kernel-fxtec-pro1x/drivers/net/tokenring/smctr.c
Alan Cox 113aa838ec net: Rationalise email address: Network Specific Parts
Clean up the various different email addresses of mine listed in the code
to a single current and valid address. As Dave says his network merges
for 2.6.28 are now done this seems a good point to send them in where
they won't risk disrupting real changes.

Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-13 19:01:08 -07:00

5744 lines
187 KiB
C

/*
* smctr.c: A network driver for the SMC Token Ring Adapters.
*
* Written by Jay Schulist <jschlst@samba.org>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* This device driver works with the following SMC adapters:
* - SMC TokenCard Elite (8115T, chips 825/584)
* - SMC TokenCard Elite/A MCA (8115T/A, chips 825/594)
*
* Source(s):
* - SMC TokenCard SDK.
*
* Maintainer(s):
* JS Jay Schulist <jschlst@samba.org>
*
* Changes:
* 07102000 JS Fixed a timing problem in smctr_wait_cmd();
* Also added a bit more discriptive error msgs.
* 07122000 JS Fixed problem with detecting a card with
* module io/irq/mem specified.
*
* To do:
* 1. Multicast support.
*
* Initial 2.5 cleanup Alan Cox <alan@lxorguk.ukuu.org.uk> 2002/10/28
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mca-legacy.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/trdevice.h>
#include <linux/bitops.h>
#include <linux/firmware.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>
#if BITS_PER_LONG == 64
#error FIXME: driver does not support 64-bit platforms
#endif
#include "smctr.h" /* Our Stuff */
static char version[] __initdata = KERN_INFO "smctr.c: v1.4 7/12/00 by jschlst@samba.org\n";
static const char cardname[] = "smctr";
#define SMCTR_IO_EXTENT 20
#ifdef CONFIG_MCA_LEGACY
static unsigned int smctr_posid = 0x6ec6;
#endif
static int ringspeed;
/* SMC Name of the Adapter. */
static char smctr_name[] = "SMC TokenCard";
static char *smctr_model = "Unknown";
/* Use 0 for production, 1 for verification, 2 for debug, and
* 3 for very verbose debug.
*/
#ifndef SMCTR_DEBUG
#define SMCTR_DEBUG 1
#endif
static unsigned int smctr_debug = SMCTR_DEBUG;
/* smctr.c prototypes and functions are arranged alphabeticly
* for clearity, maintainability and pure old fashion fun.
*/
/* A */
static int smctr_alloc_shared_memory(struct net_device *dev);
/* B */
static int smctr_bypass_state(struct net_device *dev);
/* C */
static int smctr_checksum_firmware(struct net_device *dev);
static int __init smctr_chk_isa(struct net_device *dev);
static int smctr_chg_rx_mask(struct net_device *dev);
static int smctr_clear_int(struct net_device *dev);
static int smctr_clear_trc_reset(int ioaddr);
static int smctr_close(struct net_device *dev);
/* D */
static int smctr_decode_firmware(struct net_device *dev,
const struct firmware *fw);
static int smctr_disable_16bit(struct net_device *dev);
static int smctr_disable_adapter_ctrl_store(struct net_device *dev);
static int smctr_disable_bic_int(struct net_device *dev);
/* E */
static int smctr_enable_16bit(struct net_device *dev);
static int smctr_enable_adapter_ctrl_store(struct net_device *dev);
static int smctr_enable_adapter_ram(struct net_device *dev);
static int smctr_enable_bic_int(struct net_device *dev);
/* G */
static int __init smctr_get_boardid(struct net_device *dev, int mca);
static int smctr_get_group_address(struct net_device *dev);
static int smctr_get_functional_address(struct net_device *dev);
static unsigned int smctr_get_num_rx_bdbs(struct net_device *dev);
static int smctr_get_physical_drop_number(struct net_device *dev);
static __u8 *smctr_get_rx_pointer(struct net_device *dev, short queue);
static int smctr_get_station_id(struct net_device *dev);
static struct net_device_stats *smctr_get_stats(struct net_device *dev);
static FCBlock *smctr_get_tx_fcb(struct net_device *dev, __u16 queue,
__u16 bytes_count);
static int smctr_get_upstream_neighbor_addr(struct net_device *dev);
/* H */
static int smctr_hardware_send_packet(struct net_device *dev,
struct net_local *tp);
/* I */
static int smctr_init_acbs(struct net_device *dev);
static int smctr_init_adapter(struct net_device *dev);
static int smctr_init_card_real(struct net_device *dev);
static int smctr_init_rx_bdbs(struct net_device *dev);
static int smctr_init_rx_fcbs(struct net_device *dev);
static int smctr_init_shared_memory(struct net_device *dev);
static int smctr_init_tx_bdbs(struct net_device *dev);
static int smctr_init_tx_fcbs(struct net_device *dev);
static int smctr_internal_self_test(struct net_device *dev);
static irqreturn_t smctr_interrupt(int irq, void *dev_id);
static int smctr_issue_enable_int_cmd(struct net_device *dev,
__u16 interrupt_enable_mask);
static int smctr_issue_int_ack(struct net_device *dev, __u16 iack_code,
__u16 ibits);
static int smctr_issue_init_timers_cmd(struct net_device *dev);
static int smctr_issue_init_txrx_cmd(struct net_device *dev);
static int smctr_issue_insert_cmd(struct net_device *dev);
static int smctr_issue_read_ring_status_cmd(struct net_device *dev);
static int smctr_issue_read_word_cmd(struct net_device *dev, __u16 aword_cnt);
static int smctr_issue_remove_cmd(struct net_device *dev);
static int smctr_issue_resume_acb_cmd(struct net_device *dev);
static int smctr_issue_resume_rx_bdb_cmd(struct net_device *dev, __u16 queue);
static int smctr_issue_resume_rx_fcb_cmd(struct net_device *dev, __u16 queue);
static int smctr_issue_resume_tx_fcb_cmd(struct net_device *dev, __u16 queue);
static int smctr_issue_test_internal_rom_cmd(struct net_device *dev);
static int smctr_issue_test_hic_cmd(struct net_device *dev);
static int smctr_issue_test_mac_reg_cmd(struct net_device *dev);
static int smctr_issue_trc_loopback_cmd(struct net_device *dev);
static int smctr_issue_tri_loopback_cmd(struct net_device *dev);
static int smctr_issue_write_byte_cmd(struct net_device *dev,
short aword_cnt, void *byte);
static int smctr_issue_write_word_cmd(struct net_device *dev,
short aword_cnt, void *word);
/* J */
static int smctr_join_complete_state(struct net_device *dev);
/* L */
static int smctr_link_tx_fcbs_to_bdbs(struct net_device *dev);
static int smctr_load_firmware(struct net_device *dev);
static int smctr_load_node_addr(struct net_device *dev);
static int smctr_lobe_media_test(struct net_device *dev);
static int smctr_lobe_media_test_cmd(struct net_device *dev);
static int smctr_lobe_media_test_state(struct net_device *dev);
/* M */
static int smctr_make_8025_hdr(struct net_device *dev,
MAC_HEADER *rmf, MAC_HEADER *tmf, __u16 ac_fc);
static int smctr_make_access_pri(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_addr_mod(struct net_device *dev, MAC_SUB_VECTOR *tsv);
static int smctr_make_auth_funct_class(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_corr(struct net_device *dev,
MAC_SUB_VECTOR *tsv, __u16 correlator);
static int smctr_make_funct_addr(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_group_addr(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_phy_drop_num(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_product_id(struct net_device *dev, MAC_SUB_VECTOR *tsv);
static int smctr_make_station_id(struct net_device *dev, MAC_SUB_VECTOR *tsv);
static int smctr_make_ring_station_status(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_ring_station_version(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_tx_status_code(struct net_device *dev,
