kernel-fxtec-pro1x/drivers/char/agp/i460-agp.c
Thomas Hellstrom a030ce4477 [AGPGART] Allow drm-populated agp memory types
This patch allows drm to populate an agpgart structure with pages of its own.
It's needed for the new drm memory manager which dynamically flips pages in and out of AGP.

The patch modifies the generic functions as well as the intel agp driver. The intel drm driver is
currently the only one supporting the new memory manager.

Other agp drivers may need some minor fixing up once they have a corresponding memory manager enabled drm driver.

AGP memory types >= AGP_USER_TYPES are not populated by the agpgart driver, but the drm is expected
to do that, as well as taking care of cache- and tlb flushing when needed.

It's not possible to request these types from user space using agpgart ioctls.

The Intel driver also gets a new memory type for pages that can be bound cached to the intel GTT.

Signed-off-by: Thomas Hellstrom <thomas@tungstengraphics.com>
Signed-off-by: Dave Jones <davej@redhat.com>
2007-02-03 17:16:24 -05:00

654 lines
18 KiB
C

/*
* For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
* the "Intel 460GTX Chipset Software Developer's Manual":
* http://developer.intel.com/design/itanium/downloads/24870401s.htm
*/
/*
* 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
* Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/agp_backend.h>
#include "agp.h"
#define INTEL_I460_BAPBASE 0x98
#define INTEL_I460_GXBCTL 0xa0
#define INTEL_I460_AGPSIZ 0xa2
#define INTEL_I460_ATTBASE 0xfe200000
#define INTEL_I460_GATT_VALID (1UL << 24)
#define INTEL_I460_GATT_COHERENT (1UL << 25)
/*
* The i460 can operate with large (4MB) pages, but there is no sane way to support this
* within the current kernel/DRM environment, so we disable the relevant code for now.
* See also comments in ia64_alloc_page()...
*/
#define I460_LARGE_IO_PAGES 0
#if I460_LARGE_IO_PAGES
# define I460_IO_PAGE_SHIFT i460.io_page_shift
#else
# define I460_IO_PAGE_SHIFT 12
#endif
#define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
#define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
#define I460_SRAM_IO_DISABLE (1 << 4)
#define I460_BAPBASE_ENABLE (1 << 3)
#define I460_AGPSIZ_MASK 0x7
#define I460_4M_PS (1 << 1)
/* Control bits for Out-Of-GART coherency and Burst Write Combining */
#define I460_GXBCTL_OOG (1UL << 0)
#define I460_GXBCTL_BWC (1UL << 2)
/*
* gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
* gatt_table and gatt_table_real pointers a "void *"...
*/
#define RD_GATT(index) readl((u32 *) i460.gatt + (index))
#define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index))
/*
* The 460 spec says we have to read the last location written to make sure that all
* writes have taken effect
*/
#define WR_FLUSH_GATT(index) RD_GATT(index)
#define log2(x) ffz(~(x))
static struct {
void *gatt; /* ioremap'd GATT area */
/* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
u8 io_page_shift;
/* BIOS configures chipset to one of 2 possible apbase values: */
u8 dynamic_apbase;
/* structure for tracking partial use of 4MB GART pages: */
struct lp_desc {
unsigned long *alloced_map; /* bitmap of kernel-pages in use */
int refcount; /* number of kernel pages using the large page */
u64 paddr; /* physical address of large page */
} *lp_desc;
} i460;
static struct aper_size_info_8 i460_sizes[3] =
{
/*
* The 32GB aperture is only available with a 4M GART page size. Due to the
* dynamic GART page size, we can't figure out page_order or num_entries until
* runtime.
*/
{32768, 0, 0, 4},
{1024, 0, 0, 2},
{256, 0, 0, 1}
};
static struct gatt_mask i460_masks[] =
{
{
.mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
.type = 0
}
};
static int i460_fetch_size (void)
{
int i;
u8 temp;
struct aper_size_info_8 *values;
/* Determine the GART page size */
pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
printk(KERN_ERR PFX
"I/O (GART) page-size %luKB doesn't match expected "
"size %luKB\n",
1UL << (i460.io_page_shift - 10),
1UL << (I460_IO_PAGE_SHIFT));
return 0;
}
values = A_SIZE_8(agp_bridge->driver->aperture_sizes);
pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
/* Exit now if the IO drivers for the GART SRAMS are turned off */
