fca26f260c
Currently, there's no way to trap a running ptracee short of sending a signal which has various side effects. This patch implements PTRACE_INTERRUPT which traps ptracee without any signal or job control related side effect. The implementation is almost trivial. It uses the group stop trap - SIGTRAP | PTRACE_EVENT_STOP << 8. A new trap flag JOBCTL_TRAP_INTERRUPT is added, which is set on PTRACE_INTERRUPT and cleared when any trap happens. As INTERRUPT should be useable regardless of the current state of tracee, task_is_traced() test in ptrace_check_attach() is skipped for INTERRUPT. PTRACE_INTERRUPT is available iff tracee is attached with PTRACE_SEIZE. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive pid=%d\n", getpid()); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: INTERRUPT and DETACH\n"); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_DETACH, tracee, NULL, NULL); nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); kill(tracee, SIGKILL); return 0; } When called without argument, tracee is seized from running state, interrupted and then detached back to running state. # ./test-interrupt tracee: alive pid=4546 tracee: alive pid=4546 tracee: alive pid=4546 tracer: INTERRUPT and DETACH tracee: alive pid=4546 tracee: alive pid=4546 tracee: alive pid=4546 tracer: exiting When called with argument, tracee is seized from stopped state, continued, interrupted and then detached back to stopped state. # ./test-interrupt 1 tracee: alive pid=4548 tracee: alive pid=4548 tracee: alive pid=4548 tracer: INTERRUPT and DETACH tracer: exiting Before PTRACE_INTERRUPT, once the tracee was running, there was no way to trap tracee and do PTRACE_DETACH without causing side effect. -v2: Updated to use task_set_jobctl_pending() so that it doesn't end up scheduling TRAP_STOP if child is dying which may make the child unkillable. Spotted by Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
374 lines
13 KiB
C
374 lines
13 KiB
C
#ifndef _LINUX_PTRACE_H
|
|
#define _LINUX_PTRACE_H
|
|
/* ptrace.h */
|
|
/* structs and defines to help the user use the ptrace system call. */
|
|
|
|
/* has the defines to get at the registers. */
|
|
|
|
#define PTRACE_TRACEME 0
|
|
#define PTRACE_PEEKTEXT 1
|
|
#define PTRACE_PEEKDATA 2
|
|
#define PTRACE_PEEKUSR 3
|
|
#define PTRACE_POKETEXT 4
|
|
#define PTRACE_POKEDATA 5
|
|
#define PTRACE_POKEUSR 6
|
|
#define PTRACE_CONT 7
|
|
#define PTRACE_KILL 8
|
|
#define PTRACE_SINGLESTEP 9
|
|
|
|
#define PTRACE_ATTACH 16
|
|
#define PTRACE_DETACH 17
|
|
|
|
#define PTRACE_SYSCALL 24
|
|
|
|
/* 0x4200-0x4300 are reserved for architecture-independent additions. */
|
|
#define PTRACE_SETOPTIONS 0x4200
|
|
#define PTRACE_GETEVENTMSG 0x4201
|
|
#define PTRACE_GETSIGINFO 0x4202
|
|
#define PTRACE_SETSIGINFO 0x4203
|
|
|
|
/*
|
|
* Generic ptrace interface that exports the architecture specific regsets
|
|
* using the corresponding NT_* types (which are also used in the core dump).
|
|
* Please note that the NT_PRSTATUS note type in a core dump contains a full
|
|
* 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
|
|
* elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
|
|
* other user_regset flavors, the user_regset layout and the ELF core dump note
|
|
* payload are exactly the same layout.
|
|
*
|
|
* This interface usage is as follows:
|
|
* struct iovec iov = { buf, len};
|
|
*
|
|
* ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
|
|
*
|
|
* On the successful completion, iov.len will be updated by the kernel,
|
|
* specifying how much the kernel has written/read to/from the user's iov.buf.
