bf7551c441
Alan Cox noticed several hooks in pata_* drivers were missing, when he authored his ->cable_detect hook patches. This patch extracts just those fixes from Alan's patches, adding the necessary hooks (usually ->freeze, ->thaw, and ->post_internal_cmd) to the drivers. Signed-off-by: Jeff Garzik <jeff@garzik.org>
976 lines
25 KiB
C
976 lines
25 KiB
C
/*
|
|
* pata-legacy.c - Legacy port PATA/SATA controller driver.
|
|
* Copyright 2005/2006 Red Hat <alan@redhat.com>, all rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* An ATA driver for the legacy ATA ports.
|
|
*
|
|
* Data Sources:
|
|
* Opti 82C465/82C611 support: Data sheets at opti-inc.com
|
|
* HT6560 series:
|
|
* Promise 20230/20620:
|
|
* http://www.ryston.cz/petr/vlb/pdc20230b.html
|
|
* http://www.ryston.cz/petr/vlb/pdc20230c.html
|
|
* http://www.ryston.cz/petr/vlb/pdc20630.html
|
|
*
|
|
* Unsupported but docs exist:
|
|
* Appian/Adaptec AIC25VL01/Cirrus Logic PD7220
|
|
* Winbond W83759A
|
|
*
|
|
* This driver handles legacy (that is "ISA/VLB side") IDE ports found
|
|
* on PC class systems. There are three hybrid devices that are exceptions
|
|
* The Cyrix 5510/5520 where a pre SFF ATA device is on the bridge and
|
|
* the MPIIX where the tuning is PCI side but the IDE is "ISA side".
|
|
*
|
|
* Specific support is included for the ht6560a/ht6560b/opti82c611a/
|
|
* opti82c465mv/promise 20230c/20630
|
|
*
|
|
* Use the autospeed and pio_mask options with:
|
|
* Appian ADI/2 aka CLPD7220 or AIC25VL01.
|
|
* Use the jumpers, autospeed and set pio_mask to the mode on the jumpers with
|
|
* Goldstar GM82C711, PIC-1288A-125, UMC 82C871F, Winbond W83759,
|
|
* Winbond W83759A, Promise PDC20230-B
|
|
*
|
|
* For now use autospeed and pio_mask as above with the W83759A. This may
|
|
* change.
|
|
*
|
|
* TODO
|
|
* Merge existing pata_qdi driver
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/ata.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#define DRV_NAME "pata_legacy"
|
|
#define DRV_VERSION "0.5.4"
|
|
|
|
#define NR_HOST 6
|
|
|
|
static int legacy_port[NR_HOST] = { 0x1f0, 0x170, 0x1e8, 0x168, 0x1e0, 0x160 };
|
|
static int legacy_irq[NR_HOST] = { 15, 14, 11, 10, 8, 12 };
|
|
|
|
struct legacy_data {
|
|
unsigned long timing;
|
|
u8 clock[2];
|
|
u8 last;
|
|
int fast;
|
|
struct platform_device *platform_dev;
|
|
|
|
};
|
|
|
|
static struct legacy_data legacy_data[NR_HOST];
|
|
static struct ata_host *legacy_host[NR_HOST];
|
|
static int nr_legacy_host;
|
|
|
|
|
|
static int probe_all; /* Set to check all ISA port ranges */
|
|
static int ht6560a; /* HT 6560A on primary 1, secondary 2, both 3 */
|
|
static int ht6560b; /* HT 6560A on primary 1, secondary 2, both 3 */
|
|
static int opti82c611a; /* Opti82c611A on primary 1, secondary 2, both 3 */
|
|
static int opti82c46x; /* Opti 82c465MV present (pri/sec autodetect) */
|
|
static int autospeed; /* Chip present which snoops speed changes */
|
|
static int pio_mask = 0x1F; /* PIO range for autospeed devices */
|
|
static int iordy_mask = 0xFFFFFFFF; /* Use iordy if available */
|
|
|
|
/**
|
|
* legacy_set_mode - mode setting
|
|
* @ap: IDE interface
|
|
* @unused: Device that failed when error is returned
|
|
*
|
|
* Use a non standard set_mode function. We don't want to be tuned.