if (temp & I460_SRAM_IO_DISABLE) {
printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
printk(KERN_ERR PFX "AGPGART operation not possible\n");
return 0;
}
/* Make sure we don't try to create an 2 ^ 23 entry GATT */
if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
return 0;
}
/* Determine the proper APBASE register */
if (temp & I460_BAPBASE_ENABLE)
i460.dynamic_apbase = INTEL_I460_BAPBASE;
else
i460.dynamic_apbase = AGP_APBASE;
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
/*
* Dynamically calculate the proper num_entries and page_order values for
* the define aperture sizes. Take care not to shift off the end of
* values[i].size.
*/
values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
values[i].page_order = log2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
}
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
/* Neglect control bits when matching up size_value */
if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
agp_bridge->aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
/* There isn't anything to do here since 460 has no GART TLB. */
static void i460_tlb_flush (struct agp_memory *mem)
{
return;
}
/*
* This utility function is needed to prevent corruption of the control bits
* which are stored along with the aperture size in 460's AGPSIZ register
*/
static void i460_write_agpsiz (u8 size_value)
{
u8 temp;
pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
((temp & ~I460_AGPSIZ_MASK) | size_value));
}
static void i460_cleanup (void)
{
struct aper_size_info_8 *previous_size;
previous_size = A_SIZE_8(agp_bridge->previous_size);
i460_write_agpsiz(previous_size->size_value);
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
kfree(i460.lp_desc);
}
static int i460_configure (void)
{
union {
u32 small[2];
u64 large;
} temp;
size_t size;
u8 scratch;
struct aper_size_info_8 *current_size;
temp.large = 0;
current_size = A_SIZE_8(agp_bridge->current_size);
i460_write_agpsiz(current_size->size_value);
/*
* Do the necessary rigmarole to read all eight bytes of APBASE.
* This has to be done since the AGP aperture can be above 4GB on
* 460 based systems.
*/
pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
/* Clear BAR control bits */
agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
(scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
/*
* Initialize partial allocation trackers if a GART page is bigger than a kernel
* page.
*/
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
size = current_size->num_entries * sizeof(i460.lp_desc[0]);
i460.lp_desc = kzalloc(size, GFP_KERNEL);
if (!i460.lp_desc)
return -ENOMEM;
}
return 0;
}
static int i460_create_gatt_table (struct agp_bridge_data *bridge)
{
int page_order, num_entries, i;
void *temp;
/*
* Load up the fixed address of the GART SRAMS which hold our GATT table.
*/
temp = agp_bridge->current_size;
page_order = A_SIZE_8(temp)->page_order;
num_entries = A_SIZE_8(temp)->num_entries;
i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
/* These are no good, the should be removed from the agp_bridge strucure... */
agp_bridge->gatt_table_real = NULL;
agp_bridge->gatt_table = NULL;
agp_bridge->gatt_bus_addr = 0;
for (i = 0; i < num_entries; ++i)
WR_GATT(i, 0);
WR_FLUSH_GATT(i - 1);
return 0;
}
static int i460_free_gatt_table (struct agp_bridge_data *bridge)
{
int num_entries, i;
void *temp;
temp = agp_bridge->current_size;
num_entries = A_SIZE_8(temp)->num_entries;
for (i = 0; i < num_entries; ++i)
WR_GATT(i, 0);
WR_FLUSH_GATT(num_entries - 1);
iounmap(i460.gatt);
return 0;
}
/*
* The following functions are called when the I/O (GART) page size is smaller than
* PAGE_SIZE.
*/
static int i460_insert_memory_small_io_page (struct agp_memory *mem,
off_t pg_start, int type)
{
unsigned long paddr, io_pg_start, io_page_size;
int i, j, k, num_entries;
void *temp;
pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
mem, pg_start, type, mem->memory[0]);
if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
return -EINVAL;
io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
temp = agp_bridge->current_size;
num_entries = A_SIZE_8(temp)->num_entries;
if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
return -EINVAL;
