kernel-fxtec-pro1x/arch/x86/kernel/setup_percpu.c
Tejun Heo fb435d5233 percpu: add pcpu_unit_offsets[]
Currently units are mapped sequentially into address space.  This
patch adds pcpu_unit_offsets[] which allows units to be mapped to
arbitrary offsets from the chunk base address.  This is necessary to
allow sparse embedding which might would need to allocate address
ranges and memory areas which aren't aligned to unit size but
allocation atom size (page or large page size).  This also simplifies
things a bit by removing the need to calculate offset from unit
number.

With this change, there's no need for the arch code to know
pcpu_unit_size.  Update pcpu_setup_first_chunk() and first chunk
allocators to return regular 0 or -errno return code instead of unit
size or -errno.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
2009-08-14 15:00:51 +09:00

369 lines
9.5 KiB
C

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/percpu.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/pfn.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/mpspec.h>
#include <asm/apicdef.h>
#include <asm/highmem.h>
#include <asm/proto.h>
#include <asm/cpumask.h>
#include <asm/cpu.h>
#include <asm/stackprotector.h>
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
# define DBG(x...) printk(KERN_DEBUG x)
#else
# define DBG(x...)
#endif
DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
#ifdef CONFIG_X86_64
#define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
#else
#define BOOT_PERCPU_OFFSET 0
#endif
DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
EXPORT_PER_CPU_SYMBOL(this_cpu_off);
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
[0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
};
EXPORT_SYMBOL(__per_cpu_offset);
/*
* On x86_64 symbols referenced from code should be reachable using
* 32bit relocations. Reserve space for static percpu variables in
* modules so that they are always served from the first chunk which
* is located at the percpu segment base. On x86_32, anything can
* address anywhere. No need to reserve space in the first chunk.
*/
#ifdef CONFIG_X86_64
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
#else
#define PERCPU_FIRST_CHUNK_RESERVE 0
#endif
/**
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
*
* If NUMA is not configured or there is only one NUMA node available,
* there is no reason to consider NUMA. This function determines
* whether percpu allocation should consider NUMA or not.
*
* RETURNS:
* true if NUMA should be considered; otherwise, false.
*/
static bool __init pcpu_need_numa(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
pg_data_t *last = NULL;
unsigned int cpu;
for_each_possible_cpu(cpu) {
int node = early_cpu_to_node(cpu);
if (node_online(node) && NODE_DATA(node) &&
last && last != NODE_DATA(node))
return true;
last = NODE_DATA(node);
}
#endif
return false;
}
/**
* pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
* @cpu: cpu to allocate for
* @size: size allocation in bytes
* @align: alignment
*
* Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
* does the right thing for NUMA regardless of the current
* configuration.
*
* RETURNS:
* Pointer to the allocated area on success, NULL on failure.
*/
static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
unsigned long align)
{
const unsigned long goal = __pa(MAX_DMA_ADDRESS);
#ifdef CONFIG_NEED_MULTIPLE_NODES
int node = early_cpu_to_node(cpu);
void *ptr;
if (!node_online(node) || !NODE_DATA(node)) {
ptr = __alloc_bootmem_nopanic(size, align, goal);
pr_info("cpu %d has no node %d or node-local memory\n",
cpu, node);
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
cpu, size, __pa(ptr));
} else {
ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
size, align, goal);
pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
"%016lx\n", cpu, size, node, __pa(ptr));
}
return ptr;
#else
return __alloc_bootmem_nopanic(size, align, goal);
#endif
}
/*
* Helpers for first chunk memory allocation
*/
static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
{
return pcpu_alloc_bootmem(cpu, size, align);
}
static void __init pcpu_fc_free(void *ptr, size_t size)
{
free_bootmem(__pa(ptr), size);
}
/*
* Large page remapping allocator
*/
#ifdef CONFIG_NEED_MULTIPLE_NODES
static void __init pcpul_map(void *ptr, size_t size, void *addr)
{
pmd_t *pmd, pmd_v;
pmd = populate_extra_pmd((unsigned long)addr);
pmd_v = pfn_pmd(page_to_pfn(virt_to_page(ptr)), PAGE_KERNEL_LARGE);
set_pmd(pmd, pmd_v);
}
static int pcpu_lpage_cpu_distance(unsigned int from, unsigned int to)
{
if (early_cpu_to_node(from) == early_cpu_to_node(to))
return LOCAL_DISTANCE;
else
return REMOTE_DISTANCE;
}
static int __init setup_pcpu_lpage(bool chosen)
{
size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
size_t dyn_size = reserve - PERCPU_FIRST_CHUNK_RESERVE;
struct pcpu_alloc_info *ai;
