kernel-fxtec-pro1x/drivers/s390/crypto/z90main.c
Olaf Hering 733482e445 [PATCH] changing CONFIG_LOCALVERSION rebuilds too much, for no good reason
This patch removes almost all inclusions of linux/version.h.  The 3
#defines are unused in most of the touched files.

A few drivers use the simple KERNEL_VERSION(a,b,c) macro, which is
unfortunatly in linux/version.h.

There are also lots of #ifdef for long obsolete kernels, this was not
touched.  In a few places, the linux/version.h include was move to where
the LINUX_VERSION_CODE was used.

quilt vi `find * -type f -name "*.[ch]"|xargs grep -El '(UTS_RELEASE|LINUX_VERSION_CODE|KERNEL_VERSION|linux/version.h)'|grep -Ev '(/(boot|coda|drm)/|~$)'`

search pattern:
/UTS_RELEASE\|LINUX_VERSION_CODE\|KERNEL_VERSION\|linux\/\(utsname\|version\).h

Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 07:55:57 -08:00

3354 lines
89 KiB
C

/*
* linux/drivers/s390/crypto/z90main.c
*
* z90crypt 1.3.2
*
* Copyright (C) 2001, 2004 IBM Corporation
* Author(s): Robert Burroughs (burrough@us.ibm.com)
* Eric Rossman (edrossma@us.ibm.com)
*
* Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <asm/uaccess.h> // copy_(from|to)_user
#include <linux/compat.h>
#include <linux/compiler.h>
#include <linux/delay.h> // mdelay
#include <linux/init.h>
#include <linux/interrupt.h> // for tasklets
#include <linux/ioctl32.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kobject_uevent.h>
#include <linux/proc_fs.h>
#include <linux/syscalls.h>
#include "z90crypt.h"
#include "z90common.h"
#define VERSION_Z90MAIN_C "$Revision: 1.62 $"
static char z90main_version[] __initdata =
"z90main.o (" VERSION_Z90MAIN_C "/"
VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")";
extern char z90hardware_version[];
/**
* Defaults that may be modified.
*/
/**
* You can specify a different minor at compile time.
*/
#ifndef Z90CRYPT_MINOR
#define Z90CRYPT_MINOR MISC_DYNAMIC_MINOR
#endif
/**
* You can specify a different domain at compile time or on the insmod
* command line.
*/
#ifndef DOMAIN_INDEX
#define DOMAIN_INDEX -1
#endif
/**
* This is the name under which the device is registered in /proc/modules.
*/
#define REG_NAME "z90crypt"
/**
* Cleanup should run every CLEANUPTIME seconds and should clean up requests
* older than CLEANUPTIME seconds in the past.
*/
#ifndef CLEANUPTIME
#define CLEANUPTIME 15
#endif
/**
* Config should run every CONFIGTIME seconds
*/
#ifndef CONFIGTIME
#define CONFIGTIME 30
#endif
/**
* The first execution of the config task should take place
* immediately after initialization
*/
#ifndef INITIAL_CONFIGTIME
#define INITIAL_CONFIGTIME 1
#endif
/**
* Reader should run every READERTIME milliseconds
* With the 100Hz patch for s390, z90crypt can lock the system solid while
* under heavy load. We'll try to avoid that.
*/
#ifndef READERTIME
#if HZ > 1000
#define READERTIME 2
#else
#define READERTIME 10
#endif
#endif
/**
* turn long device array index into device pointer
*/
#define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
/**
* turn short device array index into long device array index
*/
#define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
/**
* turn short device array index into device pointer
*/
#define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
/**
* Status for a work-element
*/
#define STAT_DEFAULT 0x00 // request has not been processed
#define STAT_ROUTED 0x80 // bit 7: requests get routed to specific device
// else, device is determined each write
#define STAT_FAILED 0x40 // bit 6: this bit is set if the request failed
// before being sent to the hardware.
#define STAT_WRITTEN 0x30 // bits 5-4: work to be done, not sent to device
// 0x20 // UNUSED state
#define STAT_READPEND 0x10 // bits 5-4: work done, we're returning data now
#define STAT_NOWORK 0x00 // bits off: no work on any queue
#define STAT_RDWRMASK 0x30 // mask for bits 5-4
/**
* Macros to check the status RDWRMASK
*/
#define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
#define SET_RDWRMASK(statbyte, newval) \
{(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
/**
* Audit Trail. Progress of a Work element
* audit[0]: Unless noted otherwise, these bits are all set by the process
*/
#define FP_COPYFROM 0x80 // Caller's buffer has been copied to work element
#define FP_BUFFREQ 0x40 // Low Level buffer requested
#define FP_BUFFGOT 0x20 // Low Level buffer obtained
#define FP_SENT 0x10 // Work element sent to a crypto device
// (may be set by process or by reader task)
#define FP_PENDING 0x08 // Work element placed on pending queue
// (may be set by process or by reader task)
#define FP_REQUEST 0x04 // Work element placed on request queue
#define FP_ASLEEP 0x02 // Work element about to sleep
#define FP_AWAKE 0x01 // Work element has been awakened
/**
* audit[1]: These bits are set by the reader task and/or the cleanup task
*/
#define FP_NOTPENDING 0x80 // Work element removed from pending queue
#define FP_AWAKENING 0x40 // Caller about to be awakened
#define FP_TIMEDOUT 0x20 // Caller timed out
#define FP_RESPSIZESET 0x10 // Response size copied to work element
#define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
#define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
#define FP_REMREQUEST 0x02 // Work element removed from request queue
#define FP_SIGNALED 0x01 // Work element was awakened by a signal
/**
* audit[2]: unused
*/
/**
* state of the file handle in private_data.status
*/
#define STAT_OPEN 0
#define STAT_CLOSED 1
/**
* PID() expands to the process ID of the current process
*/
#define PID() (current->pid)
/**
* Selected Constants. The number of APs and the number of devices
*/
#ifndef Z90CRYPT_NUM_APS
#define Z90CRYPT_NUM_APS 64
#endif
#ifndef Z90CRYPT_NUM_DEVS
#define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
#endif
/**
* Buffer size for receiving responses. The maximum Response Size
* is actually the maximum request size, since in an error condition
* the request itself may be returned unchanged.
*/
#define MAX_RESPONSE_SIZE 0x0000077C
/**
* A count and status-byte mask
*/
struct status {
int st_count; // # of enabled devices
int disabled_count; // # of disabled devices
int user_disabled_count; // # of devices disabled via proc fs
unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
};
/**
* The array of device indexes is a mechanism for fast indexing into
* a long (and sparse) array. For instance, if APs 3, 9 and 47 are
* installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
* z90CDeviceIndex[2] is 47.
*/
struct device_x {
int device_index[Z90CRYPT_NUM_DEVS];
};
/**
* All devices are arranged in a single array: 64 APs
*/
struct device {
int dev_type; // PCICA, PCICC, PCIXCC_MCL2,
// PCIXCC_MCL3, CEX2C
enum devstat dev_stat; // current device status
int dev_self_x; // Index in array
int disabled; // Set when device is in error
int user_disabled; // Set when device is disabled by user
int dev_q_depth; // q depth
unsigned char * dev_resp_p; // Response buffer address
int dev_resp_l; // Response Buffer length
int dev_caller_count; // Number of callers
int dev_total_req_cnt; // # requests for device since load
struct list_head dev_caller_list; // List of callers
};
/**
* There's a struct status and a struct device_x for each device type.
*/
struct hdware_block {
struct status hdware_mask;
struct status type_mask[Z90CRYPT_NUM_TYPES];
struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
unsigned char device_type_array[Z90CRYPT_NUM_APS];
};
/**
* z90crypt is the topmost data structure in the hierarchy.
*/
struct z90crypt {
int max_count; // Nr of possible crypto devices
struct status mask;
int q_depth_array[Z90CRYPT_NUM_DEVS];
int dev_type_array[Z90CRYPT_NUM_DEVS];
struct device_x overall_device_x; // array device indexes
struct device * device_p[Z90CRYPT_NUM_DEVS];
int terminating;
int domain_established;// TRUE: domain has been found
int cdx; // Crypto Domain Index
int len; // Length of this data structure
struct hdware_block *hdware_info;
};
/**
* An array of these structures is pointed to from dev_caller
* The length of the array depends on the device type. For APs,
* there are 8.
*
* The caller buffer is allocated to the user at OPEN. At WRITE,
* it contains the request; at READ, the response. The function
* send_to_crypto_device converts the request to device-dependent
* form and use the caller's OPEN-allocated buffer for the response.
*
* For the contents of caller_dev_dep_req and caller_dev_dep_req_p
* because that points to it, see the discussion in z90hardware.c.
* Search for "extended request message block".
*/
struct caller {
int caller_buf_l; // length of original request
unsigned char * caller_buf_p; // Original request on WRITE
int caller_dev_dep_req_l; // len device dependent request
unsigned char * caller_dev_dep_req_p; // Device dependent form
unsigned char caller_id[8]; // caller-supplied message id
struct list_head caller_liste;
unsigned char caller_dev_dep_req[MAX_RESPONSE_SIZE];
};
/**
* Function prototypes from z90hardware.c
*/
enum hdstat query_online(int, int, int, int *, int *);
enum devstat reset_device(int, int, int);
enum devstat send_to_AP(int, int, int, unsigned char *);
enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *);
int convert_request(unsigned char *, int, short, int, int, int *,
unsigned char *);
int convert_response(unsigned char *, unsigned char *, int *, unsigned char *);
/**
* Low level function prototypes
*/
static int create_z90crypt(int *);
static int refresh_z90crypt(int *);
static int find_crypto_devices(struct status *);
static int create_crypto_device(int);
static int destroy_crypto_device(int);
static void destroy_z90crypt(void);
static int refresh_index_array(struct status *, struct device_x *);
static int probe_device_type(struct device *);
static int probe_PCIXCC_type(struct device *);
/**
* proc fs definitions
*/
static struct proc_dir_entry *z90crypt_entry;
/**
* data structures
*/
/**
* work_element.opener points back to this structure
*/
struct priv_data {
pid_t opener_pid;
unsigned char status; // 0: open 1: closed
};
/**
* A work element is allocated for each request
*/
struct work_element {
struct priv_data *priv_data;
pid_t pid;
int devindex; // index of device processing this w_e
// (If request did not specify device,
// -1 until placed onto a queue)
int devtype;
struct list_head liste; // used for requestq and pendingq
char buffer[128]; // local copy of user request
int buff_size; // size of the buffer for the request
char resp_buff[RESPBUFFSIZE];
int resp_buff_size;
char __user * resp_addr; // address of response in user space
unsigned int funccode; // function code of request
wait_queue_head_t waitq;
unsigned long requestsent; // time at which the request was sent
atomic_t alarmrung; // wake-up signal
unsigned char caller_id[8]; // pid + counter, for this w_e
unsigned char status[1]; // bits to mark status of the request
unsigned char audit[3]; // record of work element's progress
unsigned char * requestptr; // address of request buffer
int retcode; // return code of request
};
/**
* High level function prototypes
*/
static int z90crypt_open(struct inode *, struct file *);
static int z90crypt_release(struct inode *, struct file *);
static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
static ssize_t z90crypt_write(struct file *, const char __user *,
size_t, loff_t *);
static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
static void z90crypt_reader_task(unsigned long);
static void z90crypt_schedule_reader_task(unsigned long);
static void z90crypt_config_task(unsigned long);
static void z90crypt_cleanup_task(unsigned long);
static int z90crypt_status(char *, char **, off_t, int, int *, void *);
static int z90crypt_status_write(struct file *, const char __user *,
unsigned long, void *);
/**
* Storage allocated at initialization and used throughout the life of
* this insmod
*/
static int domain = DOMAIN_INDEX;
static struct z90crypt z90crypt;
static int quiesce_z90crypt;
static spinlock_t queuespinlock;
static struct list_head request_list;
static int requestq_count;
static struct list_head pending_list;
static int pendingq_count;
static struct tasklet_struct reader_tasklet;
static struct timer_list reader_timer;
static struct timer_list config_timer;
static struct timer_list cleanup_timer;
static atomic_t total_open;
static atomic_t z90crypt_step;
static struct file_operations z90crypt_fops = {
.owner = THIS_MODULE,
.read = z90crypt_read,
.write = z90crypt_write,
.unlocked_ioctl = z90crypt_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = z90crypt_compat_ioctl,
#endif
.open = z90crypt_open,
.release = z90crypt_release
};
static struct miscdevice z90crypt_misc_device = {
.minor = Z90CRYPT_MINOR,
.name = DEV_NAME,
.fops = &z90crypt_fops,
.devfs_name = DEV_NAME
};
/**
* Documentation values.