|
|
*
|
|
* The BIOS configured everything. Our job is not to fiddle. Just use
|
|
* whatever PIO the hardware is using and leave it at that. When we
|
|
* get some kind of nice user driven API for control then we can
|
|
* expand on this as per hdparm in the base kernel.
|
|
*/
|
|
|
|
static int legacy_set_mode(struct ata_port *ap, struct ata_device **unused)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
struct ata_device *dev = &ap->device[i];
|
|
if (ata_dev_enabled(dev)) {
|
|
ata_dev_printk(dev, KERN_INFO, "configured for PIO\n");
|
|
dev->pio_mode = XFER_PIO_0;
|
|
dev->xfer_mode = XFER_PIO_0;
|
|
dev->xfer_shift = ATA_SHIFT_PIO;
|
|
dev->flags |= ATA_DFLAG_PIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct scsi_host_template legacy_sht = {
|
|
.module = THIS_MODULE,
|
|
.name = DRV_NAME,
|
|
.ioctl = ata_scsi_ioctl,
|
|
.queuecommand = ata_scsi_queuecmd,
|
|
.can_queue = ATA_DEF_QUEUE,
|
|
.this_id = ATA_SHT_THIS_ID,
|
|
.sg_tablesize = LIBATA_MAX_PRD,
|
|
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
|
|
.emulated = ATA_SHT_EMULATED,
|
|
.use_clustering = ATA_SHT_USE_CLUSTERING,
|
|
.proc_name = DRV_NAME,
|
|
.dma_boundary = ATA_DMA_BOUNDARY,
|
|
.slave_configure = ata_scsi_slave_config,
|
|
.slave_destroy = ata_scsi_slave_destroy,
|
|
.bios_param = ata_std_bios_param,
|
|
};
|
|
|
|
/*
|
|
* These ops are used if the user indicates the hardware
|
|
* snoops the commands to decide on the mode and handles the
|
|
* mode selection "magically" itself. Several legacy controllers
|
|
* do this. The mode range can be set if it is not 0x1F by setting
|
|
* pio_mask as well.
|
|
*/
|
|
|
|
static struct ata_port_operations simple_port_ops = {
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer_noirq,
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
static struct ata_port_operations legacy_port_ops = {
|
|
.set_mode = legacy_set_mode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer_noirq,
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
/*
|
|
* Promise 20230C and 20620 support
|
|
*
|
|
* This controller supports PIO0 to PIO2. We set PIO timings conservatively to
|
|
* allow for 50MHz Vesa Local Bus. The 20620 DMA support is weird being DMA to
|
|
* controller and PIO'd to the host and not supported.