}
j = io_pg_start;
while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
j, RD_GATT(j));
return -EBUSY;
}
j++;
}
io_page_size = 1UL << I460_IO_PAGE_SHIFT;
for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
paddr = mem->memory[i];
for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
WR_GATT(j, agp_bridge->driver->mask_memory(agp_bridge,
paddr, mem->type));
}
WR_FLUSH_GATT(j - 1);
return 0;
}
static int i460_remove_memory_small_io_page(struct agp_memory *mem,
off_t pg_start, int type)
{
int i;
pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
mem, pg_start, type);
pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
WR_GATT(i, 0);
WR_FLUSH_GATT(i - 1);
return 0;
}
#if I460_LARGE_IO_PAGES
/*
* These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
*
* This situation is interesting since AGP memory allocations that are smaller than a
* single GART page are possible. The i460.lp_desc array tracks partial allocation of the
* large GART pages to work around this issue.
*
* i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
* pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and
* i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
*/
static int i460_alloc_large_page (struct lp_desc *lp)
{
unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
size_t map_size;
void *lpage;
lpage = (void *) __get_free_pages(GFP_KERNEL, order);
if (!lpage) {
printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
return -ENOMEM;
}
map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
if (!lp->alloced_map) {
free_pages((unsigned long) lpage, order);
printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
return -ENOMEM;
}
lp->paddr = virt_to_gart(lpage);
lp->refcount = 0;
atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
return 0;
}
static void i460_free_large_page (struct lp_desc *lp)
{
kfree(lp->alloced_map);
lp->alloced_map = NULL;
free_pages((unsigned long) gart_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT);
atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
}
static int i460_insert_memory_large_io_page (struct agp_memory *mem,
off_t pg_start, int type)
{
int i, start_offset, end_offset, idx, pg, num_entries;
struct lp_desc *start, *end, *lp;
void *temp;
if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
return -EINVAL;
temp = agp_bridge->current_size;
num_entries = A_SIZE_8(temp)->num_entries;
/* Figure out what pg_start means in terms of our large GART pages */
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
if (end > i460.lp_desc + num_entries) {
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
return -EINVAL;
}
/* Check if the requested region of the aperture is free */
for (lp = start; lp <= end; ++lp) {
if (!lp->alloced_map)
continue; /* OK, the entire large page is available... */
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++)
{
if (test_bit(idx, lp->alloced_map))
return -EBUSY;
}
}
for (lp = start, i = 0; lp <= end; ++lp) {
if (!lp->alloced_map) {
/* Allocate new GART pages... */
if (i460_alloc_large_page(lp) < 0)
return -ENOMEM;
pg = lp - i460.lp_desc;
WR_GATT(pg, agp_bridge->driver->mask_memory(agp_bridge,
lp->paddr, 0));
WR_FLUSH_GATT(pg);
}
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++, i++)
{
mem->memory[i] = lp->paddr + idx*PAGE_SIZE;
__set_bit(idx, lp->alloced_map);
++lp->refcount;
}
}
return 0;
}
static int i460_remove_memory_large_io_page (struct agp_memory *mem,
off_t pg_start, int type)
{
int i, pg, start_offset, end_offset, idx, num_entries;
struct lp_desc *start, *end, *lp;
void *temp;
temp = agp_bridge->driver->current_size;
num_entries = A_SIZE_8(temp)->num_entries;
/* Figure out what pg_start means in terms of our large GART pages */
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
for (i = 0, lp = start; lp <= end; ++lp) {
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++, i++)
{
mem->memory[i] = 0;
__clear_bit(idx, lp->alloced_map);
--lp->refcount;
}
/* Free GART pages if they are unused */
if (lp->refcount == 0) {
pg = lp - i460.lp_desc;
WR_GATT(pg, 0);
WR_FLUSH_GATT(pg);
i460_free_large_page(lp);
}
}
return 0;
}
/* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
static int i460_insert_memory (struct agp_memory *mem,