*/
MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
"and Jochen Roehrig");
MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
"Copyright 2001, 2004 IBM Corporation");
MODULE_LICENSE("GPL");
module_param(domain, int, 0);
MODULE_PARM_DESC(domain, "domain index for device");
#ifdef CONFIG_COMPAT
/**
* ioctl32 conversion routines
*/
struct ica_rsa_modexpo_32 { // For 32-bit callers
compat_uptr_t inputdata;
unsigned int inputdatalength;
compat_uptr_t outputdata;
unsigned int outputdatalength;
compat_uptr_t b_key;
compat_uptr_t n_modulus;
};
static long
trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
struct ica_rsa_modexpo_32 mex32k;
struct ica_rsa_modexpo __user *mex64;
long ret = 0;
unsigned int i;
if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
return -EFAULT;
mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
return -EFAULT;
if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
return -EFAULT;
if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata) ||
__put_user(mex32k.inputdatalength, &mex64->inputdatalength) ||
__put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
__put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
__put_user(compat_ptr(mex32k.b_key), &mex64->b_key) ||
__put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
return -EFAULT;
ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
if (!ret)
if (__get_user(i, &mex64->outputdatalength) ||
__put_user(i, &mex32u->outputdatalength))
ret = -EFAULT;
return ret;
}
struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
compat_uptr_t inputdata;
unsigned int inputdatalength;
compat_uptr_t outputdata;
unsigned int outputdatalength;
compat_uptr_t bp_key;
compat_uptr_t bq_key;
compat_uptr_t np_prime;
compat_uptr_t nq_prime;
compat_uptr_t u_mult_inv;
};
static long
trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
struct ica_rsa_modexpo_crt_32 crt32k;
struct ica_rsa_modexpo_crt __user *crt64;
long ret = 0;
unsigned int i;
if (!access_ok(VERIFY_WRITE, crt32u,
sizeof(struct ica_rsa_modexpo_crt_32)))
return -EFAULT;
crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
return -EFAULT;
if (copy_from_user(&crt32k, crt32u,
sizeof(struct ica_rsa_modexpo_crt_32)))
return -EFAULT;
if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata) ||
__put_user(crt32k.inputdatalength, &crt64->inputdatalength) ||
__put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
__put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
__put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key) ||
__put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key) ||
__put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime) ||
__put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime) ||
__put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
return -EFAULT;
ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
if (!ret)
if (__get_user(i, &crt64->outputdatalength) ||
__put_user(i, &crt32u->outputdatalength))
ret = -EFAULT;
return ret;
}
static long
z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case ICAZ90STATUS:
case Z90QUIESCE:
case Z90STAT_TOTALCOUNT:
case Z90STAT_PCICACOUNT:
case Z90STAT_PCICCCOUNT:
case Z90STAT_PCIXCCCOUNT:
case Z90STAT_PCIXCCMCL2COUNT:
case Z90STAT_PCIXCCMCL3COUNT:
case Z90STAT_CEX2CCOUNT:
case Z90STAT_REQUESTQ_COUNT:
case Z90STAT_PENDINGQ_COUNT:
case Z90STAT_TOTALOPEN_COUNT:
case Z90STAT_DOMAIN_INDEX:
case Z90STAT_STATUS_MASK:
case Z90STAT_QDEPTH_MASK:
case Z90STAT_PERDEV_REQCNT:
return z90crypt_unlocked_ioctl(filp, cmd, arg);
case ICARSAMODEXPO:
return trans_modexpo32(filp, cmd, arg);
case ICARSACRT:
return trans_modexpo_crt32(filp, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
#endif
/**
* The module initialization code.
*/
static int __init
z90crypt_init_module(void)
{
int result, nresult;
struct proc_dir_entry *entry;
PDEBUG("PID %d\n", PID());
if ((domain < -1) || (domain > 15)) {
PRINTKW("Invalid param: domain = %d. Not loading.\n", domain);
return -EINVAL;
}
/* Register as misc device with given minor (or get a dynamic one). */
result = misc_register(&z90crypt_misc_device);
if (result < 0) {
PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
z90crypt_misc_device.minor, result);
return result;
}
PDEBUG("Registered " DEV_NAME " with result %d\n", result);
result = create_z90crypt(&domain);
if (result != 0) {
PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
domain, result);
result = -ENOMEM;
goto init_module_cleanup;
}
if (result == 0) {
PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
__DATE__, __TIME__);
PRINTKN("%s\n", z90main_version);
PRINTKN("%s\n", z90hardware_version);
PDEBUG("create_z90crypt (domain index %d) successful.\n",
domain);
} else
PRINTK("No devices at startup\n");
/* Initialize globals. */
spin_lock_init(&queuespinlock);
INIT_LIST_HEAD(&pending_list);
pendingq_count = 0;
INIT_LIST_HEAD(&request_list);
requestq_count = 0;
quiesce_z90crypt = 0;
atomic_set(&total_open, 0);
atomic_set(&z90crypt_step, 0);
/* Set up the cleanup task. */
init_timer(&cleanup_timer);
cleanup_timer.function = z90crypt_cleanup_task;
cleanup_timer.data = 0;
cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
add_timer(&cleanup_timer);
/* Set up the proc file system */
entry = create_proc_entry("driver/z90crypt", 0644, 0);
if (entry) {
entry->nlink = 1;
entry->data = 0;
entry->read_proc = z90crypt_status;
entry->write_proc = z90crypt_status_write;
}
else
PRINTK("Couldn't create z90crypt proc entry\n");
z90crypt_entry = entry;
/* Set up the configuration task. */
init_timer(&config_timer);
config_timer.function = z90crypt_config_task;
config_timer.data = 0;
config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
add_timer(&config_timer);
/* Set up the reader task */
tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
init_timer(&reader_timer);
reader_timer.function = z90crypt_schedule_reader_task;
reader_timer.data = 0;
reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
add_timer(&reader_timer);
return 0; // success
init_module_cleanup:
if ((nresult = misc_deregister(&z90crypt_misc_device)))
PRINTK("misc_deregister failed with %d.\n", nresult);
else
PDEBUG("misc_deregister successful.\n");
return result; // failure
}
/**
* The module termination code
*/
static void __exit
z90crypt_cleanup_module(void)
{
int nresult;
PDEBUG("PID %d\n", PID());
remove_proc_entry("driver/z90crypt", 0);
if ((nresult = misc_deregister(&z90crypt_misc_device)))
PRINTK("misc_deregister failed with %d.\n", nresult);
else
PDEBUG("misc_deregister successful.\n");
/* Remove the tasks */
tasklet_kill(&reader_tasklet);
del_timer(&reader_timer);
del_timer(&config_timer);
del_timer(&cleanup_timer);
destroy_z90crypt();
PRINTKN("Unloaded.\n");
}
/**
* Functions running under a process id
*
* The I/O functions:
* z90crypt_open
* z90crypt_release
* z90crypt_read
* z90crypt_write
* z90crypt_unlocked_ioctl
* z90crypt_status
* z90crypt_status_write
* disable_card
* enable_card
*
* Helper functions:
* z90crypt_rsa
* z90crypt_prepare
* z90crypt_send
* z90crypt_process_results
*
*/
static int
z90crypt_open(struct inode *inode, struct file *filp)
{
struct priv_data *private_data_p;
if (quiesce_z90crypt)
return -EQUIESCE;
private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
if (!private_data_p) {
PRINTK("Memory allocate failed\n");
return -ENOMEM;
}
memset((void *)private_data_p, 0, sizeof(struct priv_data));
private_data_p->status = STAT_OPEN;
private_data_p->opener_pid = PID();
filp->private_data = private_data_p;
atomic_inc(&total_open);
return 0;
}
static int
z90crypt_release(struct inode *inode, struct file *filp)
{
struct priv_data *private_data_p = filp->private_data;
PDEBUG("PID %d (filp %p)\n", PID(), filp);
private_data_p->status = STAT_CLOSED;
memset(private_data_p, 0, sizeof(struct priv_data));
kfree(private_data_p);
atomic_dec(&total_open);
return 0;
}
/*
* there are two read functions, of which compile options will choose one
* without USE_GET_RANDOM_BYTES
* => read() always returns -EPERM;
* otherwise
* => read() uses get_random_bytes() kernel function
*/
#ifndef USE_GET_RANDOM_BYTES
/**
* z90crypt_read will not be supported beyond z90crypt 1.3.1
*/
static ssize_t
z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
PDEBUG("filp %p (PID %d)\n", filp, PID());
return -EPERM;
}
#else // we want to use get_random_bytes
/**
* read() just returns a string of random bytes. Since we have no way
* to generate these cryptographically, we just execute get_random_bytes
* for the length specified.