|
|
*/
|
|
|
|
static void pdc20230_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
int tries = 5;
|
|
int pio = adev->pio_mode - XFER_PIO_0;
|
|
u8 rt;
|
|
unsigned long flags;
|
|
|
|
/* Safe as UP only. Force I/Os to occur together */
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Unlock the control interface */
|
|
do
|
|
{
|
|
inb(0x1F5);
|
|
outb(inb(0x1F2) | 0x80, 0x1F2);
|
|
inb(0x1F2);
|
|
inb(0x3F6);
|
|
inb(0x3F6);
|
|
inb(0x1F2);
|
|
inb(0x1F2);
|
|
}
|
|
while((inb(0x1F2) & 0x80) && --tries);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
outb(inb(0x1F4) & 0x07, 0x1F4);
|
|
|
|
rt = inb(0x1F3);
|
|
rt &= 0x07 << (3 * adev->devno);
|
|
if (pio)
|
|
rt |= (1 + 3 * pio) << (3 * adev->devno);
|
|
|
|
udelay(100);
|
|
outb(inb(0x1F2) | 0x01, 0x1F2);
|
|
udelay(100);
|
|
inb(0x1F5);
|
|
|
|
}
|
|
|
|
static void pdc_data_xfer_vlb(struct ata_device *adev, unsigned char *buf, unsigned int buflen, int write_data)
|
|
{
|
|
struct ata_port *ap = adev->ap;
|
|
int slop = buflen & 3;
|
|
unsigned long flags;
|
|
|
|
if (ata_id_has_dword_io(adev->id)) {
|
|
local_irq_save(flags);
|
|
|
|
/* Perform the 32bit I/O synchronization sequence */
|
|
ioread8(ap->ioaddr.nsect_addr);
|
|
ioread8(ap->ioaddr.nsect_addr);
|
|
ioread8(ap->ioaddr.nsect_addr);
|
|
|
|
/* Now the data */
|
|
|
|
if (write_data)
|
|
iowrite32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
|
|
else
|
|
ioread32_rep(ap->ioaddr.data_addr, buf, buflen >> 2);
|
|
|
|
if (unlikely(slop)) {
|
|
u32 pad;
|
|
if (write_data) {
|
|
memcpy(&pad, buf + buflen - slop, slop);
|
|
pad = le32_to_cpu(pad);
|
|
iowrite32(pad, ap->ioaddr.data_addr);
|
|
} else {
|
|
pad = ioread32(ap->ioaddr.data_addr);
|
|
pad = cpu_to_le16(pad);
|
|
memcpy(buf + buflen - slop, &pad, slop);
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
else
|
|
ata_data_xfer_noirq(adev, buf, buflen, write_data);
|
|
}
|
|
|
|
static struct ata_port_operations pdc20230_port_ops = {
|
|
.set_piomode = pdc20230_set_piomode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = pdc_data_xfer_vlb,
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
/*
|
|
* Holtek 6560A support
|
|
*
|
|
* This controller supports PIO0 to PIO2 (no IORDY even though higher timings
|
|
* can be loaded).
|
|
*/
|
|
|
|
static void ht6560a_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
u8 active, recover;
|
|
struct ata_timing t;
|
|
|
|
/* Get the timing data in cycles. For now play safe at 50Mhz */
|
|
ata_timing_compute(adev, adev->pio_mode, &t, 20000, 1000);
|
|
|
|
active = FIT(t.active, 2, 15);
|
|
recover = FIT(t.recover, 4, 15);
|
|
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
|
|
iowrite8(recover << 4 | active, ap->ioaddr.device_addr);
|
|
ioread8(ap->ioaddr.status_addr);
|
|
}
|
|
|
|
static struct ata_port_operations ht6560a_port_ops = {
|
|
.set_piomode = ht6560a_set_piomode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer, /* Check vlb/noirq */
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
/*
|
|
* Holtek 6560B support
|
|
*
|
|
* This controller supports PIO0 to PIO4. We honour the BIOS/jumper FIFO setting
|
|
* unless we see an ATAPI device in which case we force it off.
|
|
*
|
|
* FIXME: need to implement 2nd channel support.
|
|
*/
|
|
|
|
static void ht6560b_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
u8 active, recover;
|
|
struct ata_timing t;
|
|
|
|
/* Get the timing data in cycles. For now play safe at 50Mhz */
|
|
ata_timing_compute(adev, adev->pio_mode, &t, 20000, 1000);
|
|
|
|
active = FIT(t.active, 2, 15);
|
|
recover = FIT(t.recover, 2, 16);
|
|
recover &= 0x15;
|
|
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
inb(0x3E6);
|
|
|
|
iowrite8(recover << 4 | active, ap->ioaddr.device_addr);
|
|
|
|
if (adev->class != ATA_DEV_ATA) {
|
|
u8 rconf = inb(0x3E6);
|
|
if (rconf & 0x24) {
|
|
rconf &= ~ 0x24;
|
|
outb(rconf, 0x3E6);
|
|
}
|
|
}
|
|
ioread8(ap->ioaddr.status_addr);
|
|
}
|
|
|
|
static struct ata_port_operations ht6560b_port_ops = {
|
|
.set_piomode = ht6560b_set_piomode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer, /* FIXME: Check 32bit and noirq */
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
/*
|
|
* Opti core chipset helpers
|
|
*/
|
|
|
|
/**
|
|
* opti_syscfg - read OPTI chipset configuration
|
|
* @reg: Configuration register to read
|
|
*
|
|
* Returns the value of an OPTI system board configuration register.