MAC_SUB_VECTOR *tsv, __u16 tx_fstatus);
static int smctr_make_upstream_neighbor_addr(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
static int smctr_make_wrap_data(struct net_device *dev,
MAC_SUB_VECTOR *tsv);
/* O */
static int smctr_open(struct net_device *dev);
static int smctr_open_tr(struct net_device *dev);
/* P */
struct net_device *smctr_probe(int unit);
static int __init smctr_probe1(struct net_device *dev, int ioaddr);
static int smctr_process_rx_packet(MAC_HEADER *rmf, __u16 size,
struct net_device *dev, __u16 rx_status);
/* R */
static int smctr_ram_memory_test(struct net_device *dev);
static int smctr_rcv_chg_param(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator);
static int smctr_rcv_init(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator);
static int smctr_rcv_tx_forward(struct net_device *dev, MAC_HEADER *rmf);
static int smctr_rcv_rq_addr_state_attch(struct net_device *dev,
MAC_HEADER *rmf, __u16 *correlator);
static int smctr_rcv_unknown(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator);
static int smctr_reset_adapter(struct net_device *dev);
static int smctr_restart_tx_chain(struct net_device *dev, short queue);
static int smctr_ring_status_chg(struct net_device *dev);
static int smctr_rx_frame(struct net_device *dev);
/* S */
static int smctr_send_dat(struct net_device *dev);
static int smctr_send_packet(struct sk_buff *skb, struct net_device *dev);
static int smctr_send_lobe_media_test(struct net_device *dev);
static int smctr_send_rpt_addr(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator);
static int smctr_send_rpt_attch(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator);
static int smctr_send_rpt_state(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator);
static int smctr_send_rpt_tx_forward(struct net_device *dev,
MAC_HEADER *rmf, __u16 tx_fstatus);
static int smctr_send_rsp(struct net_device *dev, MAC_HEADER *rmf,
__u16 rcode, __u16 correlator);
static int smctr_send_rq_init(struct net_device *dev);
static int smctr_send_tx_forward(struct net_device *dev, MAC_HEADER *rmf,
__u16 *tx_fstatus);
static int smctr_set_auth_access_pri(struct net_device *dev,
MAC_SUB_VECTOR *rsv);
static int smctr_set_auth_funct_class(struct net_device *dev,
MAC_SUB_VECTOR *rsv);
static int smctr_set_corr(struct net_device *dev, MAC_SUB_VECTOR *rsv,
__u16 *correlator);
static int smctr_set_error_timer_value(struct net_device *dev,
MAC_SUB_VECTOR *rsv);
static int smctr_set_frame_forward(struct net_device *dev,
MAC_SUB_VECTOR *rsv, __u8 dc_sc);
static int smctr_set_local_ring_num(struct net_device *dev,
MAC_SUB_VECTOR *rsv);
static unsigned short smctr_set_ctrl_attention(struct net_device *dev);
static void smctr_set_multicast_list(struct net_device *dev);
static int smctr_set_page(struct net_device *dev, __u8 *buf);
static int smctr_set_phy_drop(struct net_device *dev,
MAC_SUB_VECTOR *rsv);
static int smctr_set_ring_speed(struct net_device *dev);
static int smctr_set_rx_look_ahead(struct net_device *dev);
static int smctr_set_trc_reset(int ioaddr);
static int smctr_setup_single_cmd(struct net_device *dev,
__u16 command, __u16 subcommand);
static int smctr_setup_single_cmd_w_data(struct net_device *dev,
__u16 command, __u16 subcommand);
static char *smctr_malloc(struct net_device *dev, __u16 size);
static int smctr_status_chg(struct net_device *dev);
/* T */
static void smctr_timeout(struct net_device *dev);
static int smctr_trc_send_packet(struct net_device *dev, FCBlock *fcb,
__u16 queue);
static __u16 smctr_tx_complete(struct net_device *dev, __u16 queue);
static unsigned short smctr_tx_move_frame(struct net_device *dev,
struct sk_buff *skb, __u8 *pbuff, unsigned int bytes);
/* U */
static int smctr_update_err_stats(struct net_device *dev);
static int smctr_update_rx_chain(struct net_device *dev, __u16 queue);
static int smctr_update_tx_chain(struct net_device *dev, FCBlock *fcb,
__u16 queue);
/* W */
static int smctr_wait_cmd(struct net_device *dev);
static int smctr_wait_while_cbusy(struct net_device *dev);
#define TO_256_BYTE_BOUNDRY(X) (((X + 0xff) & 0xff00) - X)
#define TO_PARAGRAPH_BOUNDRY(X) (((X + 0x0f) & 0xfff0) - X)
#define PARAGRAPH_BOUNDRY(X) smctr_malloc(dev, TO_PARAGRAPH_BOUNDRY(X))
/* Allocate Adapter Shared Memory.
* IMPORTANT NOTE: Any changes to this function MUST be mirrored in the
* function "get_num_rx_bdbs" below!!!
*
* Order of memory allocation:
*
* 0. Initial System Configuration Block Pointer
* 1. System Configuration Block
* 2. System Control Block
* 3. Action Command Block
* 4. Interrupt Status Block
*
* 5. MAC TX FCB'S
* 6. NON-MAC TX FCB'S
* 7. MAC TX BDB'S
* 8. NON-MAC TX BDB'S
* 9. MAC RX FCB'S
* 10. NON-MAC RX FCB'S
* 11. MAC RX BDB'S
* 12. NON-MAC RX BDB'S
* 13. MAC TX Data Buffer( 1, 256 byte buffer)
* 14. MAC RX Data Buffer( 1, 256 byte buffer)
*
* 15. NON-MAC TX Data Buffer
* 16. NON-MAC RX Data Buffer
*/
static int smctr_alloc_shared_memory(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_alloc_shared_memory\n", dev->name);
/* Allocate initial System Control Block pointer.
* This pointer is located in the last page, last offset - 4.
*/
tp->iscpb_ptr = (ISCPBlock *)(tp->ram_access + ((__u32)64 * 0x400)
- (long)ISCP_BLOCK_SIZE);
/* Allocate System Control Blocks. */
tp->scgb_ptr = (SCGBlock *)smctr_malloc(dev, sizeof(SCGBlock));
PARAGRAPH_BOUNDRY(tp->sh_mem_used);
tp->sclb_ptr = (SCLBlock *)smctr_malloc(dev, sizeof(SCLBlock));
PARAGRAPH_BOUNDRY(tp->sh_mem_used);
tp->acb_head = (ACBlock *)smctr_malloc(dev,
sizeof(ACBlock)*tp->num_acbs);
PARAGRAPH_BOUNDRY(tp->sh_mem_used);
tp->isb_ptr = (ISBlock *)smctr_malloc(dev, sizeof(ISBlock));
PARAGRAPH_BOUNDRY(tp->sh_mem_used);
tp->misc_command_data = (__u16 *)smctr_malloc(dev, MISC_DATA_SIZE);
PARAGRAPH_BOUNDRY(tp->sh_mem_used);
/* Allocate transmit FCBs. */
tp->tx_fcb_head[MAC_QUEUE] = (FCBlock *)smctr_malloc(dev,
sizeof(FCBlock) * tp->num_tx_fcbs[MAC_QUEUE]);
tp->tx_fcb_head[NON_MAC_QUEUE] = (FCBlock *)smctr_malloc(dev,
sizeof(FCBlock) * tp->num_tx_fcbs[NON_MAC_QUEUE]);
tp->tx_fcb_head[BUG_QUEUE] = (FCBlock *)smctr_malloc(dev,
sizeof(FCBlock) * tp->num_tx_fcbs[BUG_QUEUE]);
/* Allocate transmit BDBs. */
tp->tx_bdb_head[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev,
sizeof(BDBlock) * tp->num_tx_bdbs[MAC_QUEUE]);
tp->tx_bdb_head[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev,
sizeof(BDBlock) * tp->num_tx_bdbs[NON_MAC_QUEUE]);
tp->tx_bdb_head[BUG_QUEUE] = (BDBlock *)smctr_malloc(dev,
sizeof(BDBlock) * tp->num_tx_bdbs[BUG_QUEUE]);
/* Allocate receive FCBs. */
tp->rx_fcb_head[MAC_QUEUE] = (FCBlock *)smctr_malloc(dev,
sizeof(FCBlock) * tp->num_rx_fcbs[MAC_QUEUE]);
tp->rx_fcb_head[NON_MAC_QUEUE] = (FCBlock *)smctr_malloc(dev,
sizeof(FCBlock) * tp->num_rx_fcbs[NON_MAC_QUEUE]);
/* Allocate receive BDBs. */
tp->rx_bdb_head[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev,
sizeof(BDBlock) * tp->num_rx_bdbs[MAC_QUEUE]);
tp->rx_bdb_end[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, 0);
tp->rx_bdb_head[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev,
sizeof(BDBlock) * tp->num_rx_bdbs[NON_MAC_QUEUE]);
tp->rx_bdb_end[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, 0);
/* Allocate MAC transmit buffers.