|
|
*/
|
|
#define PTRACE_GETREGSET 0x4204
|
|
#define PTRACE_SETREGSET 0x4205
|
|
|
|
#define PTRACE_SEIZE 0x4206
|
|
#define PTRACE_INTERRUPT 0x4207
|
|
|
|
/* flags in @data for PTRACE_SEIZE */
|
|
#define PTRACE_SEIZE_DEVEL 0x80000000 /* temp flag for development */
|
|
|
|
/* options set using PTRACE_SETOPTIONS */
|
|
#define PTRACE_O_TRACESYSGOOD 0x00000001
|
|
#define PTRACE_O_TRACEFORK 0x00000002
|
|
#define PTRACE_O_TRACEVFORK 0x00000004
|
|
#define PTRACE_O_TRACECLONE 0x00000008
|
|
#define PTRACE_O_TRACEEXEC 0x00000010
|
|
#define PTRACE_O_TRACEVFORKDONE 0x00000020
|
|
#define PTRACE_O_TRACEEXIT 0x00000040
|
|
|
|
#define PTRACE_O_MASK 0x0000007f
|
|
|
|
/* Wait extended result codes for the above trace options. */
|
|
#define PTRACE_EVENT_FORK 1
|
|
#define PTRACE_EVENT_VFORK 2
|
|
#define PTRACE_EVENT_CLONE 3
|
|
#define PTRACE_EVENT_EXEC 4
|
|
#define PTRACE_EVENT_VFORK_DONE 5
|
|
#define PTRACE_EVENT_EXIT 6
|
|
#define PTRACE_EVENT_STOP 7
|
|
|
|
#include <asm/ptrace.h>
|
|
|
|
#ifdef __KERNEL__
|
|
/*
|
|
* Ptrace flags
|
|
*
|
|
* The owner ship rules for task->ptrace which holds the ptrace
|
|
* flags is simple. When a task is running it owns it's task->ptrace
|
|
* flags. When the a task is stopped the ptracer owns task->ptrace.
|
|
*/
|
|
|
|
#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
|
|
#define PT_PTRACED 0x00000001
|
|
#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
|
|
#define PT_TRACESYSGOOD 0x00000004
|
|
#define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
|
|
#define PT_TRACE_FORK 0x00000010
|
|
#define PT_TRACE_VFORK 0x00000020
|
|
#define PT_TRACE_CLONE 0x00000040
|
|
#define PT_TRACE_EXEC 0x00000080
|
|
#define PT_TRACE_VFORK_DONE 0x00000100
|
|
#define PT_TRACE_EXIT 0x00000200
|
|
|
|
#define PT_TRACE_MASK 0x000003f4
|
|
|
|
/* single stepping state bits (used on ARM and PA-RISC) */
|
|
#define PT_SINGLESTEP_BIT 31
|
|
#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
|
|
#define PT_BLOCKSTEP_BIT 30
|
|
#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
|
|
|
|
#include <linux/compiler.h> /* For unlikely. */
|
|
#include <linux/sched.h> /* For struct task_struct. */
|
|
|
|
|
|
extern long arch_ptrace(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data);
|
|
extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
|
|
extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
|
|
extern void ptrace_disable(struct task_struct *);
|
|
extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
|
|
extern int ptrace_request(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data);
|
|
extern void ptrace_notify(int exit_code);
|
|
extern void __ptrace_link(struct task_struct *child,
|
|
struct task_struct *new_parent);
|
|
extern void __ptrace_unlink(struct task_struct *child);
|
|
extern void exit_ptrace(struct task_struct *tracer);
|
|
#define PTRACE_MODE_READ 1
|
|
#define PTRACE_MODE_ATTACH 2
|
|
/* Returns 0 on success, -errno on denial. */
|
|
extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
|
|
/* Returns true on success, false on denial. */
|
|
extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
|
|
|
|
static inline int ptrace_reparented(struct task_struct *child)
|
|
{
|
|
return child->real_parent != child->parent;
|
|
}
|
|
|
|
static inline void ptrace_unlink(struct task_struct *child)
|
|
{
|
|
if (unlikely(child->ptrace))
|
|
__ptrace_unlink(child);
|
|
}
|
|
|
|
int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data);
|
|
int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data);
|
|
|
|
/**
|
|
* task_ptrace - return %PT_* flags that apply to a task
|
|
* @task: pointer to &task_struct in question
|
|
*
|
|
* Returns the %PT_* flags that apply to @task.
|
|
*/
|
|
static inline int task_ptrace(struct task_struct *task)
|
|
{
|
|
return task->ptrace;
|
|
}
|
|
|
|
/**
|
|
* ptrace_event - possibly stop for a ptrace event notification
|
|
* @mask: %PT_* bit to check in @current->ptrace
|
|
* @event: %PTRACE_EVENT_* value to report if @mask is set
|
|
* @message: value for %PTRACE_GETEVENTMSG to return
|
|
*
|
|
* This checks the @mask bit to see if ptrace wants stops for this event.