|
|
*/
|
|
|
|
static u8 opti_syscfg(u8 reg)
|
|
{
|
|
unsigned long flags;
|
|
u8 r;
|
|
|
|
/* Uniprocessor chipset and must force cycles adjancent */
|
|
local_irq_save(flags);
|
|
outb(reg, 0x22);
|
|
r = inb(0x24);
|
|
local_irq_restore(flags);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Opti 82C611A
|
|
*
|
|
* This controller supports PIO0 to PIO3.
|
|
*/
|
|
|
|
static void opti82c611a_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
u8 active, recover, setup;
|
|
struct ata_timing t;
|
|
struct ata_device *pair = ata_dev_pair(adev);
|
|
int clock;
|
|
int khz[4] = { 50000, 40000, 33000, 25000 };
|
|
u8 rc;
|
|
|
|
/* Enter configuration mode */
|
|
ioread16(ap->ioaddr.error_addr);
|
|
ioread16(ap->ioaddr.error_addr);
|
|
iowrite8(3, ap->ioaddr.nsect_addr);
|
|
|
|
/* Read VLB clock strapping */
|
|
clock = 1000000000 / khz[ioread8(ap->ioaddr.lbah_addr) & 0x03];
|
|
|
|
/* Get the timing data in cycles */
|
|
ata_timing_compute(adev, adev->pio_mode, &t, clock, 1000);
|
|
|
|
/* Setup timing is shared */
|
|
if (pair) {
|
|
struct ata_timing tp;
|
|
ata_timing_compute(pair, pair->pio_mode, &tp, clock, 1000);
|
|
|
|
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
|
|
}
|
|
|
|
active = FIT(t.active, 2, 17) - 2;
|
|
recover = FIT(t.recover, 1, 16) - 1;
|
|
setup = FIT(t.setup, 1, 4) - 1;
|
|
|
|
/* Select the right timing bank for write timing */
|
|
rc = ioread8(ap->ioaddr.lbal_addr);
|
|
rc &= 0x7F;
|
|
rc |= (adev->devno << 7);
|
|
iowrite8(rc, ap->ioaddr.lbal_addr);
|
|
|
|
/* Write the timings */
|
|
iowrite8(active << 4 | recover, ap->ioaddr.error_addr);
|
|
|
|
/* Select the right bank for read timings, also
|
|
load the shared timings for address */
|
|
rc = ioread8(ap->ioaddr.device_addr);
|
|
rc &= 0xC0;
|
|
rc |= adev->devno; /* Index select */
|
|
rc |= (setup << 4) | 0x04;
|
|
iowrite8(rc, ap->ioaddr.device_addr);
|
|
|
|
/* Load the read timings */
|
|
iowrite8(active << 4 | recover, ap->ioaddr.data_addr);
|
|
|
|
/* Ensure the timing register mode is right */
|
|
rc = ioread8(ap->ioaddr.lbal_addr);
|
|
rc &= 0x73;
|
|
rc |= 0x84;
|
|
iowrite8(rc, ap->ioaddr.lbal_addr);
|
|
|
|
/* Exit command mode */
|
|
iowrite8(0x83, ap->ioaddr.nsect_addr);
|
|
}
|
|
|
|
|
|
static struct ata_port_operations opti82c611a_port_ops = {
|
|
.set_piomode = opti82c611a_set_piomode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = ata_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer,
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
/*
|
|
* Opti 82C465MV
|
|
*
|
|
* This controller supports PIO0 to PIO3. Unlike the 611A the MVB
|
|
* version is dual channel but doesn't have a lot of unique registers.