* MAC Tx Buffers doen't have to be on an ODD Boundry.
*/
tp->tx_buff_head[MAC_QUEUE]
= (__u16 *)smctr_malloc(dev, tp->tx_buff_size[MAC_QUEUE]);
tp->tx_buff_curr[MAC_QUEUE] = tp->tx_buff_head[MAC_QUEUE];
tp->tx_buff_end [MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0);
/* Allocate BUG transmit buffers. */
tp->tx_buff_head[BUG_QUEUE]
= (__u16 *)smctr_malloc(dev, tp->tx_buff_size[BUG_QUEUE]);
tp->tx_buff_curr[BUG_QUEUE] = tp->tx_buff_head[BUG_QUEUE];
tp->tx_buff_end[BUG_QUEUE] = (__u16 *)smctr_malloc(dev, 0);
/* Allocate MAC receive data buffers.
* MAC Rx buffer doesn't have to be on a 256 byte boundary.
*/
tp->rx_buff_head[MAC_QUEUE] = (__u16 *)smctr_malloc(dev,
RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[MAC_QUEUE]);
tp->rx_buff_end[MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0);
/* Allocate Non-MAC transmit buffers.
* ?? For maximum Netware performance, put Tx Buffers on
* ODD Boundry and then restore malloc to Even Boundrys.
*/
smctr_malloc(dev, 1L);
tp->tx_buff_head[NON_MAC_QUEUE]
= (__u16 *)smctr_malloc(dev, tp->tx_buff_size[NON_MAC_QUEUE]);
tp->tx_buff_curr[NON_MAC_QUEUE] = tp->tx_buff_head[NON_MAC_QUEUE];
tp->tx_buff_end [NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0);
smctr_malloc(dev, 1L);
/* Allocate Non-MAC receive data buffers.
* To guarantee a minimum of 256 contigous memory to
* UM_Receive_Packet's lookahead pointer, before a page
* change or ring end is encountered, place each rx buffer on
* a 256 byte boundary.
*/
smctr_malloc(dev, TO_256_BYTE_BOUNDRY(tp->sh_mem_used));
tp->rx_buff_head[NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev,
RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[NON_MAC_QUEUE]);
tp->rx_buff_end[NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0);
return (0);
}
/* Enter Bypass state. */
static int smctr_bypass_state(struct net_device *dev)
{
int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_bypass_state\n", dev->name);
err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE, JS_BYPASS_STATE);
return (err);
}
static int smctr_checksum_firmware(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
__u16 i, checksum = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_checksum_firmware\n", dev->name);
smctr_enable_adapter_ctrl_store(dev);
for(i = 0; i < CS_RAM_SIZE; i += 2)
checksum += *((__u16 *)(tp->ram_access + i));
tp->microcode_version = *(__u16 *)(tp->ram_access
+ CS_RAM_VERSION_OFFSET);
tp->microcode_version >>= 8;
smctr_disable_adapter_ctrl_store(dev);
if(checksum)
return (checksum);
return (0);
}
static int __init smctr_chk_mca(struct net_device *dev)
{
#ifdef CONFIG_MCA_LEGACY
struct net_local *tp = netdev_priv(dev);
int current_slot;
__u8 r1, r2, r3, r4, r5;
current_slot = mca_find_unused_adapter(smctr_posid, 0);
if(current_slot == MCA_NOTFOUND)
return (-ENODEV);
mca_set_adapter_name(current_slot, smctr_name);
mca_mark_as_used(current_slot);
tp->slot_num = current_slot;
r1 = mca_read_stored_pos(tp->slot_num, 2);
r2 = mca_read_stored_pos(tp->slot_num, 3);
if(tp->slot_num)
outb(CNFG_POS_CONTROL_REG, (__u8)((tp->slot_num - 1) | CNFG_SLOT_ENABLE_BIT));
else
outb(CNFG_POS_CONTROL_REG, (__u8)((tp->slot_num) | CNFG_SLOT_ENABLE_BIT));
r1 = inb(CNFG_POS_REG1);
r2 = inb(CNFG_POS_REG0);
tp->bic_type = BIC_594_CHIP;
/* IO */
r2 = mca_read_stored_pos(tp->slot_num, 2);
r2 &= 0xF0;
dev->base_addr = ((__u16)r2 << 8) + (__u16)0x800;
request_region(dev->base_addr, SMCTR_IO_EXTENT, smctr_name);
/* IRQ */
r5 = mca_read_stored_pos(tp->slot_num, 5);
r5 &= 0xC;
switch(r5)
{
case 0:
dev->irq = 3;
break;
case 0x4:
dev->irq = 4;
break;
case 0x8:
dev->irq = 10;
break;
default:
dev->irq = 15;
break;
}
if (request_irq(dev->irq, smctr_interrupt, IRQF_SHARED, smctr_name, dev)) {
release_region(dev->base_addr, SMCTR_IO_EXTENT);
return -ENODEV;
}
/* Get RAM base */
r3 = mca_read_stored_pos(tp->slot_num, 3);
tp->ram_base = ((__u32)(r3 & 0x7) << 13) + 0x0C0000;
if (r3 & 0x8)
tp->ram_base += 0x010000;
if (r3 & 0x80)
tp->ram_base += 0xF00000;
/* Get Ram Size */
r3 &= 0x30;
r3 >>= 4;
tp->ram_usable = (__u16)CNFG_SIZE_8KB << r3;
tp->ram_size = (__u16)CNFG_SIZE_64KB;
tp->board_id |= TOKEN_MEDIA;
r4 = mca_read_stored_pos(tp->slot_num, 4);
tp->rom_base = ((__u32)(r4 & 0x7) << 13) + 0x0C0000;
if (r4 & 0x8)
tp->rom_base += 0x010000;
/* Get ROM size. */
r4 >>= 4;
switch (r4) {
case 0:
tp->rom_size = CNFG_SIZE_8KB;
break;
case 1:
tp->rom_size = CNFG_SIZE_16KB;
break;
case 2:
tp->rom_size = CNFG_SIZE_32KB;
break;
default:
tp->rom_size = ROM_DISABLE;
}
/* Get Media Type. */
r5 = mca_read_stored_pos(tp->slot_num, 5);
r5 &= CNFG_MEDIA_TYPE_MASK;
switch(r5)
{
case (0):
tp->media_type = MEDIA_STP_4;
break;
case (1):
tp->media_type = MEDIA_STP_16;
break;
case (3):
tp->media_type = MEDIA_UTP_16;
break;
default:
tp->media_type = MEDIA_UTP_4;
break;
}
tp->media_menu = 14;
r2 = mca_read_stored_pos(tp->slot_num, 2);
if(!(r2 & 0x02))
tp->mode_bits |= EARLY_TOKEN_REL;
/* Disable slot */
outb(CNFG_POS_CONTROL_REG, 0);
tp->board_id = smctr_get_boardid(dev, 1);
switch(tp->board_id & 0xffff)
{
case WD8115TA:
smctr_model = "8115T/A";
break;
case WD8115T:
if(tp->extra_info & CHIP_REV_MASK)
smctr_model = "8115T rev XE";
else
smctr_model = "8115T rev XD";
break;
default:
smctr_model = "Unknown";
break;
}
return (0);
#else
return (-1);
#endif /* CONFIG_MCA_LEGACY */
}
static int smctr_chg_rx_mask(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_chg_rx_mask\n", dev->name);
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if(tp->mode_bits & LOOPING_MODE_MASK)
tp->config_word0 |= RX_OWN_BIT;
else
tp->config_word0 &= ~RX_OWN_BIT;
if(tp->receive_mask & PROMISCUOUS_MODE)
tp->config_word0 |= PROMISCUOUS_BIT;
else
tp->config_word0 &= ~PROMISCUOUS_BIT;
if(tp->receive_mask & ACCEPT_ERR_PACKETS)
tp->config_word0 |= SAVBAD_BIT;
else
tp->config_word0 &= ~SAVBAD_BIT;
if(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES)
tp->config_word0 |= RXATMAC;
else
tp->config_word0 &= ~RXATMAC;
if(tp->receive_mask & ACCEPT_MULTI_PROM)
tp->config_word1 |= MULTICAST_ADDRESS_BIT;
else
tp->config_word1 &= ~MULTICAST_ADDRESS_BIT;
if(tp->receive_mask & ACCEPT_SOURCE_ROUTING_SPANNING)
tp->config_word1 |= SOURCE_ROUTING_SPANNING_BITS;
else
{
if(tp->receive_mask & ACCEPT_SOURCE_ROUTING)
tp->config_word1 |= SOURCE_ROUTING_EXPLORER_BIT;
else
tp->config_word1 &= ~SOURCE_ROUTING_SPANNING_BITS;
}
if((err = smctr_issue_write_word_cmd(dev, RW_CONFIG_REGISTER_0,
&tp->config_word0)))
{
return (err);
}
if((err = smctr_issue_write_word_cmd(dev, RW_CONFIG_REGISTER_1,
&tp->config_word1)))
{
return (err);
}
smctr_disable_16bit(dev);
return (0);
}
static int smctr_clear_int(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
outb((tp->trc_mask | CSR_CLRTINT), dev->base_addr + CSR);
return (0);
}
static int smctr_clear_trc_reset(int ioaddr)
{
__u8 r;
r = inb(ioaddr + MSR);
outb(~MSR_RST & r, ioaddr + MSR);
return (0);
}
/*
* The inverse routine to smctr_open().