|
|
* If so we stop, reporting @event and @message to the ptrace parent.
|
|
*
|
|
* Returns nonzero if we did a ptrace notification, zero if not.
|
|
*
|
|
* Called without locks.
|
|
*/
|
|
static inline int ptrace_event(int mask, int event, unsigned long message)
|
|
{
|
|
if (mask && likely(!(current->ptrace & mask)))
|
|
return 0;
|
|
current->ptrace_message = message;
|
|
ptrace_notify((event << 8) | SIGTRAP);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ptrace_init_task - initialize ptrace state for a new child
|
|
* @child: new child task
|
|
* @ptrace: true if child should be ptrace'd by parent's tracer
|
|
*
|
|
* This is called immediately after adding @child to its parent's children
|
|
* list. @ptrace is false in the normal case, and true to ptrace @child.
|
|
*
|
|
* Called with current's siglock and write_lock_irq(&tasklist_lock) held.
|
|
*/
|
|
static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
|
|
{
|
|
INIT_LIST_HEAD(&child->ptrace_entry);
|
|
INIT_LIST_HEAD(&child->ptraced);
|
|
child->parent = child->real_parent;
|
|
child->ptrace = 0;
|
|
if (unlikely(ptrace) && (current->ptrace & PT_PTRACED)) {
|
|
child->ptrace = current->ptrace;
|
|
__ptrace_link(child, current->parent);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
atomic_set(&child->ptrace_bp_refcnt, 1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
|
|
* @task: task in %EXIT_DEAD state
|
|
*
|
|
* Called with write_lock(&tasklist_lock) held.
|
|
*/
|
|
static inline void ptrace_release_task(struct task_struct *task)
|
|
{
|
|
BUG_ON(!list_empty(&task->ptraced));
|
|
ptrace_unlink(task);
|
|
BUG_ON(!list_empty(&task->ptrace_entry));
|
|
}
|
|
|
|
#ifndef force_successful_syscall_return
|
|
/*
|
|
* System call handlers that, upon successful completion, need to return a
|
|
* negative value should call force_successful_syscall_return() right before
|
|
* returning. On architectures where the syscall convention provides for a
|
|
* separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
|
|
* others), this macro can be used to ensure that the error flag will not get
|
|
* set. On architectures which do not support a separate error flag, the macro
|
|
* is a no-op and the spurious error condition needs to be filtered out by some
|
|
* other means (e.g., in user-level, by passing an extra argument to the
|
|
* syscall handler, or something along those lines).
|
|
*/
|
|
#define force_successful_syscall_return() do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
|
|
*
|
|
* These do-nothing inlines are used when the arch does not
|
|
* implement single-step. The kerneldoc comments are here
|
|
* to document the interface for all arch definitions.
|
|
*/
|
|
|
|
#ifndef arch_has_single_step
|
|
/**
|
|
* arch_has_single_step - does this CPU support user-mode single-step?
|
|
*
|
|
* If this is defined, then there must be function declarations or
|
|
* inlines for user_enable_single_step() and user_disable_single_step().
|
|
* arch_has_single_step() should evaluate to nonzero iff the machine
|
|
* supports instruction single-step for user mode.
|
|
* It can be a constant or it can test a CPU feature bit.
|
|
*/
|
|
#define arch_has_single_step() (0)
|
|
|
|
/**
|
|
* user_enable_single_step - single-step in user-mode task
|
|
* @task: either current or a task stopped in %TASK_TRACED
|
|
*
|
|
* This can only be called when arch_has_single_step() has returned nonzero.
|
|
* Set @task so that when it returns to user mode, it will trap after the
|
|
* next single instruction executes. If arch_has_block_step() is defined,
|
|
* this must clear the effects of user_enable_block_step() too.
|
|
*/
|
|
static inline void user_enable_single_step(struct task_struct *task)
|
|
{
|
|
BUG(); /* This can never be called. */
|
|
}
|
|
|
|
/**
|
|
* user_disable_single_step - cancel user-mode single-step
|
|
* @task: either current or a task stopped in %TASK_TRACED
|
|
*
|
|
* Clear @task of the effects of user_enable_single_step() and
|
|
* user_enable_block_step(). This can be called whether or not either
|
|
* of those was ever called on @task, and even if arch_has_single_step()
|
|
* returned zero.