*/
#include <linux/random.h>
static ssize_t
z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
unsigned char *temp_buff;
PDEBUG("filp %p (PID %d)\n", filp, PID());
if (quiesce_z90crypt)
return -EQUIESCE;
if (count < 0) {
PRINTK("Requested random byte count negative: %ld\n", count);
return -EINVAL;
}
if (count > RESPBUFFSIZE) {
PDEBUG("count[%d] > RESPBUFFSIZE", count);
return -EINVAL;
}
if (count == 0)
return 0;
temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
if (!temp_buff) {
PRINTK("Memory allocate failed\n");
return -ENOMEM;
}
get_random_bytes(temp_buff, count);
if (copy_to_user(buf, temp_buff, count) != 0) {
kfree(temp_buff);
return -EFAULT;
}
kfree(temp_buff);
return count;
}
#endif
/**
* Write is is not allowed
*/
static ssize_t
z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
PDEBUG("filp %p (PID %d)\n", filp, PID());
return -EPERM;
}
/**
* New status functions
*/
static inline int
get_status_totalcount(void)
{
return z90crypt.hdware_info->hdware_mask.st_count;
}
static inline int
get_status_PCICAcount(void)
{
return z90crypt.hdware_info->type_mask[PCICA].st_count;
}
static inline int
get_status_PCICCcount(void)
{
return z90crypt.hdware_info->type_mask[PCICC].st_count;
}
static inline int
get_status_PCIXCCcount(void)
{
return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
}
static inline int
get_status_PCIXCCMCL2count(void)
{
return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
}
static inline int
get_status_PCIXCCMCL3count(void)
{
return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
}
static inline int
get_status_CEX2Ccount(void)
{
return z90crypt.hdware_info->type_mask[CEX2C].st_count;
}
static inline int
get_status_requestq_count(void)
{
return requestq_count;
}
static inline int
get_status_pendingq_count(void)
{
return pendingq_count;
}
static inline int
get_status_totalopen_count(void)
{
return atomic_read(&total_open);
}
static inline int
get_status_domain_index(void)
{
return z90crypt.cdx;
}
static inline unsigned char *
get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
{
int i, ix;
memcpy(status, z90crypt.hdware_info->device_type_array,
Z90CRYPT_NUM_APS);
for (i = 0; i < get_status_totalcount(); i++) {
ix = SHRT2LONG(i);
if (LONG2DEVPTR(ix)->user_disabled)
status[ix] = 0x0d;
}
return status;
}
static inline unsigned char *
get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
{
int i, ix;
memset(qdepth, 0, Z90CRYPT_NUM_APS);
for (i = 0; i < get_status_totalcount(); i++) {
ix = SHRT2LONG(i);
qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
}
return qdepth;
}
static inline unsigned int *
get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
{
int i, ix;
memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
for (i = 0; i < get_status_totalcount(); i++) {
ix = SHRT2LONG(i);
reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
}
return reqcnt;
}
static inline void
init_work_element(struct work_element *we_p,
struct priv_data *priv_data, pid_t pid)
{
int step;
we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
/* Come up with a unique id for this caller. */
step = atomic_inc_return(&z90crypt_step);
memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
we_p->pid = pid;
we_p->priv_data = priv_data;
we_p->status[0] = STAT_DEFAULT;
we_p->audit[0] = 0x00;
we_p->audit[1] = 0x00;
we_p->audit[2] = 0x00;
we_p->resp_buff_size = 0;
we_p->retcode = 0;
we_p->devindex = -1;
we_p->devtype = -1;
atomic_set(&we_p->alarmrung, 0);
init_waitqueue_head(&we_p->waitq);
INIT_LIST_HEAD(&(we_p->liste));
}
static inline int
allocate_work_element(struct work_element **we_pp,
struct priv_data *priv_data_p, pid_t pid)
{
struct work_element *we_p;
we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
if (!we_p)
return -ENOMEM;
init_work_element(we_p, priv_data_p, pid);
*we_pp = we_p;
return 0;
}
static inline void
remove_device(struct device *device_p)
{
if (!device_p || (device_p->disabled != 0))
return;
device_p->disabled = 1;
z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
z90crypt.hdware_info->hdware_mask.disabled_count++;
}
/**
* Bitlength limits for each card
*
* There are new MCLs which allow more bitlengths. See the table for details.
* The MCL must be applied and the newer bitlengths enabled for these to work.
*
* Card Type Old limit New limit
* PCICA ??-2048 same (the lower limit is less than 128 bit...)
* PCICC 512-1024 512-2048
* PCIXCC_MCL2 512-2048 ----- (applying any GA LIC will make an MCL3 card)
* PCIXCC_MCL3 ----- 128-2048
* CEX2C 512-2048 128-2048
*
* ext_bitlens (extended bitlengths) is a global, since you should not apply an
* MCL to just one card in a machine. We assume, at first, that all cards have
* these capabilities.
*/
int ext_bitlens = 1; // This is global
#define PCIXCC_MIN_MOD_SIZE 16 // 128 bits
#define OLD_PCIXCC_MIN_MOD_SIZE 64 // 512 bits
#define PCICC_MIN_MOD_SIZE 64 // 512 bits
#define OLD_PCICC_MAX_MOD_SIZE 128 // 1024 bits
#define MAX_MOD_SIZE 256 // 2048 bits
static inline int
select_device_type(int *dev_type_p, int bytelength)
{
static int count = 0;
int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use;
struct status *stat;
if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
(*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
(*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV))
return -1;
if (*dev_type_p != ANYDEV) {
stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
if (stat->st_count >
(stat->disabled_count + stat->user_disabled_count))
return 0;
return -1;
}
/* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */
stat = &z90crypt.hdware_info->type_mask[PCICA];
PCICA_avail = stat->st_count -
(stat->disabled_count + stat->user_disabled_count);
stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
PCIXCC_MCL3_avail = stat->st_count -
(stat->disabled_count + stat->user_disabled_count);
stat = &z90crypt.hdware_info->type_mask[CEX2C];
CEX2C_avail = stat->st_count -
(stat->disabled_count + stat->user_disabled_count);
if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) {
/**
* bitlength is a factor, PCICA is the most capable, even with
* the new MCL for PCIXCC.
*/
if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
(!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
if (!PCICA_avail)
return -1;
else {
*dev_type_p = PCICA;
return 0;
}
}
index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
CEX2C_avail);
if (index_to_use < PCICA_avail)
*dev_type_p = PCICA;
else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
*dev_type_p = PCIXCC_MCL3;
else
*dev_type_p = CEX2C;
count++;
return 0;
}
/* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
return -1;
stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
if (stat->st_count >
(stat->disabled_count + stat->user_disabled_count)) {
*dev_type_p = PCIXCC_MCL2;
return 0;
}
/**
* Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
* (if we don't have the MCL applied and the newer bitlengths enabled)
* cannot go to a PCICC
*/
if ((bytelength < PCICC_MIN_MOD_SIZE) ||
(!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
return -1;
}
stat = &z90crypt.hdware_info->type_mask[PCICC];
if (stat->st_count >
(stat->disabled_count + stat->user_disabled_count)) {
*dev_type_p = PCICC;
return 0;
}
return -1;
}
/**
* Try the selected number, then the selected type (can be ANYDEV)
*/
static inline int
select_device(int *dev_type_p, int *device_nr_p, int bytelength)
{
int i, indx, devTp, low_count, low_indx;
struct device_x *index_p;
struct device *dev_ptr;
PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
PDEBUG("trying index = %d\n", *device_nr_p);
dev_ptr = z90crypt.device_p[*device_nr_p];
if (dev_ptr &&
(dev_ptr->dev_stat != DEV_GONE) &&
(dev_ptr->disabled == 0) &&
(dev_ptr->user_disabled == 0)) {
PDEBUG("selected by number, index = %d\n",
*device_nr_p);
*dev_type_p = dev_ptr->dev_type;
return *device_nr_p;
}
}
*device_nr_p = -1;
PDEBUG("trying type = %d\n", *dev_type_p);
devTp = *dev_type_p;
if (select_device_type(&devTp, bytelength) == -1) {
PDEBUG("failed to select by type\n");
return -1;
}
PDEBUG("selected type = %d\n", devTp);
index_p = &z90crypt.hdware_info->type_x_addr[devTp];
low_count = 0x0000FFFF;
low_indx = -1;
for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
indx = index_p->device_index[i];
dev_ptr = z90crypt.device_p[indx];
if (dev_ptr &&
(dev_ptr->dev_stat != DEV_GONE) &&
(dev_ptr->disabled == 0) &&
(dev_ptr->user_disabled == 0) &&
(devTp == dev_ptr->dev_type) &&
(low_count > dev_ptr->dev_caller_count)) {
low_count = dev_ptr->dev_caller_count;
low_indx = indx;
}
}
*device_nr_p = low_indx;
return low_indx;
}
static inline int
send_to_crypto_device(struct work_element *we_p)
{
struct caller *caller_p;
struct device *device_p;
int dev_nr;
int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
if (!we_p->requestptr)
return SEN_FATAL_ERROR;
caller_p = (struct caller *)we_p->requestptr;
dev_nr = we_p->devindex;
if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
if (z90crypt.hdware_info->hdware_mask.st_count != 0)
return SEN_RETRY;
else
return SEN_NOT_AVAIL;
}
we_p->devindex = dev_nr;
device_p = z90crypt.device_p[dev_nr];
if (!device_p)
return SEN_NOT_AVAIL;
if (device_p->dev_type != we_p->devtype)
return SEN_RETRY;
if (device_p->dev_caller_count >= device_p->dev_q_depth)
return SEN_QUEUE_FULL;
PDEBUG("device number prior to send: %d\n", dev_nr);
switch (send_to_AP(dev_nr, z90crypt.cdx,
caller_p->caller_dev_dep_req_l,
caller_p->caller_dev_dep_req_p)) {
case DEV_SEN_EXCEPTION:
PRINTKC("Exception during send to device %d\n", dev_nr);
z90crypt.terminating = 1;
return SEN_FATAL_ERROR;
case DEV_GONE:
PRINTK("Device %d not available\n", dev_nr);
remove_device(device_p);
return SEN_NOT_AVAIL;
case DEV_EMPTY:
return SEN_NOT_AVAIL;
case DEV_NO_WORK:
return SEN_FATAL_ERROR;
case DEV_BAD_MESSAGE:
return SEN_USER_ERROR;
case DEV_QUEUE_FULL:
return SEN_QUEUE_FULL;
default:
case DEV_ONLINE:
break;
}
list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
device_p->dev_caller_count++;
return 0;
}
/**
* Send puts the user's work on one of two queues:
* the pending queue if the send was successful
* the request queue if the send failed because device full or busy
*/
static inline int
z90crypt_send(struct work_element *we_p, const char *buf)
{
int rv;
PDEBUG("PID %d\n", PID());
if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
PDEBUG("PID %d tried to send more work but has outstanding "
"work.\n", PID());
return -EWORKPEND;
}
we_p->devindex = -1; // Reset device number
spin_lock_irq(&queuespinlock);
rv = send_to_crypto_device(we_p);
switch (rv) {
case 0:
we_p->requestsent = jiffies;
we_p->audit[0] |= FP_SENT;
list_add_tail(&we_p->liste, &pending_list);
++pendingq_count;
we_p->audit[0] |= FP_PENDING;
break;
case SEN_BUSY:
case SEN_QUEUE_FULL:
rv = 0;
we_p->devindex = -1; // any device will do
we_p->requestsent = jiffies;
list_add_tail(&we_p->liste, &request_list);
++requestq_count;
we_p->audit[0] |= FP_REQUEST;
break;
case SEN_RETRY:
rv = -ERESTARTSYS;
break;
case SEN_NOT_AVAIL:
PRINTK("*** No devices available.\n");
rv = we_p->retcode = -ENODEV;
we_p->status[0] |= STAT_FAILED;
break;
case REC_OPERAND_INV:
case REC_OPERAND_SIZE:
case REC_EVEN_MOD:
case REC_INVALID_PAD:
rv = we_p->retcode = -EINVAL;
we_p->status[0] |= STAT_FAILED;
break;
default:
we_p->retcode = rv;
we_p->status[0] |= STAT_FAILED;
break;
}
if (rv != -ERESTARTSYS)
SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
spin_unlock_irq(&queuespinlock);
if (rv == 0)
tasklet_schedule(&reader_tasklet);
return rv;
}
/**
* process_results copies the user's work from kernel space.