*/
static int smctr_close(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
struct sk_buff *skb;
int err;
netif_stop_queue(dev);
tp->cleanup = 1;
/* Check to see if adapter is already in a closed state. */
if(tp->status != OPEN)
return (0);
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if((err = smctr_issue_remove_cmd(dev)))
{
smctr_disable_16bit(dev);
return (err);
}
for(;;)
{
skb = skb_dequeue(&tp->SendSkbQueue);
if(skb == NULL)
break;
tp->QueueSkb++;
dev_kfree_skb(skb);
}
return (0);
}
static int smctr_decode_firmware(struct net_device *dev,
const struct firmware *fw)
{
struct net_local *tp = netdev_priv(dev);
short bit = 0x80, shift = 12;
DECODE_TREE_NODE *tree;
short branch, tsize;
__u16 buff = 0;
long weight;
__u8 *ucode;
__u16 *mem;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_decode_firmware\n", dev->name);
weight = *(long *)(fw->data + WEIGHT_OFFSET);
tsize = *(__u8 *)(fw->data + TREE_SIZE_OFFSET);
tree = (DECODE_TREE_NODE *)(fw->data + TREE_OFFSET);
ucode = (__u8 *)(fw->data + TREE_OFFSET
+ (tsize * sizeof(DECODE_TREE_NODE)));
mem = (__u16 *)(tp->ram_access);
while(weight)
{
branch = ROOT;
while((tree + branch)->tag != LEAF && weight)
{
branch = *ucode & bit ? (tree + branch)->llink
: (tree + branch)->rlink;
bit >>= 1;
weight--;
if(bit == 0)
{
bit = 0x80;
ucode++;
}
}
buff |= (tree + branch)->info << shift;
shift -= 4;
if(shift < 0)
{
*(mem++) = SWAP_BYTES(buff);
buff = 0;
shift = 12;
}
}
/* The following assumes the Control Store Memory has
* been initialized to zero. If the last partial word
* is zero, it will not be written.
*/
if(buff)
*(mem++) = SWAP_BYTES(buff);
return (0);
}
static int smctr_disable_16bit(struct net_device *dev)
{
return (0);
}
/*
* On Exit, Adapter is:
* 1. TRC is in a reset state and un-initialized.
* 2. Adapter memory is enabled.
* 3. Control Store memory is out of context (-WCSS is 1).
*/
static int smctr_disable_adapter_ctrl_store(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_disable_adapter_ctrl_store\n", dev->name);
tp->trc_mask |= CSR_WCSS;
outb(tp->trc_mask, ioaddr + CSR);
return (0);
}
static int smctr_disable_bic_int(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
tp->trc_mask = CSR_MSK_ALL | CSR_MSKCBUSY
| CSR_MSKTINT | CSR_WCSS;
outb(tp->trc_mask, ioaddr + CSR);
return (0);
}
static int smctr_enable_16bit(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
__u8 r;
if(tp->adapter_bus == BUS_ISA16_TYPE)
{
r = inb(dev->base_addr + LAAR);
outb((r | LAAR_MEM16ENB), dev->base_addr + LAAR);
}
return (0);
}
/*
* To enable the adapter control store memory:
* 1. Adapter must be in a RESET state.
* 2. Adapter memory must be enabled.
* 3. Control Store Memory is in context (-WCSS is 0).
*/
static int smctr_enable_adapter_ctrl_store(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_enable_adapter_ctrl_store\n", dev->name);
smctr_set_trc_reset(ioaddr);
smctr_enable_adapter_ram(dev);
tp->trc_mask &= ~CSR_WCSS;
outb(tp->trc_mask, ioaddr + CSR);
return (0);
}
static int smctr_enable_adapter_ram(struct net_device *dev)
{
int ioaddr = dev->base_addr;
__u8 r;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_enable_adapter_ram\n", dev->name);
r = inb(ioaddr + MSR);
outb(MSR_MEMB | r, ioaddr + MSR);
return (0);
}
static int smctr_enable_bic_int(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
__u8 r;
switch(tp->bic_type)
{
case (BIC_584_CHIP):
tp->trc_mask = CSR_MSKCBUSY | CSR_WCSS;
outb(tp->trc_mask, ioaddr + CSR);
r = inb(ioaddr + IRR);
outb(r | IRR_IEN, ioaddr + IRR);
break;
case (BIC_594_CHIP):
tp->trc_mask = CSR_MSKCBUSY | CSR_WCSS;
outb(tp->trc_mask, ioaddr + CSR);
r = inb(ioaddr + IMCCR);
outb(r | IMCCR_EIL, ioaddr + IMCCR);
break;
}
return (0);
}
static int __init smctr_chk_isa(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
__u8 r1, r2, b, chksum = 0;
__u16 r;
int i;
int err = -ENODEV;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_chk_isa %#4x\n", dev->name, ioaddr);
if((ioaddr & 0x1F) != 0)
goto out;
/* Grab the region so that no one else tries to probe our ioports. */
if (!request_region(ioaddr, SMCTR_IO_EXTENT, smctr_name)) {
err = -EBUSY;
goto out;
}
/* Checksum SMC node address */
for(i = 0; i < 8; i++)
{
b = inb(ioaddr + LAR0 + i);
chksum += b;
}
if (chksum != NODE_ADDR_CKSUM)
goto out2;
b = inb(ioaddr + BDID);
if(b != BRD_ID_8115T)
{
printk(KERN_ERR "%s: The adapter found is not supported\n", dev->name);
goto out2;
}
/* Check for 8115T Board ID */
r2 = 0;
for(r = 0; r < 8; r++)
{
r1 = inb(ioaddr + 0x8 + r);
r2 += r1;
}
/* value of RegF adds up the sum to 0xFF */
if((r2 != 0xFF) && (r2 != 0xEE))
goto out2;
/* Get adapter ID */
tp->board_id = smctr_get_boardid(dev, 0);
switch(tp->board_id & 0xffff)
{
case WD8115TA:
smctr_model = "8115T/A";
break;
case WD8115T:
if(tp->extra_info & CHIP_REV_MASK)
smctr_model = "8115T rev XE";
else
smctr_model = "8115T rev XD";
break;
default:
smctr_model = "Unknown";
break;
}
/* Store BIC type. */
