mouse_m908/include/m711/readers.cpp

757 lines
21 KiB
C++
Raw Normal View History

2020-07-31 10:41:47 -06:00
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "mouse_m711.h"
//reader functions (get settings from mouse)
int mouse_m711::dump_settings( std::ostream& output ){
//prepare data 1
int rows1 = sizeof(_c_data_read_1) / sizeof(_c_data_read_1[0]);
uint8_t buffer1[rows1][16];
for( int i = 0; i < rows1; i++ ){
std::copy(std::begin(_c_data_read_1[i]), std::end(_c_data_read_1[i]), std::begin(buffer1[i]));
}
//prepare data 2
int rows2 = sizeof(_c_data_read_2) / sizeof(_c_data_read_2[0]);
uint8_t buffer2[rows2][64];
for( int i = 0; i < rows2; i++ ){
std::copy(std::begin(_c_data_read_2[i]), std::end(_c_data_read_2[i]), std::begin(buffer2[i]));
}
//prepare data 3
int rows3 = sizeof(_c_data_read_3) / sizeof(_c_data_read_3[0]);
uint8_t buffer3[rows3][16];
for( int i = 0; i < rows3; i++ ){
std::copy(std::begin(_c_data_read_3[i]), std::end(_c_data_read_3[i]), std::begin(buffer3[i]));
}
output << "Part 1:\n\n";
//send data 1
uint8_t buffer_in1[16];
int num_bytes_in;
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[0], 16, 1000 );
for( int i = 1; i < rows1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[i], 16, 1000 );
// control in
num_bytes_in = libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in1, 16, 1000 );
// hexdump
if ( num_bytes_in > 0 ){
output << std::hex;
for( int j = 0; j < num_bytes_in; j++ ){
output << std::setfill('0') << std::setw(2) << (int)buffer_in1[j] << " ";
}
output << "\n\n" << std::dec << std::setw(0) << std::setfill(' ');
}
}
output << "Part 2:\n\n";
//send data 2
uint8_t buffer_in2[64];
for( int i = 0; i < rows2; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0303, 0x0002, buffer2[i], 64, 1000 );
// control in
num_bytes_in = libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0303, 0x0002, buffer_in2, 64, 1000 );
// hexdump
if ( num_bytes_in > 0 ){
output << std::hex;
for( int j = 0; j < num_bytes_in; j++ ){
output << std::setfill('0') << std::setw(2) << (int)buffer_in2[j] << " ";
}
output << "\n\n" << std::dec << std::setw(0) << std::setfill(' ');
}
}
output << "Part 3:\n\n";
//send data 3
uint8_t buffer_in3[16];
for( int i = 0; i < rows3-1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[i], 16, 1000 );
// control in
num_bytes_in = libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in3, 16, 1000 );
// hexdump
if ( num_bytes_in > 0 ){
output << std::hex;
for( int j = 0; j < num_bytes_in; j++ ){
output << std::setfill('0') << std::setw(2) << (int)buffer_in3[j] << " ";
}
output << "\n\n" << std::dec << std::setw(0) << std::setfill(' ');
}
}
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[100], 16, 1000 );
return 0;
}
int mouse_m711::read_and_print_settings( std::ostream& output ){
//prepare data 1
int rows1 = sizeof(_c_data_read_1) / sizeof(_c_data_read_1[0]);
uint8_t buffer1[rows1][16];
for( int i = 0; i < rows1; i++ ){
std::copy(std::begin(_c_data_read_1[i]), std::end(_c_data_read_1[i]), std::begin(buffer1[i]));
}
//prepare data 2
int rows2 = sizeof(_c_data_read_2) / sizeof(_c_data_read_2[0]);
uint8_t buffer2[rows2][64];
for( int i = 0; i < rows2; i++ ){
std::copy(std::begin(_c_data_read_2[i]), std::end(_c_data_read_2[i]), std::begin(buffer2[i]));
}
//prepare data 3
int rows3 = sizeof(_c_data_read_3) / sizeof(_c_data_read_3[0]);
uint8_t buffer3[rows3][16];
for( int i = 0; i < rows3; i++ ){
std::copy(std::begin(_c_data_read_3[i]), std::end(_c_data_read_3[i]), std::begin(buffer3[i]));
}
//send data 1
uint8_t buffer_in1[8][16] = {{0}};