*/
static inline int
z90crypt_process_results(struct work_element *we_p, char __user *buf)
{
int rv;
PDEBUG("we_p %p (PID %d)\n", we_p, PID());
LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
SET_RDWRMASK(we_p->status[0], STAT_READPEND);
rv = 0;
if (!we_p->buffer) {
PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
we_p, PID());
rv = -ENOBUFF;
}
if (!rv)
if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
PDEBUG("copy_to_user failed: rv = %d\n", rv);
rv = -EFAULT;
}
if (!rv)
rv = we_p->retcode;
if (!rv)
if (we_p->resp_buff_size
&& copy_to_user(we_p->resp_addr, we_p->resp_buff,
we_p->resp_buff_size))
rv = -EFAULT;
SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
return rv;
}
static unsigned char NULL_psmid[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
/**
* Used in device configuration functions
*/
#define MAX_RESET 90
/**
* This is used only for PCICC support
*/
static inline int
is_PKCS11_padded(unsigned char *buffer, int length)
{
int i;
if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
return 0;
for (i = 2; i < length; i++)
if (buffer[i] != 0xFF)
break;
if ((i < 10) || (i == length))
return 0;
if (buffer[i] != 0x00)
return 0;
return 1;
}
/**
* This is used only for PCICC support
*/
static inline int
is_PKCS12_padded(unsigned char *buffer, int length)
{
int i;
if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
return 0;
for (i = 2; i < length; i++)
if (buffer[i] == 0x00)
break;
if ((i < 10) || (i == length))
return 0;
if (buffer[i] != 0x00)
return 0;
return 1;
}
/**
* builds struct caller and converts message from generic format to
* device-dependent format
* func is ICARSAMODEXPO or ICARSACRT
* function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
*/
static inline int
build_caller(struct work_element *we_p, short function)
{
int rv;
struct caller *caller_p = (struct caller *)we_p->requestptr;
if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
(we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
(we_p->devtype != CEX2C))
return SEN_NOT_AVAIL;
memcpy(caller_p->caller_id, we_p->caller_id,
sizeof(caller_p->caller_id));
caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
caller_p->caller_buf_p = we_p->buffer;
INIT_LIST_HEAD(&(caller_p->caller_liste));
rv = convert_request(we_p->buffer, we_p->funccode, function,
z90crypt.cdx, we_p->devtype,
&caller_p->caller_dev_dep_req_l,
caller_p->caller_dev_dep_req_p);
if (rv) {
if (rv == SEN_NOT_AVAIL)
PDEBUG("request can't be processed on hdwr avail\n");
else
PRINTK("Error from convert_request: %d\n", rv);
}
else
memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
return rv;
}
static inline void
unbuild_caller(struct device *device_p, struct caller *caller_p)
{
if (!caller_p)
return;
if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
if (!list_empty(&caller_p->caller_liste)) {
list_del_init(&caller_p->caller_liste);
device_p->dev_caller_count--;
}
memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
}
static inline int
get_crypto_request_buffer(struct work_element *we_p)
{
struct ica_rsa_modexpo *mex_p;
struct ica_rsa_modexpo_crt *crt_p;
unsigned char *temp_buffer;
short function;
int rv;
mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
PDEBUG("device type input = %d\n", we_p->devtype);
if (z90crypt.terminating)
return REC_NO_RESPONSE;
if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
PRINTK("psmid zeroes\n");
return SEN_FATAL_ERROR;
}
if (!we_p->buffer) {
PRINTK("buffer pointer NULL\n");
return SEN_USER_ERROR;
}
if (!we_p->requestptr) {
PRINTK("caller pointer NULL\n");
return SEN_USER_ERROR;
}
if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
(we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
(we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) {
PRINTK("invalid device type\n");
return SEN_USER_ERROR;
}
if ((mex_p->inputdatalength < 1) ||
(mex_p->inputdatalength > MAX_MOD_SIZE)) {
PRINTK("inputdatalength[%d] is not valid\n",
mex_p->inputdatalength);
return SEN_USER_ERROR;
}
if (mex_p->outputdatalength < mex_p->inputdatalength) {
PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
mex_p->outputdatalength, mex_p->inputdatalength);
return SEN_USER_ERROR;
}
if (!mex_p->inputdata || !mex_p->outputdata) {
PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
mex_p->outputdata, mex_p->inputdata);
return SEN_USER_ERROR;
}
/**
* As long as outputdatalength is big enough, we can set the
* outputdatalength equal to the inputdatalength, since that is the
* number of bytes we will copy in any case
*/
mex_p->outputdatalength = mex_p->inputdatalength;
rv = 0;
switch (we_p->funccode) {
case ICARSAMODEXPO:
if (!mex_p->b_key || !mex_p->n_modulus)
rv = SEN_USER_ERROR;
break;
case ICARSACRT:
if (!IS_EVEN(crt_p->inputdatalength)) {
PRINTK("inputdatalength[%d] is odd, CRT form\n",
crt_p->inputdatalength);
rv = SEN_USER_ERROR;
break;
}
if (!crt_p->bp_key ||
!crt_p->bq_key ||
!crt_p->np_prime ||
!crt_p->nq_prime ||
!crt_p->u_mult_inv) {
PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
crt_p->bp_key, crt_p->bq_key,
crt_p->np_prime, crt_p->nq_prime,
crt_p->u_mult_inv);
rv = SEN_USER_ERROR;
}
break;
default:
PRINTK("bad func = %d\n", we_p->funccode);
rv = SEN_USER_ERROR;
break;
}
if (rv != 0)
return rv;
if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
return SEN_NOT_AVAIL;
temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
sizeof(struct caller);
if (copy_from_user(temp_buffer, mex_p->inputdata,
mex_p->inputdatalength) != 0)
return SEN_RELEASED;
function = PCI_FUNC_KEY_ENCRYPT;
switch (we_p->devtype) {
/* PCICA does everything with a simple RSA mod-expo operation */
case PCICA:
function = PCI_FUNC_KEY_ENCRYPT;
break;
/**
* PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
* operation, and all CRT forms with a PKCS-1.2 format decrypt.
* PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
* mod-expo operation
*/
case PCIXCC_MCL2:
if (we_p->funccode == ICARSAMODEXPO)
function = PCI_FUNC_KEY_ENCRYPT;
else
function = PCI_FUNC_KEY_DECRYPT;
break;
case PCIXCC_MCL3:
case CEX2C:
if (we_p->funccode == ICARSAMODEXPO)
function = PCI_FUNC_KEY_ENCRYPT;
else
function = PCI_FUNC_KEY_DECRYPT;
break;
/**
* PCICC does everything as a PKCS-1.2 format request
*/
case PCICC:
/* PCICC cannot handle input that is is PKCS#1.1 padded */
if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
return SEN_NOT_AVAIL;
}
if (we_p->funccode == ICARSAMODEXPO) {
if (is_PKCS12_padded(temp_buffer,
mex_p->inputdatalength))
function = PCI_FUNC_KEY_ENCRYPT;
else
function = PCI_FUNC_KEY_DECRYPT;
} else
/* all CRT forms are decrypts */
function = PCI_FUNC_KEY_DECRYPT;
break;
}
PDEBUG("function: %04x\n", function);
rv = build_caller(we_p, function);
PDEBUG("rv from build_caller = %d\n", rv);
return rv;
}
static inline int
z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
const char __user *buffer)
{
int rv;
we_p->devindex = -1;
if (funccode == ICARSAMODEXPO)
we_p->buff_size = sizeof(struct ica_rsa_modexpo);
else
we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
return -EFAULT;
we_p->audit[0] |= FP_COPYFROM;
SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
we_p->funccode = funccode;
we_p->devtype = -1;
we_p->audit[0] |= FP_BUFFREQ;
rv = get_crypto_request_buffer(we_p);
switch (rv) {
case 0:
we_p->audit[0] |= FP_BUFFGOT;
break;
case SEN_USER_ERROR:
rv = -EINVAL;
break;
case SEN_QUEUE_FULL:
rv = 0;
break;
case SEN_RELEASED:
rv = -EFAULT;
break;
case REC_NO_RESPONSE:
rv = -ENODEV;
break;
case SEN_NOT_AVAIL:
case EGETBUFF:
rv = -EGETBUFF;
break;
default:
PRINTK("rv = %d\n", rv);
rv = -EGETBUFF;
break;
}
if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
return rv;
}
static inline void
purge_work_element(struct work_element *we_p)
{
struct list_head *lptr;
spin_lock_irq(&queuespinlock);
list_for_each(lptr, &request_list) {
if (lptr == &we_p->liste) {
list_del_init(lptr);
requestq_count--;
break;
}
}
list_for_each(lptr, &pending_list) {
if (lptr == &we_p->liste) {
list_del_init(lptr);
pendingq_count--;
break;
}
}
spin_unlock_irq(&queuespinlock);
}
/**
* Build the request and send it.