tp->bic_type = BIC_584_CHIP;
tp->nic_type = NIC_825_CHIP;
/* Copy Ram Size */
tp->ram_usable = CNFG_SIZE_16KB;
tp->ram_size = CNFG_SIZE_64KB;
/* Get 58x Ram Base */
r1 = inb(ioaddr);
r1 &= 0x3F;
r2 = inb(ioaddr + CNFG_LAAR_584);
r2 &= CNFG_LAAR_MASK;
r2 <<= 3;
r2 |= ((r1 & 0x38) >> 3);
tp->ram_base = ((__u32)r2 << 16) + (((__u32)(r1 & 0x7)) << 13);
/* Get 584 Irq */
r1 = 0;
r1 = inb(ioaddr + CNFG_ICR_583);
r1 &= CNFG_ICR_IR2_584;
r2 = inb(ioaddr + CNFG_IRR_583);
r2 &= CNFG_IRR_IRQS; /* 0x60 */
r2 >>= 5;
switch(r2)
{
case 0:
if(r1 == 0)
dev->irq = 2;
else
dev->irq = 10;
break;
case 1:
if(r1 == 0)
dev->irq = 3;
else
dev->irq = 11;
break;
case 2:
if(r1 == 0)
{
if(tp->extra_info & ALTERNATE_IRQ_BIT)
dev->irq = 5;
else
dev->irq = 4;
}
else
dev->irq = 15;
break;
case 3:
if(r1 == 0)
dev->irq = 7;
else
dev->irq = 4;
break;
default:
printk(KERN_ERR "%s: No IRQ found aborting\n", dev->name);
goto out2;
}
if (request_irq(dev->irq, smctr_interrupt, IRQF_SHARED, smctr_name, dev))
goto out2;
/* Get 58x Rom Base */
r1 = inb(ioaddr + CNFG_BIO_583);
r1 &= 0x3E;
r1 |= 0x40;
tp->rom_base = (__u32)r1 << 13;
/* Get 58x Rom Size */
r1 = inb(ioaddr + CNFG_BIO_583);
r1 &= 0xC0;
if(r1 == 0)
tp->rom_size = ROM_DISABLE;
else
{
r1 >>= 6;
tp->rom_size = (__u16)CNFG_SIZE_8KB << r1;
}
/* Get 58x Boot Status */
r1 = inb(ioaddr + CNFG_GP2);
tp->mode_bits &= (~BOOT_STATUS_MASK);
if(r1 & CNFG_GP2_BOOT_NIBBLE)
tp->mode_bits |= BOOT_TYPE_1;
/* Get 58x Zero Wait State */
tp->mode_bits &= (~ZERO_WAIT_STATE_MASK);
r1 = inb(ioaddr + CNFG_IRR_583);
if(r1 & CNFG_IRR_ZWS)
tp->mode_bits |= ZERO_WAIT_STATE_8_BIT;
if(tp->board_id & BOARD_16BIT)
{
r1 = inb(ioaddr + CNFG_LAAR_584);
if(r1 & CNFG_LAAR_ZWS)
tp->mode_bits |= ZERO_WAIT_STATE_16_BIT;
}
/* Get 584 Media Menu */
tp->media_menu = 14;
r1 = inb(ioaddr + CNFG_IRR_583);
tp->mode_bits &= 0xf8ff; /* (~CNFG_INTERFACE_TYPE_MASK) */
if((tp->board_id & TOKEN_MEDIA) == TOKEN_MEDIA)
{
/* Get Advanced Features */
if(((r1 & 0x6) >> 1) == 0x3)
tp->media_type |= MEDIA_UTP_16;
else
{
if(((r1 & 0x6) >> 1) == 0x2)
tp->media_type |= MEDIA_STP_16;
else
{
if(((r1 & 0x6) >> 1) == 0x1)
tp->media_type |= MEDIA_UTP_4;
else
tp->media_type |= MEDIA_STP_4;
}
}
r1 = inb(ioaddr + CNFG_GP2);
if(!(r1 & 0x2) ) /* GP2_ETRD */
tp->mode_bits |= EARLY_TOKEN_REL;
/* see if the chip is corrupted
if(smctr_read_584_chksum(ioaddr))
{
printk(KERN_ERR "%s: EEPROM Checksum Failure\n", dev->name);
free_irq(dev->irq, dev);
goto out2;
}
*/
}
return (0);
out2:
release_region(ioaddr, SMCTR_IO_EXTENT);
out:
return err;
}
static int __init smctr_get_boardid(struct net_device *dev, int mca)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
__u8 r, r1, IdByte;
__u16 BoardIdMask;
tp->board_id = BoardIdMask = 0;
if(mca)
{
BoardIdMask |= (MICROCHANNEL+INTERFACE_CHIP+TOKEN_MEDIA+PAGED_RAM+BOARD_16BIT);
tp->extra_info |= (INTERFACE_594_CHIP+RAM_SIZE_64K+NIC_825_BIT+ALTERNATE_IRQ_BIT+SLOT_16BIT);
}
else
{
BoardIdMask|=(INTERFACE_CHIP+TOKEN_MEDIA+PAGED_RAM+BOARD_16BIT);
tp->extra_info |= (INTERFACE_584_CHIP + RAM_SIZE_64K
+ NIC_825_BIT + ALTERNATE_IRQ_BIT);
}
if(!mca)
{
r = inb(ioaddr + BID_REG_1);
r &= 0x0c;
outb(r, ioaddr + BID_REG_1);
r = inb(ioaddr + BID_REG_1);
if(r & BID_SIXTEEN_BIT_BIT)
{
tp->extra_info |= SLOT_16BIT;
tp->adapter_bus = BUS_ISA16_TYPE;
}
else
tp->adapter_bus = BUS_ISA8_TYPE;
}
else
tp->adapter_bus = BUS_MCA_TYPE;
/* Get Board Id Byte */
IdByte = inb(ioaddr + BID_BOARD_ID_BYTE);
/* if Major version > 1.0 then
* return;
*/
if(IdByte & 0xF8)
return (-1);
r1 = inb(ioaddr + BID_REG_1);
r1 &= BID_ICR_MASK;
r1 |= BID_OTHER_BIT;
outb(r1, ioaddr + BID_REG_1);
r1 = inb(ioaddr + BID_REG_3);
r1 &= BID_EAR_MASK;
r1 |= BID_ENGR_PAGE;
outb(r1, ioaddr + BID_REG_3);
r1 = inb(ioaddr + BID_REG_1);
r1 &= BID_ICR_MASK;
r1 |= (BID_RLA | BID_OTHER_BIT);
outb(r1, ioaddr + BID_REG_1);
r1 = inb(ioaddr + BID_REG_1);
while(r1 & BID_RECALL_DONE_MASK)
r1 = inb(ioaddr + BID_REG_1);
r = inb(ioaddr + BID_LAR_0 + BID_REG_6);
/* clear chip rev bits */
tp->extra_info &= ~CHIP_REV_MASK;
tp->extra_info |= ((r & BID_EEPROM_CHIP_REV_MASK) << 6);
r1 = inb(ioaddr + BID_REG_1);
r1 &= BID_ICR_MASK;
r1 |= BID_OTHER_BIT;
outb(r1, ioaddr + BID_REG_1);
r1 = inb(ioaddr + BID_REG_3);
r1 &= BID_EAR_MASK;
r1 |= BID_EA6;
outb(r1, ioaddr + BID_REG_3);
r1 = inb(ioaddr + BID_REG_1);
r1 &= BID_ICR_MASK;
r1 |= BID_RLA;
outb(r1, ioaddr + BID_REG_1);
r1 = inb(ioaddr + BID_REG_1);
while(r1 & BID_RECALL_DONE_MASK)
r1 = inb(ioaddr + BID_REG_1);
return (BoardIdMask);
}
static int smctr_get_group_address(struct net_device *dev)
{
smctr_issue_read_word_cmd(dev, RW_INDIVIDUAL_GROUP_ADDR);
return(smctr_wait_cmd(dev));
}
static int smctr_get_functional_address(struct net_device *dev)
{
smctr_issue_read_word_cmd(dev, RW_FUNCTIONAL_ADDR);
return(smctr_wait_cmd(dev));
}
/* Calculate number of Non-MAC receive BDB's and data buffers.
* This function must simulate allocateing shared memory exactly
* as the allocate_shared_memory function above.