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[0], 16, 1000 );
for( int i = 1; i < rows1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[i], 16, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in1[i-1], 16, 1000 );
}
//send data 2
uint8_t buffer_in2[85][64] = {{0}};
for( int i = 0; i < rows2; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0303, 0x0002, buffer2[i], 64, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0303, 0x0002, buffer_in2[i], 64, 1000 );
}
//send data 3
uint8_t buffer_in3[45][16] = {{0}};
for( int i = 0; i < rows3-1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[i], 16, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in3[i], 16, 1000 );
}
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[100], 16, 1000 );
// print configuration
output << "# Configuration created with mouse_m908 -R.\n";
output << "# This configuration can be send to the mouse with mouse_m908 -c.\n";
output << "# This feature is currently untested, please report your results.\n";
output << "# Note: reading the scrollspeed is not supported by the mouse.\n";
output << "\n# Currently active profile: " << (int)buffer_in1[0][8]+1 << "\n";
for( int i = 1; i < 6; i++ ){
// section header
output << "\n[profile" << i << "]\n";
output << "\n# LED settings\n";
// color
output << "color=";
output << std::setfill('0') << std::setw(2) << std::hex << (int)buffer_in1[i][8];
output << std::setfill('0') << std::setw(2) << std::hex << (int)buffer_in1[i][9];
output << std::setfill('0') << std::setw(2) << std::hex << (int)buffer_in1[i][10];
output << std::setfill(' ') << std::setw(0) << std::dec << "\n";
// brightness
output << "brightness=" << (int)buffer_in1[i][14] << "\n";
// speed
output << "speed=" << (int)buffer_in1[i][13] << "\n";
// lightmode
output << "lightmode=";
if( buffer_in1[i][11] == 0x00 && buffer_in1[i][13] == 0x00 )
output << "off\n";
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x04 )
output << "breathing\n";
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x08 )
output << "rainbow\n";
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x02 )
output << "static\n";
else if( buffer_in1[i][11] == 0x02 && buffer_in1[i][13] == 0x00 )
output << "wave\n";
else if( buffer_in1[i][11] == 0x06 && buffer_in1[i][13] == 0x00 )
output << "alternating\n";
else if( buffer_in1[i][11] == 0x07 && buffer_in1[i][13] == 0x00 )
output << "reactive\n";
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x10 )
output << "flashing\n";
else{
output << "unknown, please report as bug: ";
output << std::hex << buffer_in1[i][11] << " ";
output << std::hex << buffer_in1[i][13] << std::dec << "\n";
}
// polling rate (report rate)
if( i < 4 ){
output << "\n";
if( buffer_in1[6][6+(2*i)] == 8 )
output << "report_rate=125\n";
else if( buffer_in1[6][6+(2*i)] == 4 )
output << "report_rate=250\n";
else if( buffer_in1[6][6+(2*i)] == 2 )
output << "report_rate=500\n";
else if( buffer_in1[6][6+(2*i)] == 1 )
output << "report_rate=1000\n";
else{
output << "# report rate unknown, please report as bug: "
<< (int)buffer_in1[6][6+(2*i)] << "\n";
}
} else{
output << "\n";
if( buffer_in1[7][(2*i)] == 8 )
output << "report_rate=125\n";
else if( buffer_in1[7][(2*i)] == 4 )
output << "report_rate=250\n";
else if( buffer_in1[7][(2*i)] == 2 )
output << "report_rate=500\n";
else if( buffer_in1[7][(2*i)] == 1 )
output << "report_rate=1000\n";
else{
output << "# report rate unknown, please report as bug: "
<< (int)buffer_in1[7][(2*i)] << "\n";
}
}
// dpi
output << "\n# DPI settings\n";
output << "# Active dpi level for this profile: " << (int)buffer_in2[i-1][8]+1 << "\n";