int rc;
/* on non-NUMA, embedding is better */
if (!chosen && !pcpu_need_numa())
return -EINVAL;
/* need PSE */
if (!cpu_has_pse) {
pr_warning("PERCPU: lpage allocator requires PSE\n");
return -EINVAL;
}
/* allocate and build unit_map */
ai = pcpu_build_alloc_info(PERCPU_FIRST_CHUNK_RESERVE, dyn_size,
PMD_SIZE, pcpu_lpage_cpu_distance);
if (IS_ERR(ai)) {
pr_warning("PERCPU: failed to build unit_map (%ld)\n",
PTR_ERR(ai));
return PTR_ERR(ai);
}
/* do the parameters look okay? */
if (!chosen) {
size_t vm_size = VMALLOC_END - VMALLOC_START;
size_t tot_size = 0;
int group;
for (group = 0; group < ai->nr_groups; group++)
tot_size += ai->unit_size * ai->groups[group].nr_units;
/* don't consume more than 20% of vmalloc area */
if (tot_size > vm_size / 5) {
pr_info("PERCPU: too large chunk size %zuMB for "
"large page remap\n", tot_size >> 20);
rc = -EINVAL;
goto out_free;
}
}
rc = pcpu_lpage_first_chunk(ai, pcpu_fc_alloc, pcpu_fc_free, pcpul_map);
out_free:
pcpu_free_alloc_info(ai);
return rc;
}
#else
static int __init setup_pcpu_lpage(bool chosen)
{
return -EINVAL;
}
#endif
/*
* Embedding allocator
*
* The first chunk is sized to just contain the static area plus
* module and dynamic reserves and embedded into linear physical
* mapping so that it can use PMD mapping without additional TLB
* pressure.
*/
static int __init setup_pcpu_embed(bool chosen)
{
size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
/*
* If large page isn't supported, there's no benefit in doing
* this. Also, embedding allocation doesn't play well with
* NUMA.
*/
if (!chosen && (!cpu_has_pse || pcpu_need_numa()))
return -EINVAL;
return pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
reserve - PERCPU_FIRST_CHUNK_RESERVE);
}
/*
* Page allocator
*
* Boring fallback 4k page allocator. This allocator puts more
* pressure on PTE TLBs but other than that behaves nicely on both UMA
* and NUMA.
*/
static void __init pcpup_populate_pte(unsigned long addr)
{
populate_extra_pte(addr);
}
static int __init setup_pcpu_page(void)
{
return pcpu_page_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
pcpu_fc_alloc, pcpu_fc_free,
pcpup_populate_pte);
}
static inline void setup_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
struct desc_struct gdt;
pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
0x2 | DESCTYPE_S, 0x8);
gdt.s = 1;
write_gdt_entry(get_cpu_gdt_table(cpu),
GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
#endif
}
void __init setup_per_cpu_areas(void)
{
unsigned int cpu;
unsigned long delta;
int rc;
pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
/*
* Allocate percpu area. If PSE is supported, try to make use
* of large page mappings. Please read comments on top of
* each allocator for details.
*/
rc = -EINVAL;
if (pcpu_chosen_fc != PCPU_FC_AUTO) {
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
if (pcpu_chosen_fc == PCPU_FC_LPAGE)
rc = setup_pcpu_lpage(true);
else
rc = setup_pcpu_embed(true);
if (rc < 0)
pr_warning("PERCPU: %s allocator failed (%d), "
"falling back to page size\n",
pcpu_fc_names[pcpu_chosen_fc], rc);
}
} else {
rc = setup_pcpu_lpage(false);
if (rc < 0)
rc = setup_pcpu_embed(false);
}
if (rc < 0)
rc = setup_pcpu_page();
if (rc < 0)
panic("cannot initialize percpu area (err=%d)", rc);
/* alrighty, percpu areas up and running */
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
per_cpu(cpu_number, cpu) = cpu;
setup_percpu_segment(cpu);
setup_stack_canary_segment(cpu);
/*
* Copy data used in early init routines from the
* initial arrays to the per cpu data areas. These
* arrays then become expendable and the *_early_ptr's
* are zeroed indicating that the static arrays are
* gone.
*/
#ifdef CONFIG_X86_LOCAL_APIC
per_cpu(x86_cpu_to_apicid, cpu) =
early_per_cpu_map(x86_cpu_to_apicid, cpu);
per_cpu(x86_bios_cpu_apicid, cpu) =
early_per_cpu_map(x86_bios_cpu_apicid, cpu);
#endif
#ifdef CONFIG_X86_64
per_cpu(irq_stack_ptr, cpu) =
per_cpu(irq_stack_union.irq_stack, cpu) +
IRQ_STACK_SIZE - 64;
#ifdef CONFIG_NUMA
per_cpu(x86_cpu_to_node_map, cpu) =
early_per_cpu_map(x86_cpu_to_node_map, cpu);
#endif
#endif
/*
* Up to this point, the boot CPU has been using .data.init
* area. Reload any changed state for the boot CPU.
*/
if (cpu == boot_cpu_id)
switch_to_new_gdt(cpu);
}
/* indicate the early static arrays will soon be gone */
#ifdef CONFIG_X86_LOCAL_APIC
early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
#endif
#if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
#endif
#if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
/*
* make sure boot cpu node_number is right, when boot cpu is on the
* node that doesn't have mem installed
*/
per_cpu(node_number, boot_cpu_id) = cpu_to_node(boot_cpu_id);
#endif
/* Setup node to cpumask map */
setup_node_to_cpumask_map();
/* Setup cpu initialized, callin, callout masks */
setup_cpu_local_masks();
}