*/
static unsigned int smctr_get_num_rx_bdbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int mem_used = 0;
/* Allocate System Control Blocks. */
mem_used += sizeof(SCGBlock);
mem_used += TO_PARAGRAPH_BOUNDRY(mem_used);
mem_used += sizeof(SCLBlock);
mem_used += TO_PARAGRAPH_BOUNDRY(mem_used);
mem_used += sizeof(ACBlock) * tp->num_acbs;
mem_used += TO_PARAGRAPH_BOUNDRY(mem_used);
mem_used += sizeof(ISBlock);
mem_used += TO_PARAGRAPH_BOUNDRY(mem_used);
mem_used += MISC_DATA_SIZE;
/* Allocate transmit FCB's. */
mem_used += TO_PARAGRAPH_BOUNDRY(mem_used);
mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[MAC_QUEUE];
mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[NON_MAC_QUEUE];
mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[BUG_QUEUE];
/* Allocate transmit BDBs. */
mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[MAC_QUEUE];
mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[NON_MAC_QUEUE];
mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[BUG_QUEUE];
/* Allocate receive FCBs. */
mem_used += sizeof(FCBlock) * tp->num_rx_fcbs[MAC_QUEUE];
mem_used += sizeof(FCBlock) * tp->num_rx_fcbs[NON_MAC_QUEUE];
/* Allocate receive BDBs. */
mem_used += sizeof(BDBlock) * tp->num_rx_bdbs[MAC_QUEUE];
/* Allocate MAC transmit buffers.
* MAC transmit buffers don't have to be on an ODD Boundry.
*/
mem_used += tp->tx_buff_size[MAC_QUEUE];
/* Allocate BUG transmit buffers. */
mem_used += tp->tx_buff_size[BUG_QUEUE];
/* Allocate MAC receive data buffers.
* MAC receive buffers don't have to be on a 256 byte boundary.
*/
mem_used += RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[MAC_QUEUE];
/* Allocate Non-MAC transmit buffers.
* For maximum Netware performance, put Tx Buffers on
* ODD Boundry,and then restore malloc to Even Boundrys.
*/
mem_used += 1L;
mem_used += tp->tx_buff_size[NON_MAC_QUEUE];
mem_used += 1L;
/* CALCULATE NUMBER OF NON-MAC RX BDB'S
* AND NON-MAC RX DATA BUFFERS
*
* Make sure the mem_used offset at this point is the
* same as in allocate_shared memory or the following
* boundary adjustment will be incorrect (i.e. not allocating
* the non-mac receive buffers above cannot change the 256
* byte offset).
*
* Since this cannot be guaranteed, adding the full 256 bytes
* to the amount of shared memory used at this point will guaranteed
* that the rx data buffers do not overflow shared memory.
*/
mem_used += 0x100;
return((0xffff - mem_used) / (RX_DATA_BUFFER_SIZE + sizeof(BDBlock)));
}
static int smctr_get_physical_drop_number(struct net_device *dev)
{
smctr_issue_read_word_cmd(dev, RW_PHYSICAL_DROP_NUMBER);
return(smctr_wait_cmd(dev));
}
static __u8 * smctr_get_rx_pointer(struct net_device *dev, short queue)
{
struct net_local *tp = netdev_priv(dev);
BDBlock *bdb;
bdb = (BDBlock *)((__u32)tp->ram_access
+ (__u32)(tp->rx_fcb_curr[queue]->trc_bdb_ptr));
tp->rx_fcb_curr[queue]->bdb_ptr = bdb;
return ((__u8 *)bdb->data_block_ptr);
}
static int smctr_get_station_id(struct net_device *dev)
{
smctr_issue_read_word_cmd(dev, RW_INDIVIDUAL_MAC_ADDRESS);
return(smctr_wait_cmd(dev));
}
/*
* Get the current statistics. This may be called with the card open
* or closed.
*/
static struct net_device_stats *smctr_get_stats(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
return ((struct net_device_stats *)&tp->MacStat);
}
static FCBlock *smctr_get_tx_fcb(struct net_device *dev, __u16 queue,
__u16 bytes_count)
{
struct net_local *tp = netdev_priv(dev);
FCBlock *pFCB;
BDBlock *pbdb;
unsigned short alloc_size;
unsigned short *temp;
if(smctr_debug > 20)
printk(KERN_DEBUG "smctr_get_tx_fcb\n");
/* check if there is enough FCB blocks */
if(tp->num_tx_fcbs_used[queue] >= tp->num_tx_fcbs[queue])
return ((FCBlock *)(-1L));
/* round off the input pkt size to the nearest even number */
alloc_size = (bytes_count + 1) & 0xfffe;
/* check if enough mem */
if((tp->tx_buff_used[queue] + alloc_size) > tp->tx_buff_size[queue])
return ((FCBlock *)(-1L));
/* check if past the end ;
* if exactly enough mem to end of ring, alloc from front.
* this avoids update of curr when curr = end
*/
if(((unsigned long)(tp->tx_buff_curr[queue]) + alloc_size)
>= (unsigned long)(tp->tx_buff_end[queue]))
{
/* check if enough memory from ring head */
alloc_size = alloc_size +
(__u16)((__u32)tp->tx_buff_end[queue]
- (__u32)tp->tx_buff_curr[queue]);
if((tp->tx_buff_used[queue] + alloc_size)
> tp->tx_buff_size[queue])
{
return ((FCBlock *)(-1L));
}
/* ring wrap */
tp->tx_buff_curr[queue] = tp->tx_buff_head[queue];
}
tp->tx_buff_used[queue] += alloc_size;
tp->num_tx_fcbs_used[queue]++;
tp->tx_fcb_curr[queue]->frame_length = bytes_count;
tp->tx_fcb_curr[queue]->memory_alloc = alloc_size;
temp = tp->tx_buff_curr[queue];
tp->tx_buff_curr[queue]
= (__u16 *)((__u32)temp + (__u32)((bytes_count + 1) & 0xfffe));
pbdb = tp->tx_fcb_curr[queue]->bdb_ptr;
pbdb->buffer_length = bytes_count;
pbdb->data_block_ptr = temp;
pbdb->trc_data_block_ptr = TRC_POINTER(temp);
pFCB = tp->tx_fcb_curr[queue];
tp->tx_fcb_curr[queue] = tp->tx_fcb_curr[queue]->next_ptr;
return (pFCB);
}
static int smctr_get_upstream_neighbor_addr(struct net_device *dev)
{
smctr_issue_read_word_cmd(dev, RW_UPSTREAM_NEIGHBOR_ADDRESS);
return(smctr_wait_cmd(dev));
}
static int smctr_hardware_send_packet(struct net_device *dev,
struct net_local *tp)
{
struct tr_statistics *tstat = &tp->MacStat;
struct sk_buff *skb;
FCBlock *fcb;
if(smctr_debug > 10)
printk(KERN_DEBUG"%s: smctr_hardware_send_packet\n", dev->name);
if(tp->status != OPEN)
return (-1);
if(tp->monitor_state_ready != 1)
return (-1);
for(;;)
{
/* Send first buffer from queue */
skb = skb_dequeue(&tp->SendSkbQueue);
if(skb == NULL)
return (-1);
tp->QueueSkb++;
if(skb->len < SMC_HEADER_SIZE || skb->len > tp->max_packet_size) return (-1);
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if((fcb = smctr_get_tx_fcb(dev, NON_MAC_QUEUE, skb->len))
== (FCBlock *)(-1L))
{
smctr_disable_16bit(dev);
return (-1);
}
smctr_tx_move_frame(dev, skb,
(__u8 *)fcb->bdb_ptr->data_block_ptr, skb->len);
smctr_set_page(dev, (__u8 *)fcb);
smctr_trc_send_packet(dev, fcb, NON_MAC_QUEUE);
dev_kfree_skb(skb);
tstat->tx_packets++;
smctr_disable_16bit(dev);
}
return (0);
}
static int smctr_init_acbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i;
ACBlock *acb;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_init_acbs\n", dev->name);
acb = tp->acb_head;