*/
static inline int
z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
unsigned int cmd, unsigned long arg)
{
struct work_element *we_p;
int rv;
if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
return rv;
}
if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
if (!rv)
if ((rv = z90crypt_send(we_p, (const char *)arg)))
PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
if (!rv) {
we_p->audit[0] |= FP_ASLEEP;
wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
we_p->audit[0] |= FP_AWAKE;
rv = we_p->retcode;
}
if (!rv)
rv = z90crypt_process_results(we_p, (char __user *)arg);
if ((we_p->status[0] & STAT_FAILED)) {
switch (rv) {
/**
* EINVAL *after* receive is almost always a padding error or
* length error issued by a coprocessor (not an accelerator).
* We convert this return value to -EGETBUFF which should
* trigger a fallback to software.
*/
case -EINVAL:
if (we_p->devtype != PCICA)
rv = -EGETBUFF;
break;
case -ETIMEOUT:
if (z90crypt.mask.st_count > 0)
rv = -ERESTARTSYS; // retry with another
else
rv = -ENODEV; // no cards left
/* fall through to clean up request queue */
case -ERESTARTSYS:
case -ERELEASED:
switch (CHK_RDWRMASK(we_p->status[0])) {
case STAT_WRITTEN:
purge_work_element(we_p);
break;
case STAT_READPEND:
case STAT_NOWORK:
default:
break;
}
break;
default:
we_p->status[0] ^= STAT_FAILED;
break;
}
}
free_page((long)we_p);
return rv;
}
/**
* This function is a little long, but it's really just one large switch
* statement.
*/
static long
z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct priv_data *private_data_p = filp->private_data;
unsigned char *status;
unsigned char *qdepth;
unsigned int *reqcnt;
struct ica_z90_status *pstat;
int ret, i, loopLim, tempstat;
static int deprecated_msg_count1 = 0;
static int deprecated_msg_count2 = 0;
PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
cmd,
!_IOC_DIR(cmd) ? "NO"
: ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
: ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
: "WR")),
_IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
PRINTK("cmd 0x%08X contains bad magic\n", cmd);
return -ENOTTY;
}
ret = 0;
switch (cmd) {
case ICARSAMODEXPO:
case ICARSACRT:
if (quiesce_z90crypt) {
ret = -EQUIESCE;
break;
}
ret = -ENODEV; // Default if no devices
loopLim = z90crypt.hdware_info->hdware_mask.st_count -
(z90crypt.hdware_info->hdware_mask.disabled_count +
z90crypt.hdware_info->hdware_mask.user_disabled_count);
for (i = 0; i < loopLim; i++) {
ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
if (ret != -ERESTARTSYS)
break;
}
if (ret == -ERESTARTSYS)
ret = -ENODEV;
break;
case Z90STAT_TOTALCOUNT:
tempstat = get_status_totalcount();
if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_PCICACOUNT:
tempstat = get_status_PCICAcount();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_PCICCCOUNT:
tempstat = get_status_PCICCcount();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_PCIXCCMCL2COUNT:
tempstat = get_status_PCIXCCMCL2count();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_PCIXCCMCL3COUNT:
tempstat = get_status_PCIXCCMCL3count();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_CEX2CCOUNT:
tempstat = get_status_CEX2Ccount();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_REQUESTQ_COUNT:
tempstat = get_status_requestq_count();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_PENDINGQ_COUNT:
tempstat = get_status_pendingq_count();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_TOTALOPEN_COUNT:
tempstat = get_status_totalopen_count();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_DOMAIN_INDEX:
tempstat = get_status_domain_index();
if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90STAT_STATUS_MASK:
status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
if (!status) {
PRINTK("kmalloc for status failed!\n");
ret = -ENOMEM;
break;
}
get_status_status_mask(status);
if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
!= 0)
ret = -EFAULT;
kfree(status);
break;
case Z90STAT_QDEPTH_MASK:
qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
if (!qdepth) {
PRINTK("kmalloc for qdepth failed!\n");
ret = -ENOMEM;
break;
}
get_status_qdepth_mask(qdepth);
if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
ret = -EFAULT;
kfree(qdepth);
break;
case Z90STAT_PERDEV_REQCNT:
reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
if (!reqcnt) {
PRINTK("kmalloc for reqcnt failed!\n");
ret = -ENOMEM;
break;
}
get_status_perdevice_reqcnt(reqcnt);
if (copy_to_user((char __user *) arg, reqcnt,
Z90CRYPT_NUM_APS * sizeof(int)) != 0)
ret = -EFAULT;
kfree(reqcnt);
break;
/* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */
case ICAZ90STATUS:
if (deprecated_msg_count1 < 20) {
PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
deprecated_msg_count1++;
if (deprecated_msg_count1 == 20)
PRINTK("No longer issuing messages related to "
"deprecated call to ICAZ90STATUS.\n");
}
pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
if (!pstat) {
PRINTK("kmalloc for pstat failed!\n");
ret = -ENOMEM;
break;
}
pstat->totalcount = get_status_totalcount();
pstat->leedslitecount = get_status_PCICAcount();
pstat->leeds2count = get_status_PCICCcount();
pstat->requestqWaitCount = get_status_requestq_count();
pstat->pendingqWaitCount = get_status_pendingq_count();
pstat->totalOpenCount = get_status_totalopen_count();
pstat->cryptoDomain = get_status_domain_index();
get_status_status_mask(pstat->status);
get_status_qdepth_mask(pstat->qdepth);
if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
sizeof(struct ica_z90_status)) != 0)
ret = -EFAULT;
kfree(pstat);
break;
/* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */
case Z90STAT_PCIXCCCOUNT:
if (deprecated_msg_count2 < 20) {
PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
deprecated_msg_count2++;
if (deprecated_msg_count2 == 20)
PRINTK("No longer issuing messages about depre"
"cated ioctl Z90STAT_PCIXCCCOUNT.\n");
}
tempstat = get_status_PCIXCCcount();
if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
ret = -EFAULT;
break;
case Z90QUIESCE:
if (current->euid != 0) {
PRINTK("QUIESCE fails: euid %d\n",
current->euid);
ret = -EACCES;
} else {
PRINTK("QUIESCE device from PID %d\n", PID());
quiesce_z90crypt = 1;
}
break;
default:
/* user passed an invalid IOCTL number */
PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
ret = -ENOTTY;
break;
}
return ret;
}
static inline int
sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
{
int hl, i;
hl = 0;
for (i = 0; i < len; i++)
hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
hl += sprintf(outaddr+hl, " ");
return hl;
}
static inline int
sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
{
int hl, inl, c, cx;
hl = sprintf(outaddr, " ");
inl = 0;
for (c = 0; c < (len / 16); c++) {
hl += sprintcl(outaddr+hl, addr+inl, 16);
inl += 16;
}
cx = len%16;
if (cx) {
hl += sprintcl(outaddr+hl, addr+inl, cx);
inl += cx;
}
hl += sprintf(outaddr+hl, "\n");
return hl;
}
static inline int
sprinthx(unsigned char *title, unsigned char *outaddr,
unsigned char *addr, unsigned int len)
{
int hl, inl, r, rx;
hl = sprintf(outaddr, "\n%s\n", title);
inl = 0;
for (r = 0; r < (len / 64); r++) {
hl += sprintrw(outaddr+hl, addr+inl, 64);
inl += 64;
}
rx = len % 64;
if (rx) {
hl += sprintrw(outaddr+hl, addr+inl, rx);
inl += rx;
}
hl += sprintf(outaddr+hl, "\n");
return hl;
}
static inline int
sprinthx4(unsigned char *title, unsigned char *outaddr,
unsigned int *array, unsigned int len)
{
int hl, r;
hl = sprintf(outaddr, "\n%s\n", title);
for (r = 0; r < len; r++) {
if ((r % 8) == 0)
hl += sprintf(outaddr+hl, " ");
hl += sprintf(outaddr+hl, "%08X ", array[r]);
if ((r % 8) == 7)
hl += sprintf(outaddr+hl, "\n");
}
hl += sprintf(outaddr+hl, "\n");
return hl;
}
static int
z90crypt_status(char *resp_buff, char **start, off_t offset,
int count, int *eof, void *data)
{
unsigned char *workarea;
int len;
/* resp_buff is a page. Use the right half for a work area */
workarea = resp_buff+2000;
len = 0;
len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
get_status_domain_index());
len += sprintf(resp_buff+len, "Total device count: %d\n",
get_status_totalcount());
len += sprintf(resp_buff+len, "PCICA count: %d\n",
get_status_PCICAcount());
len += sprintf(resp_buff+len, "PCICC count: %d\n",
get_status_PCICCcount());
len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
get_status_PCIXCCMCL2count());
len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
get_status_PCIXCCMCL3count());
len += sprintf(resp_buff+len, "CEX2C count: %d\n",
get_status_CEX2Ccount());
len += sprintf(resp_buff+len, "requestq count: %d\n",
get_status_requestq_count());
len += sprintf(resp_buff+len, "pendingq count: %d\n",
get_status_pendingq_count());
len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
get_status_totalopen_count());
len += sprinthx(
"Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), "
"4: PCIXCC (MCL3), 5: CEX2C",
resp_buff+len,
get_status_status_mask(workarea),
Z90CRYPT_NUM_APS);
len += sprinthx("Waiting work element counts",
resp_buff+len,
get_status_qdepth_mask(workarea),
Z90CRYPT_NUM_APS);
len += sprinthx4(
"Per-device successfully completed request counts",