|
|
*/
|
|
static inline void user_disable_single_step(struct task_struct *task)
|
|
{
|
|
}
|
|
#else
|
|
extern void user_enable_single_step(struct task_struct *);
|
|
extern void user_disable_single_step(struct task_struct *);
|
|
#endif /* arch_has_single_step */
|
|
|
|
#ifndef arch_has_block_step
|
|
/**
|
|
* arch_has_block_step - does this CPU support user-mode block-step?
|
|
*
|
|
* If this is defined, then there must be a function declaration or inline
|
|
* for user_enable_block_step(), and arch_has_single_step() must be defined
|
|
* too. arch_has_block_step() should evaluate to nonzero iff the machine
|
|
* supports step-until-branch for user mode. It can be a constant or it
|
|
* can test a CPU feature bit.
|
|
*/
|
|
#define arch_has_block_step() (0)
|
|
|
|
/**
|
|
* user_enable_block_step - step until branch in user-mode task
|
|
* @task: either current or a task stopped in %TASK_TRACED
|
|
*
|
|
* This can only be called when arch_has_block_step() has returned nonzero,
|
|
* and will never be called when single-instruction stepping is being used.
|
|
* Set @task so that when it returns to user mode, it will trap after the
|
|
* next branch or trap taken.
|
|
*/
|
|
static inline void user_enable_block_step(struct task_struct *task)
|
|
{
|
|
BUG(); /* This can never be called. */
|
|
}
|
|
#else
|
|
extern void user_enable_block_step(struct task_struct *);
|
|
#endif /* arch_has_block_step */
|
|
|
|
#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
|
|
extern void user_single_step_siginfo(struct task_struct *tsk,
|
|
struct pt_regs *regs, siginfo_t *info);
|
|
#else
|
|
static inline void user_single_step_siginfo(struct task_struct *tsk,
|
|
struct pt_regs *regs, siginfo_t *info)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
info->si_signo = SIGTRAP;
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_ptrace_stop_needed
|
|
/**
|
|
* arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
|
|
* @code: current->exit_code value ptrace will stop with
|
|
* @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
|
|
*
|
|
* This is called with the siglock held, to decide whether or not it's
|
|
* necessary to release the siglock and call arch_ptrace_stop() with the
|
|
* same @code and @info arguments. It can be defined to a constant if
|
|
* arch_ptrace_stop() is never required, or always is. On machines where
|
|
* this makes sense, it should be defined to a quick test to optimize out
|
|
* calling arch_ptrace_stop() when it would be superfluous. For example,
|
|
* if the thread has not been back to user mode since the last stop, the
|
|
* thread state might indicate that nothing needs to be done.
|
|
*/
|
|
#define arch_ptrace_stop_needed(code, info) (0)
|
|
#endif
|
|
|
|
#ifndef arch_ptrace_stop
|
|
/**
|
|
* arch_ptrace_stop - Do machine-specific work before stopping for ptrace
|
|
* @code: current->exit_code value ptrace will stop with
|
|
* @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
|
|
*
|
|
* This is called with no locks held when arch_ptrace_stop_needed() has
|
|
* just returned nonzero. It is allowed to block, e.g. for user memory
|
|
* access. The arch can have machine-specific work to be done before
|
|
* ptrace stops. On ia64, register backing store gets written back to user
|
|
* memory here. Since this can be costly (requires dropping the siglock),
|
|
* we only do it when the arch requires it for this particular stop, as
|
|
* indicated by arch_ptrace_stop_needed().
|
|
*/
|
|
#define arch_ptrace_stop(code, info) do { } while (0)
|
|
#endif
|
|
|
|
extern int task_current_syscall(struct task_struct *target, long *callno,
|
|
unsigned long args[6], unsigned int maxargs,
|
|
unsigned long *sp, unsigned long *pc);
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
extern int ptrace_get_breakpoints(struct task_struct *tsk);
|
|
extern void ptrace_put_breakpoints(struct task_struct *tsk);
|
|
#else
|
|
static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
|
|
#endif /* __KERNEL */
|
|
|
|
#endif
|