|
|
*/
|
|
|
|
static void opti82c46x_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
u8 active, recover, setup;
|
|
struct ata_timing t;
|
|
struct ata_device *pair = ata_dev_pair(adev);
|
|
int clock;
|
|
int khz[4] = { 50000, 40000, 33000, 25000 };
|
|
u8 rc;
|
|
u8 sysclk;
|
|
|
|
/* Get the clock */
|
|
sysclk = opti_syscfg(0xAC) & 0xC0; /* BIOS set */
|
|
|
|
/* Enter configuration mode */
|
|
ioread16(ap->ioaddr.error_addr);
|
|
ioread16(ap->ioaddr.error_addr);
|
|
iowrite8(3, ap->ioaddr.nsect_addr);
|
|
|
|
/* Read VLB clock strapping */
|
|
clock = 1000000000 / khz[sysclk];
|
|
|
|
/* Get the timing data in cycles */
|
|
ata_timing_compute(adev, adev->pio_mode, &t, clock, 1000);
|
|
|
|
/* Setup timing is shared */
|
|
if (pair) {
|
|
struct ata_timing tp;
|
|
ata_timing_compute(pair, pair->pio_mode, &tp, clock, 1000);
|
|
|
|
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
|
|
}
|
|
|
|
active = FIT(t.active, 2, 17) - 2;
|
|
recover = FIT(t.recover, 1, 16) - 1;
|
|
setup = FIT(t.setup, 1, 4) - 1;
|
|
|
|
/* Select the right timing bank for write timing */
|
|
rc = ioread8(ap->ioaddr.lbal_addr);
|
|
rc &= 0x7F;
|
|
rc |= (adev->devno << 7);
|
|
iowrite8(rc, ap->ioaddr.lbal_addr);
|
|
|
|
/* Write the timings */
|
|
iowrite8(active << 4 | recover, ap->ioaddr.error_addr);
|
|
|
|
/* Select the right bank for read timings, also
|
|
load the shared timings for address */
|
|
rc = ioread8(ap->ioaddr.device_addr);
|
|
rc &= 0xC0;
|
|
rc |= adev->devno; /* Index select */
|
|
rc |= (setup << 4) | 0x04;
|
|
iowrite8(rc, ap->ioaddr.device_addr);
|
|
|
|
/* Load the read timings */
|
|
iowrite8(active << 4 | recover, ap->ioaddr.data_addr);
|
|
|
|
/* Ensure the timing register mode is right */
|
|
rc = ioread8(ap->ioaddr.lbal_addr);
|
|
rc &= 0x73;
|
|
rc |= 0x84;
|
|
iowrite8(rc, ap->ioaddr.lbal_addr);
|
|
|
|
/* Exit command mode */
|
|
iowrite8(0x83, ap->ioaddr.nsect_addr);
|
|
|
|
/* We need to know this for quad device on the MVB */
|
|
ap->host->private_data = ap;
|
|
}
|
|
|
|
/**
|
|
* opt82c465mv_qc_issue_prot - command issue
|
|
* @qc: command pending
|
|
*
|
|
* Called when the libata layer is about to issue a command. We wrap
|
|
* this interface so that we can load the correct ATA timings. The
|
|
* MVB has a single set of timing registers and these are shared
|
|
* across channels. As there are two registers we really ought to
|
|
* track the last two used values as a sort of register window. For
|
|
* now we just reload on a channel switch. On the single channel
|
|
* setup this condition never fires so we do nothing extra.