resp_buff+len,
get_status_perdevice_reqcnt((unsigned int *)workarea),
Z90CRYPT_NUM_APS);
*eof = 1;
memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
return len;
}
static inline void
disable_card(int card_index)
{
struct device *devp;
devp = LONG2DEVPTR(card_index);
if (!devp || devp->user_disabled)
return;
devp->user_disabled = 1;
z90crypt.hdware_info->hdware_mask.user_disabled_count++;
if (devp->dev_type == -1)
return;
z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
}
static inline void
enable_card(int card_index)
{
struct device *devp;
devp = LONG2DEVPTR(card_index);
if (!devp || !devp->user_disabled)
return;
devp->user_disabled = 0;
z90crypt.hdware_info->hdware_mask.user_disabled_count--;
if (devp->dev_type == -1)
return;
z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
}
static int
z90crypt_status_write(struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
int j, eol;
unsigned char *lbuf, *ptr;
unsigned int local_count;
#define LBUFSIZE 1200
lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
if (!lbuf) {
PRINTK("kmalloc failed!\n");
return 0;
}
if (count <= 0)
return 0;
local_count = UMIN((unsigned int)count, LBUFSIZE-1);
if (copy_from_user(lbuf, buffer, local_count) != 0) {
kfree(lbuf);
return -EFAULT;
}
lbuf[local_count] = '\0';
ptr = strstr(lbuf, "Online devices");
if (ptr == 0) {
PRINTK("Unable to parse data (missing \"Online devices\")\n");
kfree(lbuf);
return count;
}
ptr = strstr(ptr, "\n");
if (ptr == 0) {
PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
kfree(lbuf);
return count;
}
ptr++;
if (strstr(ptr, "Waiting work element counts") == NULL) {
PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
kfree(lbuf);
return count;
}
j = 0;
eol = 0;
while ((j < 64) && (*ptr != '\0')) {
switch (*ptr) {
case '\t':
case ' ':
break;
case '\n':
default:
eol = 1;
break;
case '0': // no device
case '1': // PCICA
case '2': // PCICC
case '3': // PCIXCC_MCL2
case '4': // PCIXCC_MCL3
case '5': // CEX2C
j++;
break;
case 'd':
case 'D':
disable_card(j);
j++;
break;
case 'e':
case 'E':
enable_card(j);
j++;
break;
}
if (eol)
break;
ptr++;
}
kfree(lbuf);
return count;
}
/**
* Functions that run under a timer, with no process id
*
* The task functions:
* z90crypt_reader_task
* helper_send_work
* helper_handle_work_element
* helper_receive_rc
* z90crypt_config_task
* z90crypt_cleanup_task
*
* Helper functions:
* z90crypt_schedule_reader_timer
* z90crypt_schedule_reader_task
* z90crypt_schedule_config_task
* z90crypt_schedule_cleanup_task
*/
static inline int
receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
unsigned char *buff, unsigned char __user **dest_p_p)
{
int dv, rv;
struct device *dev_ptr;
struct caller *caller_p;
struct ica_rsa_modexpo *icaMsg_p;
struct list_head *ptr, *tptr;
memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
if (z90crypt.terminating)
return REC_FATAL_ERROR;
caller_p = 0;
dev_ptr = z90crypt.device_p[index];
rv = 0;
do {
if (!dev_ptr || dev_ptr->disabled) {
rv = REC_NO_WORK; // a disabled device can't return work
break;
}
if (dev_ptr->dev_self_x != index) {
PRINTKC("Corrupt dev ptr\n");
z90crypt.terminating = 1;
rv = REC_FATAL_ERROR;
break;
}
if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
dv = DEV_REC_EXCEPTION;
PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
} else {
PDEBUG("Dequeue called for device %d\n", index);
dv = receive_from_AP(index, z90crypt.cdx,
dev_ptr->dev_resp_l,
dev_ptr->dev_resp_p, psmid);
}
switch (dv) {
case DEV_REC_EXCEPTION:
rv = REC_FATAL_ERROR;
z90crypt.terminating = 1;
PRINTKC("Exception in receive from device %d\n",
index);
break;
case DEV_ONLINE:
rv = 0;
break;
case DEV_EMPTY:
rv = REC_EMPTY;
break;
case DEV_NO_WORK:
rv = REC_NO_WORK;
break;
case DEV_BAD_MESSAGE:
case DEV_GONE:
case REC_HARDWAR_ERR:
default:
rv = REC_NO_RESPONSE;
break;
}
if (rv)
break;
if (dev_ptr->dev_caller_count <= 0) {
rv = REC_USER_GONE;
break;
}
list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
caller_p = list_entry(ptr, struct caller, caller_liste);
if (!memcmp(caller_p->caller_id, psmid,
sizeof(caller_p->caller_id))) {
if (!list_empty(&caller_p->caller_liste)) {
list_del_init(ptr);
dev_ptr->dev_caller_count--;
break;
}
}
caller_p = 0;
}
if (!caller_p) {
PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
"%02X%02X%02X in device list\n",
psmid[0], psmid[1], psmid[2], psmid[3],
psmid[4], psmid[5], psmid[6], psmid[7]);
rv = REC_USER_GONE;
break;
}
PDEBUG("caller_p after successful receive: %p\n", caller_p);
rv = convert_response(dev_ptr->dev_resp_p,
caller_p->caller_buf_p, buff_len_p, buff);
switch (rv) {
case REC_USE_PCICA:
break;
case REC_OPERAND_INV:
case REC_OPERAND_SIZE:
case REC_EVEN_MOD:
case REC_INVALID_PAD:
PDEBUG("device %d: 'user error' %d\n", index, rv);
break;
case WRONG_DEVICE_TYPE:
case REC_HARDWAR_ERR:
case REC_BAD_MESSAGE:
PRINTKW("device %d: hardware error %d\n", index, rv);
rv = REC_NO_RESPONSE;
break;
default:
PDEBUG("device %d: rv = %d\n", index, rv);
break;
}
} while (0);
switch (rv) {
case 0:
PDEBUG("Successful receive from device %d\n", index);
icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
*dest_p_p = icaMsg_p->outputdata;
if (*buff_len_p == 0)
PRINTK("Zero *buff_len_p\n");
break;
case REC_NO_RESPONSE:
PRINTKW("Removing device %d from availability\n", index);
remove_device(dev_ptr);
break;
}
if (caller_p)
unbuild_caller(dev_ptr, caller_p);
return rv;
}
static inline void
helper_send_work(int index)
{
struct work_element *rq_p;
int rv;
if (list_empty(&request_list))
return;
requestq_count--;
rq_p = list_entry(request_list.next, struct work_element, liste);
list_del_init(&rq_p->liste);
rq_p->audit[1] |= FP_REMREQUEST;
if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
rq_p->devindex = SHRT2LONG(index);
rv = send_to_crypto_device(rq_p);
if (rv == 0) {
rq_p->requestsent = jiffies;
rq_p->audit[0] |= FP_SENT;
list_add_tail(&rq_p->liste, &pending_list);
++pendingq_count;
rq_p->audit[0] |= FP_PENDING;
} else {
switch (rv) {
case REC_OPERAND_INV:
case REC_OPERAND_SIZE:
case REC_EVEN_MOD:
case REC_INVALID_PAD:
rq_p->retcode = -EINVAL;
break;
case SEN_NOT_AVAIL:
case SEN_RETRY:
case REC_NO_RESPONSE:
default:
if (z90crypt.mask.st_count > 1)
rq_p->retcode =
-ERESTARTSYS;
else
rq_p->retcode = -ENODEV;
break;
}
rq_p->status[0] |= STAT_FAILED;
rq_p->audit[1] |= FP_AWAKENING;
atomic_set(&rq_p->alarmrung, 1);
wake_up(&rq_p->waitq);
}
} else {
if (z90crypt.mask.st_count > 1)
rq_p->retcode = -ERESTARTSYS;
else
rq_p->retcode = -ENODEV;
rq_p->status[0] |= STAT_FAILED;
rq_p->audit[1] |= FP_AWAKENING;
atomic_set(&rq_p->alarmrung, 1);
wake_up(&rq_p->waitq);
}
}
static inline void
helper_handle_work_element(int index, unsigned char psmid[8], int rc,
int buff_len, unsigned char *buff,
unsigned char __user *resp_addr)
{
struct work_element *pq_p;
struct list_head *lptr, *tptr;
pq_p = 0;
list_for_each_safe(lptr, tptr, &pending_list) {
pq_p = list_entry(lptr, struct work_element, liste);
if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
list_del_init(lptr);
pendingq_count--;
pq_p->audit[1] |= FP_NOTPENDING;
break;
}
pq_p = 0;
}
if (!pq_p) {
PRINTK("device %d has work but no caller exists on pending Q\n",
SHRT2LONG(index));
return;
}
switch (rc) {
case 0:
pq_p->resp_buff_size = buff_len;
pq_p->audit[1] |= FP_RESPSIZESET;
if (buff_len) {
pq_p->resp_addr = resp_addr;
pq_p->audit[1] |= FP_RESPADDRCOPIED;
memcpy(pq_p->resp_buff, buff, buff_len);
pq_p->audit[1] |= FP_RESPBUFFCOPIED;
}
break;
case REC_OPERAND_INV:
case REC_OPERAND_SIZE:
case REC_EVEN_MOD:
case REC_INVALID_PAD:
PDEBUG("-EINVAL after application error %d\n", rc);
pq_p->retcode = -EINVAL;
pq_p->status[0] |= STAT_FAILED;
break;
case REC_USE_PCICA:
pq_p->retcode = -ERESTARTSYS;
pq_p->status[0] |= STAT_FAILED;
break;
case REC_NO_RESPONSE:
default:
if (z90crypt.mask.st_count > 1)
pq_p->retcode = -ERESTARTSYS;
else
pq_p->retcode = -ENODEV;
pq_p->status[0] |= STAT_FAILED;
break;
}
if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
pq_p->audit[1] |= FP_AWAKENING;
atomic_set(&pq_p->alarmrung, 1);
wake_up(&pq_p->waitq);
}
}
/**
* return TRUE if the work element should be removed from the queue
*/
static inline int
helper_receive_rc(int index, int *rc_p)
{
switch (*rc_p) {
case 0:
case REC_OPERAND_INV:
case REC_OPERAND_SIZE:
case REC_EVEN_MOD:
case REC_INVALID_PAD:
case REC_USE_PCICA:
break;
case REC_BUSY:
case REC_NO_WORK:
case REC_EMPTY:
case REC_RETRY_DEV:
case REC_FATAL_ERROR:
return 0;
case REC_NO_RESPONSE:
break;
default:
PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
*rc_p, SHRT2LONG(index));
*rc_p = REC_NO_RESPONSE;
break;
}
return 1;
}
static inline void
z90crypt_schedule_reader_timer(void)
{
if (timer_pending(&reader_timer))
return;
if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
PRINTK("Timer pending while modifying reader timer\n");
}
static void
z90crypt_reader_task(unsigned long ptr)
{
int workavail, index, rc, buff_len;
unsigned char psmid[8];
unsigned char __user *resp_addr;
static unsigned char buff[1024];
/**
* we use workavail = 2 to ensure 2 passes with nothing dequeued before
* exiting the loop. If (pendingq_count+requestq_count) == 0 after the
* loop, there is no work remaining on the queues.