acb->cmd_done_status = (ACB_COMMAND_DONE | ACB_COMMAND_SUCCESSFUL);
acb->cmd_info = ACB_CHAIN_END;
acb->cmd = 0;
acb->subcmd = 0;
acb->data_offset_lo = 0;
acb->data_offset_hi = 0;
acb->next_ptr
= (ACBlock *)(((char *)acb) + sizeof(ACBlock));
acb->trc_next_ptr = TRC_POINTER(acb->next_ptr);
for(i = 1; i < tp->num_acbs; i++)
{
acb = acb->next_ptr;
acb->cmd_done_status
= (ACB_COMMAND_DONE | ACB_COMMAND_SUCCESSFUL);
acb->cmd_info = ACB_CHAIN_END;
acb->cmd = 0;
acb->subcmd = 0;
acb->data_offset_lo = 0;
acb->data_offset_hi = 0;
acb->next_ptr
= (ACBlock *)(((char *)acb) + sizeof(ACBlock));
acb->trc_next_ptr = TRC_POINTER(acb->next_ptr);
}
acb->next_ptr = tp->acb_head;
acb->trc_next_ptr = TRC_POINTER(tp->acb_head);
tp->acb_next = tp->acb_head->next_ptr;
tp->acb_curr = tp->acb_head->next_ptr;
tp->num_acbs_used = 0;
return (0);
}
static int smctr_init_adapter(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_init_adapter\n", dev->name);
tp->status = CLOSED;
tp->page_offset_mask = (tp->ram_usable * 1024) - 1;
skb_queue_head_init(&tp->SendSkbQueue);
tp->QueueSkb = MAX_TX_QUEUE;
if(!(tp->group_address_0 & 0x0080))
tp->group_address_0 |= 0x00C0;
if(!(tp->functional_address_0 & 0x00C0))
tp->functional_address_0 |= 0x00C0;
tp->functional_address[0] &= 0xFF7F;
if(tp->authorized_function_classes == 0)
tp->authorized_function_classes = 0x7FFF;
if(tp->authorized_access_priority == 0)
tp->authorized_access_priority = 0x06;
smctr_disable_bic_int(dev);
smctr_set_trc_reset(dev->base_addr);
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if(smctr_checksum_firmware(dev))
{
printk(KERN_ERR "%s: Previously loaded firmware is missing\n",dev->name); return (-ENOENT);
}
if((err = smctr_ram_memory_test(dev)))
{
printk(KERN_ERR "%s: RAM memory test failed.\n", dev->name);
return (-EIO);
}
smctr_set_rx_look_ahead(dev);
smctr_load_node_addr(dev);
/* Initialize adapter for Internal Self Test. */
smctr_reset_adapter(dev);
if((err = smctr_init_card_real(dev)))
{
printk(KERN_ERR "%s: Initialization of card failed (%d)\n",
dev->name, err);
return (-EINVAL);
}
/* This routine clobbers the TRC's internal registers. */
if((err = smctr_internal_self_test(dev)))
{
printk(KERN_ERR "%s: Card failed internal self test (%d)\n",
dev->name, err);
return (-EINVAL);
}
/* Re-Initialize adapter's internal registers */
smctr_reset_adapter(dev);
if((err = smctr_init_card_real(dev)))
{
printk(KERN_ERR "%s: Initialization of card failed (%d)\n",
dev->name, err);
return (-EINVAL);
}
smctr_enable_bic_int(dev);
if((err = smctr_issue_enable_int_cmd(dev, TRC_INTERRUPT_ENABLE_MASK)))
return (err);
smctr_disable_16bit(dev);
return (0);
}
static int smctr_init_card_real(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_init_card_real\n", dev->name);
tp->sh_mem_used = 0;
tp->num_acbs = NUM_OF_ACBS;
/* Range Check Max Packet Size */
if(tp->max_packet_size < 256)
tp->max_packet_size = 256;
else
{
if(tp->max_packet_size > NON_MAC_TX_BUFFER_MEMORY)
tp->max_packet_size = NON_MAC_TX_BUFFER_MEMORY;
}
tp->num_of_tx_buffs = (NON_MAC_TX_BUFFER_MEMORY
/ tp->max_packet_size) - 1;
if(tp->num_of_tx_buffs > NUM_NON_MAC_TX_FCBS)
tp->num_of_tx_buffs = NUM_NON_MAC_TX_FCBS;
else
{
if(tp->num_of_tx_buffs == 0)
tp->num_of_tx_buffs = 1;
}
/* Tx queue constants */
tp->num_tx_fcbs [BUG_QUEUE] = NUM_BUG_TX_FCBS;
tp->num_tx_bdbs [BUG_QUEUE] = NUM_BUG_TX_BDBS;
tp->tx_buff_size [BUG_QUEUE] = BUG_TX_BUFFER_MEMORY;
tp->tx_buff_used [BUG_QUEUE] = 0;
tp->tx_queue_status [BUG_QUEUE] = NOT_TRANSMITING;
tp->num_tx_fcbs [MAC_QUEUE] = NUM_MAC_TX_FCBS;
tp->num_tx_bdbs [MAC_QUEUE] = NUM_MAC_TX_BDBS;
tp->tx_buff_size [MAC_QUEUE] = MAC_TX_BUFFER_MEMORY;
tp->tx_buff_used [MAC_QUEUE] = 0;
tp->tx_queue_status [MAC_QUEUE] = NOT_TRANSMITING;
tp->num_tx_fcbs [NON_MAC_QUEUE] = NUM_NON_MAC_TX_FCBS;
tp->num_tx_bdbs [NON_MAC_QUEUE] = NUM_NON_MAC_TX_BDBS;
tp->tx_buff_size [NON_MAC_QUEUE] = NON_MAC_TX_BUFFER_MEMORY;
tp->tx_buff_used [NON_MAC_QUEUE] = 0;
tp->tx_queue_status [NON_MAC_QUEUE] = NOT_TRANSMITING;
/* Receive Queue Constants */
tp->num_rx_fcbs[MAC_QUEUE] = NUM_MAC_RX_FCBS;
tp->num_rx_bdbs[MAC_QUEUE] = NUM_MAC_RX_BDBS;
if(tp->extra_info & CHIP_REV_MASK)
tp->num_rx_fcbs[NON_MAC_QUEUE] = 78; /* 825 Rev. XE */
else
tp->num_rx_fcbs[NON_MAC_QUEUE] = 7; /* 825 Rev. XD */
tp->num_rx_bdbs[NON_MAC_QUEUE] = smctr_get_num_rx_bdbs(dev);
smctr_alloc_shared_memory(dev);
smctr_init_shared_memory(dev);
if((err = smctr_issue_init_timers_cmd(dev)))
return (err);
if((err = smctr_issue_init_txrx_cmd(dev)))
{
printk(KERN_ERR "%s: Hardware failure\n", dev->name);
return (err);
}
return (0);
}
static int smctr_init_rx_bdbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, j;
BDBlock *bdb;
__u16 *buf;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_init_rx_bdbs\n", dev->name);
for(i = 0; i < NUM_RX_QS_USED; i++)
{
bdb = tp->rx_bdb_head[i];
buf = tp->rx_buff_head[i];
bdb->info = (BDB_CHAIN_END | BDB_NO_WARNING);
bdb->buffer_length = RX_DATA_BUFFER_SIZE;
bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock));
bdb->data_block_ptr = buf;
bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr);
if(i == NON_MAC_QUEUE)
bdb->trc_data_block_ptr = RX_BUFF_TRC_POINTER(buf);
else
bdb->trc_data_block_ptr = TRC_POINTER(buf);
for(j = 1; j < tp->num_rx_bdbs[i]; j++)
{
bdb->next_ptr->back_ptr = bdb;
bdb = bdb->next_ptr;
buf = (__u16 *)((char *)buf + RX_DATA_BUFFER_SIZE);
bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING);
bdb->buffer_length = RX_DATA_BUFFER_SIZE;
bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock));
bdb->data_block_ptr = buf;
bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr);
if(i == NON_MAC_QUEUE)
bdb->trc_data_block_ptr = RX_BUFF_TRC_POINTER(buf);
else
bdb->trc_data_block_ptr = TRC_POINTER(buf);
}
bdb->next_ptr = tp->rx_bdb_head[i];
bdb->trc_next_ptr = TRC_POINTER(tp->rx_bdb_head[i]);
tp->rx_bdb_head[i]->back_ptr = bdb;
tp->rx_bdb_curr[i] = tp->rx_bdb_head[i]->next_ptr;
}
return (0);
}
static int smctr_init_rx_fcbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, j;
FCBlock *fcb;
for(i = 0; i < NUM_RX_QS_USED; i++)
{
fcb = tp->rx_fcb_head[i];
fcb->frame_status = 0;
fcb->frame_length = 0;
fcb->info = FCB_CHAIN_END;
fcb->next_ptr = (FCBlock *)(((char*)fcb) + sizeof(FCBlock));
if(i == NON_MAC_QUEUE)
fcb->trc_next_ptr = RX_FCB_TRC_POINTER(fcb->next_ptr);
else
fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr);