|
|
*
|
|
* FIXME: dual channel needs ->serialize support
|
|
*/
|
|
|
|
static unsigned int opti82c46x_qc_issue_prot(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *adev = qc->dev;
|
|
|
|
/* If timings are set and for the wrong channel (2nd test is
|
|
due to a libata shortcoming and will eventually go I hope) */
|
|
if (ap->host->private_data != ap->host
|
|
&& ap->host->private_data != NULL)
|
|
opti82c46x_set_piomode(ap, adev);
|
|
|
|
return ata_qc_issue_prot(qc);
|
|
}
|
|
|
|
static struct ata_port_operations opti82c46x_port_ops = {
|
|
.set_piomode = opti82c46x_set_piomode,
|
|
|
|
.port_disable = ata_port_disable,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.freeze = ata_bmdma_freeze,
|
|
.thaw = ata_bmdma_thaw,
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_qc_prep,
|
|
.qc_issue = opti82c46x_qc_issue_prot,
|
|
|
|
.data_xfer = ata_data_xfer,
|
|
|
|
.irq_handler = ata_interrupt,
|
|
.irq_clear = ata_bmdma_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
.irq_ack = ata_irq_ack,
|
|
|
|
.port_start = ata_port_start,
|
|
};
|
|
|
|
|
|
/**
|
|
* legacy_init_one - attach a legacy interface
|
|
* @port: port number
|
|
* @io: I/O port start
|
|
* @ctrl: control port
|
|
* @irq: interrupt line
|
|
*
|
|
* Register an ISA bus IDE interface. Such interfaces are PIO and we
|
|
* assume do not support IRQ sharing.
|
|
*/
|
|
|
|
static __init int legacy_init_one(int port, unsigned long io, unsigned long ctrl, int irq)
|
|
{
|
|
struct legacy_data *ld = &legacy_data[nr_legacy_host];
|
|
struct ata_probe_ent ae;
|
|
struct platform_device *pdev;
|
|
struct ata_port_operations *ops = &legacy_port_ops;
|
|
void __iomem *io_addr, *ctrl_addr;
|
|
int pio_modes = pio_mask;
|
|
u32 mask = (1 << port);
|
|
u32 iordy = (iordy_mask & mask) ? 0: ATA_FLAG_NO_IORDY;
|
|
int ret;
|
|
|
|
pdev = platform_device_register_simple(DRV_NAME, nr_legacy_host, NULL, 0);
|
|
if (IS_ERR(pdev))
|
|
return PTR_ERR(pdev);
|
|
|
|
ret = -EBUSY;
|
|
if (devm_request_region(&pdev->dev, io, 8, "pata_legacy") == NULL ||
|
|
devm_request_region(&pdev->dev, ctrl, 1, "pata_legacy") == NULL)
|
|
goto fail;
|
|
|
|
ret = -ENOMEM;
|
|
io_addr = devm_ioport_map(&pdev->dev, io, 8);
|
|
ctrl_addr = devm_ioport_map(&pdev->dev, ctrl, 1);
|
|
if (!io_addr || !ctrl_addr)
|
|
goto fail;
|
|
|
|
if (ht6560a & mask) {
|
|
ops = &ht6560a_port_ops;
|
|
pio_modes = 0x07;
|
|
iordy = ATA_FLAG_NO_IORDY;
|
|
}
|
|
if (ht6560b & mask) {
|
|
ops = &ht6560b_port_ops;
|
|
pio_modes = 0x1F;
|
|
}
|
|
if (opti82c611a & mask) {
|
|
ops = &opti82c611a_port_ops;
|
|
pio_modes = 0x0F;
|
|
}
|
|
if (opti82c46x & mask) {
|
|
ops = &opti82c46x_port_ops;
|
|
pio_modes = 0x0F;
|
|
}
|
|
|
|
/* Probe for automatically detectable controllers */
|
|
|
|
if (io == 0x1F0 && ops == &legacy_port_ops) {
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Probes */
|
|
inb(0x1F5);
|
|
outb(inb(0x1F2) | 0x80, 0x1F2);
|
|
inb(0x1F2);
|
|
inb(0x3F6);
|
|
inb(0x3F6);
|
|
inb(0x1F2);
|
|