for( int j = 1; j < 6; j++ ){
output << "dpi" << j << "_enable=" << (int)buffer_in2[i-1][4+(6*j)] << "\n";
output << std::setfill('0') << std::setw(2) << std::hex;
output << "dpi" << j << "=" << (int)buffer_in2[i-1][5+(6*j)] << "\n";
output << std::setfill(' ') << std::setw(0) << std::dec;
}
output << "\n# Button mapping is not implemented due to a lack of captured data\n";
/* Currently not implemented, missing captured data
*
// button mapping
output << "\n# Button mapping\n";
for( int j = 0; j < 8; j++ ){
uint8_t b1 = buffer_in3[j+(8*(i-1))][8];
uint8_t b2 = buffer_in3[j+(8*(i-1))][9];
uint8_t b3 = buffer_in3[j+(8*(i-1))][10];
uint8_t b4 = buffer_in3[j+(8*(i-1))][11];
bool found_name = false;
output << _c_button_names[j] << "=";
// fire button
if( b1 == 0x99 ){
output << "fire:";
// button
if( b2 == 0x81 )
output << "mouse_left:";
else if( b2 == 0x82 )
output << "mouse_right:";
else if( b2 == 0x84 )
output << "mouse_middle:";
else{
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == b2 ){
output << keycode.first;
break;
}
}
output << ":";
}
// repeats
output << (int)b3 << ":";
// delay
output << (int)b4 << "\n";
found_name = true;
// keyboard key
} else if( b1 == 0x90 ){
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == b3 ){
output << keycode.first << "\n";
found_name = true;
break;
}
}
// modifiers + keyboard key
} else if( b1 == 0x8f ){
// iterate over _c_keyboard_modifier_values
for( auto modifier : _c_keyboard_modifier_values ){
if( modifier.second & b2 ){
output << modifier.first;
}
}
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == b3 ){
output << keycode.first << "\n";
found_name = true;
break;
}
}
} else{ // mousebutton or special function ?
// iterate over _c_keycodes
for( auto keycode : _c_keycodes ){
if( keycode.second[0] == b1 &&
keycode.second[1] == b2 &&
keycode.second[2] == b3 ){
output << keycode.first << "\n";
found_name = true;
break;
}
}
}
if( !found_name ){
output << "unknown, please report as bug: ";
output << " " << std::hex << (int)b1 << " ";
output << " " << std::hex << (int)b2 << " ";
output << " " << std::hex << (int)b3 << " ";
output << " " << std::hex << (int)b4;
output << std::dec << "\n";
}
}
*
*/
}
// macros
std::array< std::vector< uint8_t >, 15 > macro_bytes;
int macronumber = 1;
int counter = 0;
// iterate over buffer_in2
for( int i = 5; i < 85; i++ ){
// valid macronumber?
if( macronumber >= 1 && macronumber <= 15 ){
// extract bytes
for( int j = 8; j < 58; j++ ){
macro_bytes[macronumber-1].push_back( buffer_in2[i][j] );
}
}
// increment counter and macronumber
counter++;
if( counter == 4 ){
counter = 0;
macronumber++;
}
}
// decode macros
output << "\n# Macros\n";
for( int i = 0; i < 15; i++ ){
// macro undefined?
if( macro_bytes[i][0] == 0 && macro_bytes[i][1] == 0 && macro_bytes[i][2] == 0 )
continue;
output << "\n;## macro" << i+1 << "\n";
for( long unsigned int j = 0; j < macro_bytes[i].size(); ){
// failsafe
if( j >= macro_bytes[i].size() )
break;
if( macro_bytes[i][j] == 0x81 ){ // mouse button down
2020-09-07 15:30:15 -06:00
if( macro_bytes[i][j+1] == 0x01 )
2020-07-31 10:41:47 -06:00
output << ";# down\tmouse_left\n";
2020-09-07 15:30:15 -06:00
else if( macro_bytes[i][j+1] == 0x02 )
2020-07-31 10:41:47 -06:00
output << ";# down\tmouse_right\n";
2020-09-07 15:30:15 -06:00
else if( macro_bytes[i][j+1] == 0x04 )
2020-07-31 10:41:47 -06:00
output << ";# down\tmouse_middle\n";
else{
output << ";# unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i][j] << " ";
output << std::hex << (int)macro_bytes[i][j+1] << " ";
output << std::hex << (int)macro_bytes[i][j+2];