*/
resp_addr = 0;
workavail = 2;
buff_len = 0;
while (workavail) {
workavail--;
rc = 0;
spin_lock_irq(&queuespinlock);
memset(buff, 0x00, sizeof(buff));
/* Dequeue once from each device in round robin. */
for (index = 0; index < z90crypt.mask.st_count; index++) {
PDEBUG("About to receive.\n");
rc = receive_from_crypto_device(SHRT2LONG(index),
psmid,
&buff_len,
buff,
&resp_addr);
PDEBUG("Dequeued: rc = %d.\n", rc);
if (helper_receive_rc(index, &rc)) {
if (rc != REC_NO_RESPONSE) {
helper_send_work(index);
workavail = 2;
}
helper_handle_work_element(index, psmid, rc,
buff_len, buff,
resp_addr);
}
if (rc == REC_FATAL_ERROR)
PRINTKW("REC_FATAL_ERROR from device %d!\n",
SHRT2LONG(index));
}
spin_unlock_irq(&queuespinlock);
}
if (pendingq_count + requestq_count)
z90crypt_schedule_reader_timer();
}
static inline void
z90crypt_schedule_config_task(unsigned int expiration)
{
if (timer_pending(&config_timer))
return;
if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
PRINTK("Timer pending while modifying config timer\n");
}
static void
z90crypt_config_task(unsigned long ptr)
{
int rc;
PDEBUG("jiffies %ld\n", jiffies);
if ((rc = refresh_z90crypt(&z90crypt.cdx)))
PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
/* If return was fatal, don't bother reconfiguring */
if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
z90crypt_schedule_config_task(CONFIGTIME);
}
static inline void
z90crypt_schedule_cleanup_task(void)
{
if (timer_pending(&cleanup_timer))
return;
if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
PRINTK("Timer pending while modifying cleanup timer\n");
}
static inline void
helper_drain_queues(void)
{
struct work_element *pq_p;
struct list_head *lptr, *tptr;
list_for_each_safe(lptr, tptr, &pending_list) {
pq_p = list_entry(lptr, struct work_element, liste);
pq_p->retcode = -ENODEV;
pq_p->status[0] |= STAT_FAILED;
unbuild_caller(LONG2DEVPTR(pq_p->devindex),
(struct caller *)pq_p->requestptr);
list_del_init(lptr);
pendingq_count--;
pq_p->audit[1] |= FP_NOTPENDING;
pq_p->audit[1] |= FP_AWAKENING;
atomic_set(&pq_p->alarmrung, 1);
wake_up(&pq_p->waitq);
}
list_for_each_safe(lptr, tptr, &request_list) {
pq_p = list_entry(lptr, struct work_element, liste);
pq_p->retcode = -ENODEV;
pq_p->status[0] |= STAT_FAILED;
list_del_init(lptr);
requestq_count--;
pq_p->audit[1] |= FP_REMREQUEST;
pq_p->audit[1] |= FP_AWAKENING;
atomic_set(&pq_p->alarmrung, 1);
wake_up(&pq_p->waitq);
}
}
static inline void
helper_timeout_requests(void)
{
struct work_element *pq_p;
struct list_head *lptr, *tptr;
long timelimit;
timelimit = jiffies - (CLEANUPTIME * HZ);
/* The list is in strict chronological order */
list_for_each_safe(lptr, tptr, &pending_list) {
pq_p = list_entry(lptr, struct work_element, liste);
if (pq_p->requestsent >= timelimit)
break;
PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
((struct caller *)pq_p->requestptr)->caller_id[0],
((struct caller *)pq_p->requestptr)->caller_id[1],
((struct caller *)pq_p->requestptr)->caller_id[2],
((struct caller *)pq_p->requestptr)->caller_id[3],
((struct caller *)pq_p->requestptr)->caller_id[4],
((struct caller *)pq_p->requestptr)->caller_id[5],
((struct caller *)pq_p->requestptr)->caller_id[6],
((struct caller *)pq_p->requestptr)->caller_id[7]);
pq_p->retcode = -ETIMEOUT;
pq_p->status[0] |= STAT_FAILED;
/* get this off any caller queue it may be on */
unbuild_caller(LONG2DEVPTR(pq_p->devindex),
(struct caller *) pq_p->requestptr);
list_del_init(lptr);
pendingq_count--;
pq_p->audit[1] |= FP_TIMEDOUT;
pq_p->audit[1] |= FP_NOTPENDING;
pq_p->audit[1] |= FP_AWAKENING;
atomic_set(&pq_p->alarmrung, 1);
wake_up(&pq_p->waitq);
}
/**
* If pending count is zero, items left on the request queue may
* never be processed.
*/
if (pendingq_count <= 0) {
list_for_each_safe(lptr, tptr, &request_list) {
pq_p = list_entry(lptr, struct work_element, liste);
if (pq_p->requestsent >= timelimit)
break;
PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
((struct caller *)pq_p->requestptr)->caller_id[0],
((struct caller *)pq_p->requestptr)->caller_id[1],
((struct caller *)pq_p->requestptr)->caller_id[2],
((struct caller *)pq_p->requestptr)->caller_id[3],
((struct caller *)pq_p->requestptr)->caller_id[4],
((struct caller *)pq_p->requestptr)->caller_id[5],
((struct caller *)pq_p->requestptr)->caller_id[6],
((struct caller *)pq_p->requestptr)->caller_id[7]);
pq_p->retcode = -ETIMEOUT;
pq_p->status[0] |= STAT_FAILED;
list_del_init(lptr);
requestq_count--;
pq_p->audit[1] |= FP_TIMEDOUT;
pq_p->audit[1] |= FP_REMREQUEST;
pq_p->audit[1] |= FP_AWAKENING;
atomic_set(&pq_p->alarmrung, 1);
wake_up(&pq_p->waitq);
}
}
}
static void
z90crypt_cleanup_task(unsigned long ptr)
{
PDEBUG("jiffies %ld\n", jiffies);
spin_lock_irq(&queuespinlock);
if (z90crypt.mask.st_count <= 0) // no devices!
helper_drain_queues();
else
helper_timeout_requests();
spin_unlock_irq(&queuespinlock);
z90crypt_schedule_cleanup_task();
}
static void
z90crypt_schedule_reader_task(unsigned long ptr)
{
tasklet_schedule(&reader_tasklet);
}
/**
* Lowlevel Functions:
*
* create_z90crypt: creates and initializes basic data structures
* refresh_z90crypt: re-initializes basic data structures
* find_crypto_devices: returns a count and mask of hardware status
* create_crypto_device: builds the descriptor for a device
* destroy_crypto_device: unallocates the descriptor for a device
* destroy_z90crypt: drains all work, unallocates structs
*/
/**
* build the z90crypt root structure using the given domain index
*/
static int
create_z90crypt(int *cdx_p)
{
struct hdware_block *hdware_blk_p;
memset(&z90crypt, 0x00, sizeof(struct z90crypt));
z90crypt.domain_established = 0;
z90crypt.len = sizeof(struct z90crypt);
z90crypt.max_count = Z90CRYPT_NUM_DEVS;
z90crypt.cdx = *cdx_p;
hdware_blk_p = (struct hdware_block *)
kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
if (!hdware_blk_p) {
PDEBUG("kmalloc for hardware block failed\n");
return ENOMEM;
}
memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
z90crypt.hdware_info = hdware_blk_p;
return 0;
}
static inline int
helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
{
enum hdstat hd_stat;
int q_depth, dev_type;
int indx, chkdom, numdomains;
q_depth = dev_type = numdomains = 0;
for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
for (indx = 0; indx < z90crypt.max_count; indx++) {
hd_stat = HD_NOT_THERE;
numdomains = 0;
for (chkdom = 0; chkdom <= 15; chkdom++) {
hd_stat = query_online(indx, chkdom, MAX_RESET,
&q_depth, &dev_type);
if (hd_stat == HD_TSQ_EXCEPTION) {
z90crypt.terminating = 1;
PRINTKC("exception taken!\n");
break;
}
if (hd_stat == HD_ONLINE) {
cdx_array[numdomains++] = chkdom;
if (*cdx_p == chkdom) {
*correct_cdx_found = 1;
break;
}
}
}
if ((*correct_cdx_found == 1) || (numdomains != 0))
break;
if (z90crypt.terminating)
break;
}
return numdomains;
}
static inline int
probe_crypto_domain(int *cdx_p)
{
int cdx_array[16];
char cdx_array_text[53], temp[5];
int correct_cdx_found, numdomains;
correct_cdx_found = 0;
numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
if (z90crypt.terminating)
return TSQ_FATAL_ERROR;
if (correct_cdx_found)
return 0;
if (numdomains == 0) {
PRINTKW("Unable to find crypto domain: No devices found\n");
return Z90C_NO_DEVICES;
}
if (numdomains == 1) {
if (*cdx_p == -1) {
*cdx_p = cdx_array[0];
return 0;
}
PRINTKW("incorrect domain: specified = %d, found = %d\n",
*cdx_p, cdx_array[0]);
return Z90C_INCORRECT_DOMAIN;
}
numdomains--;
sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
while (numdomains) {
numdomains--;
sprintf(temp, ", %d", cdx_array[numdomains]);
strcat(cdx_array_text, temp);
}
PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
*cdx_p, cdx_array_text);
return Z90C_AMBIGUOUS_DOMAIN;
}
static int
refresh_z90crypt(int *cdx_p)
{
int i, j, indx, rv;
static struct status local_mask;
struct device *devPtr;
unsigned char oldStat, newStat;
int return_unchanged;
if (z90crypt.len != sizeof(z90crypt))
return ENOTINIT;
if (z90crypt.terminating)
return TSQ_FATAL_ERROR;
rv = 0;
if (!z90crypt.hdware_info->hdware_mask.st_count &&
!z90crypt.domain_established) {
rv = probe_crypto_domain(cdx_p);
if (z90crypt.terminating)
return TSQ_FATAL_ERROR;
if (rv == Z90C_NO_DEVICES)
return 0; // try later
if (rv)
return rv;
z90crypt.cdx = *cdx_p;
z90crypt.domain_established = 1;
}
rv = find_crypto_devices(&local_mask);
if (rv) {
PRINTK("find crypto devices returned %d\n", rv);
return rv;
}
if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
sizeof(struct status))) {
return_unchanged = 1;
for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
/**
* Check for disabled cards. If any device is marked
* disabled, destroy it.
