kernel-fxtec-pro1x/Documentation/x86_64/mm.txt
Andi Kleen 8315eca255 [PATCH] x86_64: Some clarifications for Documention/x86_64/mm.txt
I got some questions on this, so just fix up the documentation.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:15 -08:00

28 lines
1.1 KiB
Text

<previous description obsolete, deleted>
Virtual memory map with 4 level page tables:
0000000000000000 - 00007fffffffffff (=47bits) user space, different per mm
hole caused by [48:63] sign extension
ffff800000000000 - ffff80ffffffffff (=40bits) guard hole
ffff810000000000 - ffffc0ffffffffff (=46bits) direct mapping of all phys. memory
ffffc10000000000 - ffffc1ffffffffff (=40bits) hole
ffffc20000000000 - ffffe1ffffffffff (=45bits) vmalloc/ioremap space
... unused hole ...
ffffffff80000000 - ffffffff82800000 (=40MB) kernel text mapping, from phys 0
... unused hole ...
ffffffff88000000 - fffffffffff00000 (=1919MB) module mapping space
The direct mapping covers all memory in the system upto the highest
memory address (this means in some cases it can also include PCI memory
holes)
vmalloc space is lazily synchronized into the different PML4 pages of
the processes using the page fault handler, with init_level4_pgt as
reference.
Current X86-64 implementations only support 40 bit of address space,
but we support upto 46bits. This expands into MBZ space in the page tables.
-Andi Kleen, Jul 2004