){
bytes[0] = _c_keycodes[mapping][0];
bytes[1] = _c_keycodes[mapping][1];
bytes[2] = _c_keycodes[mapping][2];
bytes[3] = 0x00;
// fire button (multiple keypresses)
} else if( mapping.find("fire") == 0 ){
std::stringstream mapping_stream(mapping);
std::string value1 = "", value2 = "", value3 = "";
uint8_t keycode, repeats = 1, delay = 0;
// the repeated value1 line is not a mistake, it skips the "fire:"
std::getline( mapping_stream, value1, ':' );
std::getline( mapping_stream, value1, ':' );
std::getline( mapping_stream, value2, ':' );
std::getline( mapping_stream, value3, ':' );
if( value1 == "mouse_left" ){
keycode = 0x81;
} else if( value1 == "mouse_right" ){
keycode = 0x82;
} else if( value1 == "mouse_middle" ){
keycode = 0x84;
} else if( _c_keyboard_key_values.find(value1) != _c_keyboard_key_values.end() ){
keycode = _c_keyboard_key_values[value1];
} else{
return 1;
}
repeats = (uint8_t)stoi(value2);
delay = (uint8_t)stoi(value3);
// store values
bytes[0] = 0x99;
bytes[1] = keycode;
bytes[2] = repeats;
bytes[3] = delay;
// snipe button (changes dpi while pressed)
} else if( mapping.find("snipe") == 0 ){
try{
int dpi_value = std::stoi( std::regex_replace( mapping, std::regex("snipe:"), "" ) );
uint8_t dpi_byte = _c_snipe_dpi_values.at( dpi_value );
bytes[0] = 0x9a;
bytes[1] = 0x01;
bytes[2] = dpi_byte;
bytes[3] = dpi_byte;
} catch( std::exception& f ){ // invalid mapping pattern or dpi
return 1;
}
// macro (no repeats)
} else if( std::regex_match( mapping, std::regex("(macro[1-9]|macro1[0-5])") ) ){
try{
bytes[0] = 0x91;
bytes[1] = std::stoi( std::regex_replace( mapping, std::regex("macro"), "" ) ) - 1;
bytes[2] = 0x01;
bytes[3] = 0x00;
} catch( std::exception& f ){
return 1;
}
// macro (repeats)
} else if( std::regex_match( mapping, std::regex("(macro[1-9]|macro1[0-5]):\\d+") ) ){
try{
bytes[0] = 0x91;
bytes[1] = std::stoi( std::regex_replace( mapping, std::regex("(macro|:\\d+)"), "" ) ) - 1;
bytes[2] = std::stoi( std::regex_replace( mapping, std::regex("macro\\d+:"), "" ) );
bytes[3] = 0x00;
} catch( std::exception& f ){
return 1;
}
// macro (repeat until button is pressed again)
} else if( std::regex_match( mapping, std::regex("(macro[1-9]|macro1[0-5]):until") ) ){
try{
bytes[0] = 0x91;
bytes[1] = std::stoi( std::regex_replace( mapping, std::regex("(macro|:until)"), "" ) ) + 0x3f;
bytes[2] = 0xff;
bytes[3] = 0xff;
} catch( std::exception& f ){
return 1;
}
// macro (repeat while button id held down)
} else if( std::regex_match( mapping, std::regex("(macro[1-9]|macro1[0-5]):while") ) ){
try{
bytes[0] = 0x91;
bytes[1] = std::stoi( std::regex_replace( mapping, std::regex("(macro|:while)"), "" ) ) + 0x7f;
bytes[2] = 0xff;
bytes[3] = 0xff;
} catch( std::exception& f ){
return 1;
}
// string is not a key in _c_keycodes: keyboard key (+ modifiers) ?
} else{
// search for modifiers and change values accordingly: ctrl, shift ...
uint8_t first_value = 0x90;
uint8_t modifier_value = 0x00;
for( auto i : _c_keyboard_modifier_values ){
if( mapping.find( i.first ) != std::string::npos ){
modifier_value += i.second;
first_value = 0x8f;
}
}
// get key value and store everything
try{
std::regex modifier_regex ("[a-z_]*\\+");
// store values
bytes[0] = first_value;
bytes[1] = modifier_value;
bytes[2] = _c_keyboard_key_values[std::regex_replace( mapping, modifier_regex, "" )];
bytes[3] = 0x00;
} catch( std::exception& f ){
return 1;
}
}
return 0;
}
int rd_mouse::_i_decode_dpi( std::array<uint8_t, 2>& dpi_bytes, std::string& dpi_string ){
std::stringstream conversion_stream;
conversion_stream << std::setfill('0') << std::hex;
conversion_stream << "0x";
conversion_stream << std::setw(2) << (int)dpi_bytes[0] << std::setw(2) << (int)dpi_bytes[1];
conversion_stream << std::setfill(' ') << std::setw(0) << std::dec;
dpi_string = conversion_stream.str();
return 0;
}
int rd_mouse::_i_decode_lightmode( std::array<uint8_t, 2>& lightmode_bytes, std::string& lightmode_string ){
int return_value = 0;
// bytes are known
if( _c_lightmode_values.find(lightmode_bytes) != _c_lightmode_values.end() ){
// string is known
if( _c_lightmode_strings.find(_c_lightmode_values.at(lightmode_bytes)) != _c_lightmode_strings.end() ){
lightmode_string = _c_lightmode_strings.at( _c_lightmode_values.at(lightmode_bytes) );
}else{
return_value = 1;
}
}else{
return_value = 1;
}
if( return_value != 0 ){
std::stringstream conversion_stream;
conversion_stream << "unknown, please report as bug: " << std::setfill('0');
conversion_stream << std::hex << std::setw(2) << (int)lightmode_bytes[0] << " ";
conversion_stream << std::hex << std::setw(2) << (int)lightmode_bytes[1];
conversion_stream << std::setfill(' ') << std::setw(0) << std::dec;
lightmode_string = conversion_stream.str();
}
return return_value;
}
int rd_mouse::_i_encode_lightmode( rd_mouse::rd_lightmode lightmode, std::array<uint8_t, 2>& lightmode_bytes ){
int return_value = 1;
for( auto& l : _c_lightmode_values ){
if( lightmode == l.second ){
lightmode_bytes = l.first;
return_value = 0;
break;
}
}
return return_value;
}
int rd_mouse::_i_decode_report_rate( uint8_t report_rate_byte, std::string& report_rate_string ){
int return_value = 0;
// byte is known
if( _c_report_rate_values.find(report_rate_byte) != _c_report_rate_values.end() ){
// string is known
if( _c_report_rate_strings.find(_c_report_rate_values.at(report_rate_byte)) != _c_report_rate_strings.end() ){
report_rate_string = _c_report_rate_strings.at( _c_report_rate_values.at(report_rate_byte) );
}else{
return_value = 1;
}
}else{
return_value = 1;
}
// invalid report rate
if( return_value != 0 ){
std::stringstream conversion_stream;
conversion_stream << "unknown, please report as bug: " << std::hex << (int)report_rate_byte;
report_rate_string = conversion_stream.str();
}
return return_value;
}
uint8_t rd_mouse::_i_encode_report_rate( rd_mouse::rd_report_rate report_rate ){
uint8_t return_value = 0x08; // = 125 Hz, this should be a safe default in case of an error
for( auto& r : _c_report_rate_values ){
if( report_rate == r.second ){
return_value = r.first;
break;
}
}
return return_value;
}