*/
for (j = 0;
j < z90crypt.hdware_info->type_mask[i].st_count;
j++) {
indx = z90crypt.hdware_info->type_x_addr[i].
device_index[j];
devPtr = z90crypt.device_p[indx];
if (devPtr && devPtr->disabled) {
local_mask.st_mask[indx] = HD_NOT_THERE;
return_unchanged = 0;
}
}
}
if (return_unchanged == 1)
return 0;
}
spin_lock_irq(&queuespinlock);
for (i = 0; i < z90crypt.max_count; i++) {
oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
newStat = local_mask.st_mask[i];
if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
destroy_crypto_device(i);
else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
rv = create_crypto_device(i);
if (rv >= REC_FATAL_ERROR)
return rv;
if (rv != 0) {
local_mask.st_mask[i] = HD_NOT_THERE;
local_mask.st_count--;
}
}
}
memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
sizeof(local_mask.st_mask));
z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
z90crypt.hdware_info->hdware_mask.disabled_count =
local_mask.disabled_count;
refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
&(z90crypt.hdware_info->type_x_addr[i]));
spin_unlock_irq(&queuespinlock);
return rv;
}
static int
find_crypto_devices(struct status *deviceMask)
{
int i, q_depth, dev_type;
enum hdstat hd_stat;
deviceMask->st_count = 0;
deviceMask->disabled_count = 0;
deviceMask->user_disabled_count = 0;
for (i = 0; i < z90crypt.max_count; i++) {
hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
&dev_type);
if (hd_stat == HD_TSQ_EXCEPTION) {
z90crypt.terminating = 1;
PRINTKC("Exception during probe for crypto devices\n");
return TSQ_FATAL_ERROR;
}
deviceMask->st_mask[i] = hd_stat;
if (hd_stat == HD_ONLINE) {
PDEBUG("Got an online crypto!: %d\n", i);
PDEBUG("Got a queue depth of %d\n", q_depth);
PDEBUG("Got a device type of %d\n", dev_type);
if (q_depth <= 0)
return TSQ_FATAL_ERROR;
deviceMask->st_count++;
z90crypt.q_depth_array[i] = q_depth;
z90crypt.dev_type_array[i] = dev_type;
}
}
return 0;
}
static int
refresh_index_array(struct status *status_str, struct device_x *index_array)
{
int i, count;
enum devstat stat;
i = -1;
count = 0;
do {
stat = status_str->st_mask[++i];
if (stat == DEV_ONLINE)
index_array->device_index[count++] = i;
} while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
return count;
}
static int
create_crypto_device(int index)
{
int rv, devstat, total_size;
struct device *dev_ptr;
struct status *type_str_p;
int deviceType;
dev_ptr = z90crypt.device_p[index];
if (!dev_ptr) {
total_size = sizeof(struct device) +
z90crypt.q_depth_array[index] * sizeof(int);
dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
if (!dev_ptr) {
PRINTK("kmalloc device %d failed\n", index);
return ENOMEM;
}
memset(dev_ptr, 0, total_size);
dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
if (!dev_ptr->dev_resp_p) {
kfree(dev_ptr);
PRINTK("kmalloc device %d rec buffer failed\n", index);
return ENOMEM;
}
dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
}
devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
if (devstat == DEV_RSQ_EXCEPTION) {
PRINTK("exception during reset device %d\n", index);
kfree(dev_ptr->dev_resp_p);
kfree(dev_ptr);
return RSQ_FATAL_ERROR;
}
if (devstat == DEV_ONLINE) {
dev_ptr->dev_self_x = index;
dev_ptr->dev_type = z90crypt.dev_type_array[index];
if (dev_ptr->dev_type == NILDEV) {
rv = probe_device_type(dev_ptr);
if (rv) {
PRINTK("rv = %d from probe_device_type %d\n",
rv, index);
kfree(dev_ptr->dev_resp_p);
kfree(dev_ptr);
return rv;
}
}
if (dev_ptr->dev_type == PCIXCC_UNK) {
rv = probe_PCIXCC_type(dev_ptr);
if (rv) {
PRINTK("rv = %d from probe_PCIXCC_type %d\n",
rv, index);
kfree(dev_ptr->dev_resp_p);
kfree(dev_ptr);
return rv;
}
}
deviceType = dev_ptr->dev_type;
z90crypt.dev_type_array[index] = deviceType;
if (deviceType == PCICA)
z90crypt.hdware_info->device_type_array[index] = 1;
else if (deviceType == PCICC)
z90crypt.hdware_info->device_type_array[index] = 2;
else if (deviceType == PCIXCC_MCL2)
z90crypt.hdware_info->device_type_array[index] = 3;
else if (deviceType == PCIXCC_MCL3)
z90crypt.hdware_info->device_type_array[index] = 4;
else if (deviceType == CEX2C)
z90crypt.hdware_info->device_type_array[index] = 5;
else
z90crypt.hdware_info->device_type_array[index] = -1;
}
/**
* 'q_depth' returned by the hardware is one less than
* the actual depth
*/
dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
dev_ptr->dev_type = z90crypt.dev_type_array[index];
dev_ptr->dev_stat = devstat;
dev_ptr->disabled = 0;
z90crypt.device_p[index] = dev_ptr;
if (devstat == DEV_ONLINE) {
if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
z90crypt.mask.st_mask[index] = DEV_ONLINE;
z90crypt.mask.st_count++;
}
deviceType = dev_ptr->dev_type;
type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
if (type_str_p->st_mask[index] != DEV_ONLINE) {
type_str_p->st_mask[index] = DEV_ONLINE;
type_str_p->st_count++;
}
}
return 0;
}
static int
destroy_crypto_device(int index)
{
struct device *dev_ptr;
int t, disabledFlag;
dev_ptr = z90crypt.device_p[index];
/* remember device type; get rid of device struct */
if (dev_ptr) {
disabledFlag = dev_ptr->disabled;
t = dev_ptr->dev_type;
kfree(dev_ptr->dev_resp_p);
kfree(dev_ptr);
} else {
disabledFlag = 0;
t = -1;
}
z90crypt.device_p[index] = 0;
/* if the type is valid, remove the device from the type_mask */
if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
z90crypt.hdware_info->type_mask[t].st_count--;
if (disabledFlag == 1)
z90crypt.hdware_info->type_mask[t].disabled_count--;
}
if (z90crypt.mask.st_mask[index] != DEV_GONE) {
z90crypt.mask.st_mask[index] = DEV_GONE;
z90crypt.mask.st_count--;
}
z90crypt.hdware_info->device_type_array[index] = 0;
return 0;
}
static void
destroy_z90crypt(void)
{
int i;
for (i = 0; i < z90crypt.max_count; i++)
if (z90crypt.device_p[i])
destroy_crypto_device(i);
kfree(z90crypt.hdware_info);
memset((void *)&z90crypt, 0, sizeof(z90crypt));
}
static unsigned char static_testmsg[384] = {
0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
static int
probe_device_type(struct device *devPtr)
{
int rv, dv, i, index, length;
unsigned char psmid[8];
static unsigned char loc_testmsg[sizeof(static_testmsg)];
index = devPtr->dev_self_x;
rv = 0;
do {
memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
length = sizeof(static_testmsg) - 24;
/* the -24 allows for the header */
dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
if (dv) {
PDEBUG("dv returned by send during probe: %d\n", dv);
if (dv == DEV_SEN_EXCEPTION) {
rv = SEN_FATAL_ERROR;
PRINTKC("exception in send to AP %d\n", index);
break;
}
PDEBUG("return value from send_to_AP: %d\n", rv);
switch (dv) {
case DEV_GONE:
PDEBUG("dev %d not available\n", index);
rv = SEN_NOT_AVAIL;
break;
case DEV_ONLINE:
rv = 0;
break;
case DEV_EMPTY:
rv = SEN_NOT_AVAIL;
break;
case DEV_NO_WORK:
rv = SEN_FATAL_ERROR;
break;
case DEV_BAD_MESSAGE:
rv = SEN_USER_ERROR;
break;
case DEV_QUEUE_FULL:
rv = SEN_QUEUE_FULL;
break;
default:
PRINTK("unknown dv=%d for dev %d\n", dv, index);
rv = SEN_NOT_AVAIL;
break;
}
}
if (rv)
break;
for (i = 0; i < 6; i++) {
mdelay(300);
dv = receive_from_AP(index, z90crypt.cdx,
devPtr->dev_resp_l,
devPtr->dev_resp_p, psmid);
PDEBUG("dv returned by DQ = %d\n", dv);
if (dv == DEV_REC_EXCEPTION) {
rv = REC_FATAL_ERROR;
PRINTKC("exception in dequeue %d\n",
index);
break;
}
switch (dv) {
case DEV_ONLINE:
rv = 0;
break;
case DEV_EMPTY:
rv = REC_EMPTY;
break;
case DEV_NO_WORK:
rv = REC_NO_WORK;
break;
case DEV_BAD_MESSAGE:
case DEV_GONE:
default:
rv = REC_NO_RESPONSE;
break;
}
if ((rv != 0) && (rv != REC_NO_WORK))
break;
if (rv == 0)
break;
}
if (rv)
break;
rv = (devPtr->dev_resp_p[0] == 0x00) &&
(devPtr->dev_resp_p[1] == 0x86);
if (rv)
devPtr->dev_type = PCICC;
else
devPtr->dev_type = PCICA;
rv = 0;
} while (0);
/* In a general error case, the card is not marked online */
return rv;
}
static unsigned char MCL3_testmsg[] = {
0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
};
static int
probe_PCIXCC_type(struct device *devPtr)
{
int rv, dv, i, index, length;
unsigned char psmid[8];
static unsigned char loc_testmsg[548];
struct CPRBX *cprbx_p;
index = devPtr->dev_self_x;
rv = 0;
do {
memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
length = sizeof(MCL3_testmsg) - 0x0C;
dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
if (dv) {
PDEBUG("dv returned = %d\n", dv);
if (dv == DEV_SEN_EXCEPTION) {
rv = SEN_FATAL_ERROR;
PRINTKC("exception in send to AP %d\n", index);
break;
}
PDEBUG("return value from send_to_AP: %d\n", rv);
switch (dv) {
case DEV_GONE:
PDEBUG("dev %d not available\n", index);
rv = SEN_NOT_AVAIL;
break;
case DEV_ONLINE:
rv = 0;
break;
case DEV_EMPTY:
rv = SEN_NOT_AVAIL;
break;
case DEV_NO_WORK:
rv = SEN_FATAL_ERROR;
break;
case DEV_BAD_MESSAGE:
rv = SEN_USER_ERROR;
break;
case DEV_QUEUE_FULL:
rv = SEN_QUEUE_FULL;
break;
default:
PRINTK("unknown dv=%d for dev %d\n", dv, index);
rv = SEN_NOT_AVAIL;
break;
}
}
if (rv)
break;
for (i = 0; i < 6; i++) {
mdelay(300);
dv = receive_from_AP(index, z90crypt.cdx,
devPtr->dev_resp_l,
devPtr->dev_resp_p, psmid);
PDEBUG("dv returned by DQ = %d\n", dv);
if (dv == DEV_REC_EXCEPTION) {
rv = REC_FATAL_ERROR;
PRINTKC("exception in dequeue %d\n",
index);
break;
}
switch (dv) {
case DEV_ONLINE:
rv = 0;
break;
case DEV_EMPTY:
rv = REC_EMPTY;
break;
case DEV_NO_WORK:
rv = REC_NO_WORK;
break;
case DEV_BAD_MESSAGE:
case DEV_GONE:
default:
rv = REC_NO_RESPONSE;
break;
}
if ((rv != 0) && (rv != REC_NO_WORK))
break;
if (rv == 0)
break;
}
if (rv)
break;
cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
devPtr->dev_type = PCIXCC_MCL2;
PDEBUG("device %d is MCL2\n", index);
} else {
devPtr->dev_type = PCIXCC_MCL3;
PDEBUG("device %d is MCL3\n", index);
}
} while (0);
/* In a general error case, the card is not marked online */
return rv;
}
module_init(z90crypt_init_module);
module_exit(z90crypt_cleanup_module);