off_t pg_start, int type)
{
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
return i460_insert_memory_small_io_page(mem, pg_start, type);
else
return i460_insert_memory_large_io_page(mem, pg_start, type);
}
static int i460_remove_memory (struct agp_memory *mem,
off_t pg_start, int type)
{
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
return i460_remove_memory_small_io_page(mem, pg_start, type);
else
return i460_remove_memory_large_io_page(mem, pg_start, type);
}
/*
* If the I/O (GART) page size is bigger than the kernel page size, we don't want to
* allocate memory until we know where it is to be bound in the aperture (a
* multi-kernel-page alloc might fit inside of an already allocated GART page).
*
* Let's just hope nobody counts on the allocated AGP memory being there before bind time
* (I don't think current drivers do)...
*/
static void *i460_alloc_page (struct agp_bridge_data *bridge)
{
void *page;
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
page = agp_generic_alloc_page(agp_bridge);
global_flush_tlb();
} else
/* Returning NULL would cause problems */
/* AK: really dubious code. */
page = (void *)~0UL;
return page;
}
static void i460_destroy_page (void *page)
{
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
agp_generic_destroy_page(page);
global_flush_tlb();
}
}
#endif /* I460_LARGE_IO_PAGES */
static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
unsigned long addr, int type)
{
/* Make sure the returned address is a valid GATT entry */
return bridge->driver->masks[0].mask
| (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
}
struct agp_bridge_driver intel_i460_driver = {
.owner = THIS_MODULE,
.aperture_sizes = i460_sizes,
.size_type = U8_APER_SIZE,
.num_aperture_sizes = 3,
.configure = i460_configure,
.fetch_size = i460_fetch_size,
.cleanup = i460_cleanup,
.tlb_flush = i460_tlb_flush,
.mask_memory = i460_mask_memory,
.masks = i460_masks,
.agp_enable = agp_generic_enable,
.cache_flush = global_cache_flush,
.create_gatt_table = i460_create_gatt_table,
.free_gatt_table = i460_free_gatt_table,
#if I460_LARGE_IO_PAGES
.insert_memory = i460_insert_memory,
.remove_memory = i460_remove_memory,
.agp_alloc_page = i460_alloc_page,
.agp_destroy_page = i460_destroy_page,
#else
.insert_memory = i460_insert_memory_small_io_page,
.remove_memory = i460_remove_memory_small_io_page,
.agp_alloc_page = agp_generic_alloc_page,
.agp_destroy_page = agp_generic_destroy_page,
#endif
.alloc_by_type = agp_generic_alloc_by_type,
.free_by_type = agp_generic_free_by_type,
.agp_type_to_mask_type = agp_generic_type_to_mask_type,
.cant_use_aperture = 1,
};
static int __devinit agp_intel_i460_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct agp_bridge_data *bridge;
u8 cap_ptr;
cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
if (!cap_ptr)
return -ENODEV;
bridge = agp_alloc_bridge();
if (!bridge)
return -ENOMEM;
bridge->driver = &intel_i460_driver;
bridge->dev = pdev;
bridge->capndx = cap_ptr;
printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");
pci_set_drvdata(pdev, bridge);
return agp_add_bridge(bridge);
}
static void __devexit agp_intel_i460_remove(struct pci_dev *pdev)
{
struct agp_bridge_data *bridge = pci_get_drvdata(pdev);
agp_remove_bridge(bridge);
agp_put_bridge(bridge);
}
static struct pci_device_id agp_intel_i460_pci_table[] = {
{
.class = (PCI_CLASS_BRIDGE_HOST << 8),
.class_mask = ~0,
.vendor = PCI_VENDOR_ID_INTEL,
.device = PCI_DEVICE_ID_INTEL_84460GX,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{ }
};
MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
static struct pci_driver agp_intel_i460_pci_driver = {
.name = "agpgart-intel-i460",
.id_table = agp_intel_i460_pci_table,
.probe = agp_intel_i460_probe,
.remove = __devexit_p(agp_intel_i460_remove),
};
static int __init agp_intel_i460_init(void)
{
if (agp_off)
return -EINVAL;
return pci_register_driver(&agp_intel_i460_pci_driver);
}
static void __exit agp_intel_i460_cleanup(void)
{
pci_unregister_driver(&agp_intel_i460_pci_driver);
}
module_init(agp_intel_i460_init);
module_exit(agp_intel_i460_cleanup);
MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
MODULE_LICENSE("GPL and additional rights");