output << std::dec << "\n";
}
} else if( macro_bytes[i][j] == 0x01 ){ // mouse button up
2020-09-07 15:30:15 -06:00
if( macro_bytes[i][j+1] == 0x01 )
2020-07-31 10:41:47 -06:00
output << ";# up\tmouse_left\n";
2020-09-07 15:30:15 -06:00
else if( macro_bytes[i][j+1] == 0x02 )
2020-07-31 10:41:47 -06:00
output << ";# up\tmouse_right\n";
2020-09-07 15:30:15 -06:00
else if( macro_bytes[i][j+1] == 0x04 )
2020-07-31 10:41:47 -06:00
output << ";# up\tmouse_middle\n";
else{
output << ";# unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i][j] << " ";
output << std::hex << (int)macro_bytes[i][j+1] << " ";
output << std::hex << (int)macro_bytes[i][j+2];
output << std::dec << "\n";
}
} else if( macro_bytes[i][j] == 0x84 ){ // keyboard key down
bool found_name = false;
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == macro_bytes[i][j+1] ){
output << ";# down\t" << keycode.first << "\n";
found_name = true;
break;
}
}
if( !found_name ){
output << ";# unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i][j] << " ";
output << std::hex << (int)macro_bytes[i][j+1] << " ";
output << std::hex << (int)macro_bytes[i][j+2];
output << std::dec << "\n";
}
} else if( macro_bytes[i][j] == 0x04 ){ // keyboard key up
bool found_name = false;
// iterate over _c_keyboard_key_values
for( auto keycode : _c_keyboard_key_values ){
if( keycode.second == macro_bytes[i][j+1] ){
output << ";# up\t" << keycode.first << "\n";
found_name = true;
break;
}
}
if( !found_name ){
output << ";# unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i][j] << " ";
output << std::hex << (int)macro_bytes[i][j+1] << " ";
output << std::hex << (int)macro_bytes[i][j+2];
output << std::dec << "\n";
}
} else if( macro_bytes[i][j] == 0x06 ){ // delay
output << ";# delay\t" << (int)macro_bytes[i][j+1] << "\n";
} else if( macro_bytes[i][j] == 0x00 ){ // padding
j++;
} else{
output << ";# unknown, please report as bug: ";
output << std::hex << (int)macro_bytes[i][j] << " ";
output << std::hex << (int)macro_bytes[i][j+1] << " ";
output << std::hex << (int)macro_bytes[i][j+2];
output << std::dec << "\n";
}
// increment
j+=3;
}
}
return 0;
}
int mouse_m711::read_settings(){
//prepare data 1
int rows1 = sizeof(_c_data_read_1) / sizeof(_c_data_read_1[0]);
uint8_t buffer1[rows1][16];
for( int i = 0; i < rows1; i++ ){
std::copy(std::begin(_c_data_read_1[i]), std::end(_c_data_read_1[i]), std::begin(buffer1[i]));
}
//prepare data 2
int rows2 = sizeof(_c_data_read_2) / sizeof(_c_data_read_2[0]);
uint8_t buffer2[rows2][64];
for( int i = 0; i < rows2; i++ ){
std::copy(std::begin(_c_data_read_2[i]), std::end(_c_data_read_2[i]), std::begin(buffer2[i]));
}
//prepare data 3
int rows3 = sizeof(_c_data_read_3) / sizeof(_c_data_read_3[0]);
uint8_t buffer3[rows3][16];
for( int i = 0; i < rows3; i++ ){
std::copy(std::begin(_c_data_read_3[i]), std::end(_c_data_read_3[i]), std::begin(buffer3[i]));
}
//send data 1
uint8_t buffer_in1[8][16] = {{0}};
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[0], 16, 1000 );
for( int i = 1; i < rows1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer1[i], 16, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in1[i-1], 16, 1000 );
}
//send data 2
uint8_t buffer_in2[85][64] = {{0}};
for( int i = 0; i < rows2; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0303, 0x0002, buffer2[i], 64, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0303, 0x0002, buffer_in2[i], 64, 1000 );
}
//send data 3
uint8_t buffer_in3[45][16] = {{0}};
for( int i = 0; i < rows3-1; i++ ){
// control out
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[i], 16, 1000 );