inb(0x1F2);
|
|
|
|
if ((inb(0x1F2) & 0x80) == 0) {
|
|
/* PDC20230c or 20630 ? */
|
|
printk(KERN_INFO "PDC20230-C/20630 VLB ATA controller detected.\n");
|
|
pio_modes = 0x07;
|
|
ops = &pdc20230_port_ops;
|
|
iordy = ATA_FLAG_NO_IORDY;
|
|
udelay(100);
|
|
inb(0x1F5);
|
|
} else {
|
|
outb(0x55, 0x1F2);
|
|
inb(0x1F2);
|
|
inb(0x1F2);
|
|
if (inb(0x1F2) == 0x00) {
|
|
printk(KERN_INFO "PDC20230-B VLB ATA controller detected.\n");
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
/* Chip does mode setting by command snooping */
|
|
if (ops == &legacy_port_ops && (autospeed & mask))
|
|
ops = &simple_port_ops;
|
|
|
|
memset(&ae, 0, sizeof(struct ata_probe_ent));
|
|
INIT_LIST_HEAD(&ae.node);
|
|
ae.dev = &pdev->dev;
|
|
ae.port_ops = ops;
|
|
ae.sht = &legacy_sht;
|
|
ae.n_ports = 1;
|
|
ae.pio_mask = pio_modes;
|
|
ae.irq = irq;
|
|
ae.irq_flags = 0;
|
|
ae.port_flags = ATA_FLAG_SLAVE_POSS|ATA_FLAG_SRST|iordy;
|
|
ae.port[0].cmd_addr = io_addr;
|
|
ae.port[0].altstatus_addr = ctrl_addr;
|
|
ae.port[0].ctl_addr = ctrl_addr;
|
|
ata_std_ports(&ae.port[0]);
|
|
ae.private_data = ld;
|
|
|
|
ret = -ENODEV;
|
|
if (!ata_device_add(&ae))
|
|
goto fail;
|
|
|
|
legacy_host[nr_legacy_host++] = dev_get_drvdata(&pdev->dev);
|
|
ld->platform_dev = pdev;
|
|
return 0;
|
|
|
|
fail:
|
|
platform_device_unregister(pdev);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* legacy_check_special_cases - ATA special cases
|
|
* @p: PCI device to check
|
|
* @master: set this if we find an ATA master
|
|
* @master: set this if we find an ATA secondary
|
|
*
|
|
* A small number of vendors implemented early PCI ATA interfaces on bridge logic
|
|
* without the ATA interface being PCI visible. Where we have a matching PCI driver
|
|
* we must skip the relevant device here. If we don't know about it then the legacy
|
|
* driver is the right driver anyway.
|
|
*/
|
|
|
|
static void legacy_check_special_cases(struct pci_dev *p, int *primary, int *secondary)
|
|
{
|
|
/* Cyrix CS5510 pre SFF MWDMA ATA on the bridge */
|
|
if (p->vendor == 0x1078 && p->device == 0x0000) {
|
|
*primary = *secondary = 1;
|
|
return;
|
|
}
|
|
/* Cyrix CS5520 pre SFF MWDMA ATA on the bridge */
|
|
if (p->vendor == 0x1078 && p->device == 0x0002) {
|
|
*primary = *secondary = 1;
|
|
return;
|
|
}
|
|
/* Intel MPIIX - PIO ATA on non PCI side of bridge */
|
|
if (p->vendor == 0x8086 && p->device == 0x1234) {
|
|
u16 r;
|
|
pci_read_config_word(p, 0x6C, &r);
|
|
if (r & 0x8000) { /* ATA port enabled */
|
|
if (r & 0x4000)
|
|
*secondary = 1;
|
|
else
|
|
*primary = 1;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* legacy_init - attach legacy interfaces
|
|
*
|
|
* Attach legacy IDE interfaces by scanning the usual IRQ/port suspects.
|
|
* Right now we do not scan the ide0 and ide1 address but should do so
|
|
* for non PCI systems or systems with no PCI IDE legacy mode devices.
|
|
* If you fix that note there are special cases to consider like VLB
|
|
* drivers and CS5510/20.
|
|
*/
|
|
|
|
static __init int legacy_init(void)
|
|
{
|
|
int i;
|
|
int ct = 0;
|
|
int primary = 0;
|
|
int secondary = 0;
|
|
int last_port = NR_HOST;
|
|
|
|
struct pci_dev *p = NULL;
|
|
|
|
for_each_pci_dev(p) {
|
|
int r;
|
|
/* Check for any overlap of the system ATA mappings. Native mode controllers
|
|
stuck on these addresses or some devices in 'raid' mode won't be found by
|
|
the storage class test */
|
|
for (r = 0; r < 6; r++) {
|
|
if (pci_resource_start(p, r) == 0x1f0)
|
|
primary = 1;
|
|
if (pci_resource_start(p, r) == 0x170)
|
|
secondary = 1;
|
|
}
|
|
/* Check for special cases */
|
|
legacy_check_special_cases(p, &primary, &secondary);
|
|
|
|
/* If PCI bus is present then don't probe for tertiary legacy ports */
|
|
if (probe_all == 0)
|
|
last_port = 2;
|
|
}
|
|
|
|
/* If an OPTI 82C46X is present find out where the channels are */
|
|
if (opti82c46x) {
|
|
static const char *optis[4] = {
|
|
"3/463MV", "5MV",
|
|
"5MVA", "5MVB"
|
|
};
|
|
u8 chans = 1;
|
|
u8 ctrl = (opti_syscfg(0x30) & 0xC0) >> 6;
|
|
|
|
opti82c46x = 3; /* Assume master and slave first */
|
|
printk(KERN_INFO DRV_NAME ": Opti 82C46%s chipset support.\n", optis[ctrl]);
|
|
if (ctrl == 3)
|
|
chans = (opti_syscfg(0x3F) & 0x20) ? 2 : 1;
|
|
ctrl = opti_syscfg(0xAC);
|
|
/* Check enabled and this port is the 465MV port. On the
|
|
MVB we may have two channels */
|
|
if (ctrl & 8) {
|
|
if (ctrl & 4)
|
|
opti82c46x = 2; /* Slave */
|
|
else
|
|
opti82c46x = 1; /* Master */
|
|
if (chans == 2)
|
|
opti82c46x = 3; /* Master and Slave */
|
|
} /* Slave only */
|
|
else if (chans == 1)
|
|
opti82c46x = 1;
|
|
}
|
|
|
|
for (i = 0; i < last_port; i++) {
|
|
/* Skip primary if we have seen a PCI one */
|
|
if (i == 0 && primary == 1)
|
|
continue;
|
|
/* Skip secondary if we have seen a PCI one */
|
|
if (i == 1 && secondary == 1)
|
|
continue;
|
|
if (legacy_init_one(i, legacy_port[i],
|
|
legacy_port[i] + 0x0206,
|
|
legacy_irq[i]) == 0)
|
|
ct++;
|
|
}
|
|
if (ct != 0)
|
|
return 0;
|
|
return -ENODEV;
|
|
}
|
|
|
|
static __exit void legacy_exit(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_legacy_host; i++) {
|
|
struct legacy_data *ld = &legacy_data[i];
|
|
|
|
ata_host_detach(legacy_host[i]);
|
|
platform_device_unregister(ld->platform_dev);
|
|
if (ld->timing)
|
|
release_region(ld->timing, 2);
|
|
}
|
|
}
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
MODULE_DESCRIPTION("low-level driver for legacy ATA");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
module_param(probe_all, int, 0);
|
|
module_param(autospeed, int, 0);
|
|
module_param(ht6560a, int, 0);
|
|
module_param(ht6560b, int, 0);
|
|
module_param(opti82c611a, int, 0);
|
|
module_param(opti82c46x, int, 0);
|
|
module_param(pio_mask, int, 0);
|
|
module_param(iordy_mask, int, 0);
|
|
|
|
module_init(legacy_init);
|
|
module_exit(legacy_exit);
|
|
|