// control in
libusb_control_transfer( _i_handle, 0xa1, 0x01, 0x0302, 0x0002, buffer_in3[i], 16, 1000 );
}
libusb_control_transfer( _i_handle, 0x21, 0x09, 0x0302, 0x0002, buffer3[100], 16, 1000 );
// parse received data
if( buffer_in1[0][8]+1 == 1 )
_s_profile = profile_1;
if( buffer_in1[0][8]+1 == 2 )
_s_profile = profile_2;
if( buffer_in1[0][8]+1 == 3 )
_s_profile = profile_3;
if( buffer_in1[0][8]+1 == 4 )
_s_profile = profile_4;
if( buffer_in1[0][8]+1 == 5 )
_s_profile = profile_5;
for( int i = 1; i < 6; i++ ){
// color
_s_colors[i-1][0] = buffer_in1[i][8];
_s_colors[i-1][1] = buffer_in1[i][9];
_s_colors[i-1][2] = buffer_in1[i][10];
// brightness
_s_brightness_levels[i-1] = buffer_in1[i][14];
// speed
_s_speed_levels[i-1] = buffer_in1[i][13];
// lightmode
if( buffer_in1[i][11] == 0x00 && buffer_in1[i][13] == 0x00 )
_s_lightmodes[i-1] = lightmode_off;
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x04 )
_s_lightmodes[i-1] = lightmode_breathing;
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x08 )
_s_lightmodes[i-1] = lightmode_rainbow;
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x02 )
_s_lightmodes[i-1] = lightmode_static;
else if( buffer_in1[i][11] == 0x02 && buffer_in1[i][13] == 0x00 )
_s_lightmodes[i-1] = lightmode_wave;
else if( buffer_in1[i][11] == 0x06 && buffer_in1[i][13] == 0x00 )
_s_lightmodes[i-1] = lightmode_alternating;
else if( buffer_in1[i][11] == 0x07 && buffer_in1[i][13] == 0x00 )
_s_lightmodes[i-1] = lightmode_reactive;
else if( buffer_in1[i][11] == 0x01 && buffer_in1[i][13] == 0x10 )
_s_lightmodes[i-1] = lightmode_flashing;
// polling rate (report rate)
if( i < 4 ){
if( buffer_in1[6][6+(2*i)] == 8 )
_s_report_rates[i-1] = r_125Hz;
else if( buffer_in1[6][6+(2*i)] == 4 )
_s_report_rates[i-1] = r_250Hz;
else if( buffer_in1[6][6+(2*i)] == 2 )
_s_report_rates[i-1] = r_500Hz;
else if( buffer_in1[6][6+(2*i)] == 1 )
_s_report_rates[i-1] = r_1000Hz;
} else{
if( buffer_in1[7][(2*i)] == 8 )
_s_report_rates[i-1] = r_125Hz;
else if( buffer_in1[7][(2*i)] == 4 )
_s_report_rates[i-1] = r_250Hz;
else if( buffer_in1[7][(2*i)] == 2 )
_s_report_rates[i-1] = r_500Hz;
else if( buffer_in1[7][(2*i)] == 1 )
_s_report_rates[i-1] = r_1000Hz;
}
// dpi
for( int j = 1; j < 6; j++ ){
if( buffer_in2[i-1][4+(6*j)] )
_s_dpi_enabled[i-1][j-1] = true;
else
_s_dpi_enabled[i-1][j-1] = false;
_s_dpi_levels[i-1][j-1] = buffer_in2[i-1][5+(6*j)];
}
/* Currently not implemented, missing captured data
*
// button mapping
for( int j = 0; j < 8; j++ ){
_s_keymap_data[i-1][j][0] = buffer_in3[j+(8*(i-1))][8];
_s_keymap_data[i-1][j][1] = buffer_in3[j+(8*(i-1))][9];
_s_keymap_data[i-1][j][2] = buffer_in3[j+(8*(i-1))][10];
_s_keymap_data[i-1][j][3] = buffer_in3[j+(8*(i-1))][11];
}
*
*/
}
// macros
// macros
std::array< std::vector< uint8_t >, 15 > macro_bytes;
int macronumber = 1;
int counter = 0;
// iterate over buffer_in2
for( int i = 5; i < 85; i++ ){
// This appears to be wrong
//int macronumber = buffer_in2[i][3] - 0x63;
// valid macronumber?
if( macronumber >= 1 && macronumber <= 15 ){
// extract bytes
for( int j = 8; j < 58; j++ ){ // iterate over individual packet
macro_bytes[macronumber-1].push_back( buffer_in2[i][j] );
}
}
// increment counter and macronumber
counter++;
if( counter == 4 ){
counter = 0;
macronumber++;
}
}
// store extracted bytes in _s_macro_data
for( int i = 0; i < 15; i++ ){ // for each macro in macro_bytes
// for each byte in the macro
for( unsigned int j = 0; j < macro_bytes[i].size(); j++ ){
// failsafe
if( j >= (_s_macro_data[i].size()+8) )
break;
_s_macro_data[i][j+8] = macro_bytes[i][j];
}
}
return 0;
}