for(j = 1; j < tp->num_rx_fcbs[i]; j++)
{
fcb->next_ptr->back_ptr = fcb;
fcb = fcb->next_ptr;
fcb->frame_status = 0;
fcb->frame_length = 0;
fcb->info = FCB_WARNING;
fcb->next_ptr
= (FCBlock *)(((char *)fcb) + sizeof(FCBlock));
if(i == NON_MAC_QUEUE)
fcb->trc_next_ptr
= RX_FCB_TRC_POINTER(fcb->next_ptr);
else
fcb->trc_next_ptr
= TRC_POINTER(fcb->next_ptr);
}
fcb->next_ptr = tp->rx_fcb_head[i];
if(i == NON_MAC_QUEUE)
fcb->trc_next_ptr = RX_FCB_TRC_POINTER(fcb->next_ptr);
else
fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr);
tp->rx_fcb_head[i]->back_ptr = fcb;
tp->rx_fcb_curr[i] = tp->rx_fcb_head[i]->next_ptr;
}
return(0);
}
static int smctr_init_shared_memory(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i;
__u32 *iscpb;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_init_shared_memory\n", dev->name);
smctr_set_page(dev, (__u8 *)(unsigned int)tp->iscpb_ptr);
/* Initialize Initial System Configuration Point. (ISCP) */
iscpb = (__u32 *)PAGE_POINTER(&tp->iscpb_ptr->trc_scgb_ptr);
*iscpb = (__u32)(SWAP_WORDS(TRC_POINTER(tp->scgb_ptr)));
smctr_set_page(dev, (__u8 *)tp->ram_access);
/* Initialize System Configuration Pointers. (SCP) */
tp->scgb_ptr->config = (SCGB_ADDRESS_POINTER_FORMAT
| SCGB_MULTI_WORD_CONTROL | SCGB_DATA_FORMAT
| SCGB_BURST_LENGTH);
tp->scgb_ptr->trc_sclb_ptr = TRC_POINTER(tp->sclb_ptr);
tp->scgb_ptr->trc_acb_ptr = TRC_POINTER(tp->acb_head);
tp->scgb_ptr->trc_isb_ptr = TRC_POINTER(tp->isb_ptr);
tp->scgb_ptr->isbsiz = (sizeof(ISBlock)) - 2;
/* Initialize System Control Block. (SCB) */
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_NOP;
tp->sclb_ptr->iack_code = 0;
tp->sclb_ptr->resume_control = 0;
tp->sclb_ptr->int_mask_control = 0;
tp->sclb_ptr->int_mask_state = 0;
/* Initialize Interrupt Status Block. (ISB) */
for(i = 0; i < NUM_OF_INTERRUPTS; i++)
{
tp->isb_ptr->IStatus[i].IType = 0xf0;
tp->isb_ptr->IStatus[i].ISubtype = 0;
}
tp->current_isb_index = 0;
/* Initialize Action Command Block. (ACB) */
smctr_init_acbs(dev);
/* Initialize transmit FCB's and BDB's. */
smctr_link_tx_fcbs_to_bdbs(dev);
smctr_init_tx_bdbs(dev);
smctr_init_tx_fcbs(dev);
/* Initialize receive FCB's and BDB's. */
smctr_init_rx_bdbs(dev);
smctr_init_rx_fcbs(dev);
return (0);
}
static int smctr_init_tx_bdbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, j;
BDBlock *bdb;
for(i = 0; i < NUM_TX_QS_USED; i++)
{
bdb = tp->tx_bdb_head[i];
bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING);
bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock));
bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr);
for(j = 1; j < tp->num_tx_bdbs[i]; j++)
{
bdb->next_ptr->back_ptr = bdb;
bdb = bdb->next_ptr;
bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING);
bdb->next_ptr
= (BDBlock *)(((char *)bdb) + sizeof( BDBlock)); bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr);
}
bdb->next_ptr = tp->tx_bdb_head[i];
bdb->trc_next_ptr = TRC_POINTER(tp->tx_bdb_head[i]);
tp->tx_bdb_head[i]->back_ptr = bdb;
}
return (0);
}
static int smctr_init_tx_fcbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, j;
FCBlock *fcb;
for(i = 0; i < NUM_TX_QS_USED; i++)
{
fcb = tp->tx_fcb_head[i];
fcb->frame_status = 0;
fcb->frame_length = 0;
fcb->info = FCB_CHAIN_END;
fcb->next_ptr = (FCBlock *)(((char *)fcb) + sizeof(FCBlock));
fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr);
for(j = 1; j < tp->num_tx_fcbs[i]; j++)
{
fcb->next_ptr->back_ptr = fcb;
fcb = fcb->next_ptr;
fcb->frame_status = 0;
fcb->frame_length = 0;
fcb->info = FCB_CHAIN_END;
fcb->next_ptr
= (FCBlock *)(((char *)fcb) + sizeof(FCBlock));
fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr);
}
fcb->next_ptr = tp->tx_fcb_head[i];
fcb->trc_next_ptr = TRC_POINTER(tp->tx_fcb_head[i]);
tp->tx_fcb_head[i]->back_ptr = fcb;
tp->tx_fcb_end[i] = tp->tx_fcb_head[i]->next_ptr;
tp->tx_fcb_curr[i] = tp->tx_fcb_head[i]->next_ptr;
tp->num_tx_fcbs_used[i] = 0;
}
return (0);
}
static int smctr_internal_self_test(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if((err = smctr_issue_test_internal_rom_cmd(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
if(tp->acb_head->cmd_done_status & 0xff)
return (-1);
if((err = smctr_issue_test_hic_cmd(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
if(tp->acb_head->cmd_done_status & 0xff)
return (-1);
if((err = smctr_issue_test_mac_reg_cmd(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
if(tp->acb_head->cmd_done_status & 0xff)
return (-1);
return (0);
}
/*
* The typical workload of the driver: Handle the network interface interrupts.
*/
static irqreturn_t smctr_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct net_local *tp;
int ioaddr;
__u16 interrupt_unmask_bits = 0, interrupt_ack_code = 0xff00;
__u16 err1, err = NOT_MY_INTERRUPT;
__u8 isb_type, isb_subtype;
__u16 isb_index;
ioaddr = dev->base_addr;
tp = netdev_priv(dev);
if(tp->status == NOT_INITIALIZED)
return IRQ_NONE;
spin_lock(&tp->lock);
smctr_disable_bic_int(dev);
smctr_enable_16bit(dev);
smctr_clear_int(dev);
/* First read the LSB */
while((tp->isb_ptr->IStatus[tp->current_isb_index].IType & 0xf0) == 0)
{
isb_index = tp->current_isb_index;
isb_type = tp->isb_ptr->IStatus[isb_index].IType;
isb_subtype = tp->isb_ptr->IStatus[isb_index].ISubtype;
(tp->current_isb_index)++;
if(tp->current_isb_index == NUM_OF_INTERRUPTS)
tp->current_isb_index = 0;
if(isb_type >= 0x10)
{
smctr_disable_16bit(dev);
spin_unlock(&tp->lock);
return IRQ_HANDLED;
}
err = HARDWARE_FAILED;
interrupt_ack_code = isb_index;
tp->isb_ptr->IStatus[isb_index].IType |= 0xf0;
interrupt_unmask_bits |= (1 << (__u16)isb_type);
switch(isb_type)
{
case ISB_IMC_MAC_TYPE_3:
smctr_disable_16bit(dev);
switch(isb_subtype)
{
case 0:
tp->monitor_state = MS_MONITOR_FSM_INACTIVE;
break;
case 1:
tp->monitor_state = MS_REPEAT_BEACON_STATE;
break;
case 2:
tp->monitor_state = MS_REPEAT_CLAIM_TOKEN_STATE;
break;
case 3:
tp->monitor_state = MS_TRANSMIT_CLAIM_TOKEN_STATE; break;
case 4:
tp->monitor_state = MS_STANDBY_MONITOR_STATE;
break;
case 5:
tp->monitor_state = MS_TRANSMIT_BEACON_STATE;
break;
case 6:
tp->monitor_state = MS_ACTIVE_MONITOR_STATE;
break;
case 7:
tp->monitor_state = MS_TRANSMIT_RING_PURGE_STATE;
break;
case 8: /* diagnostic state */
break;
case 9:
tp->monitor_state = MS_BEACON_TEST_STATE;
if(smctr_lobe_media_test(dev))
{
tp->ring_status_flags = RING_STATUS_CHANGED;
tp->ring_status = AUTO_REMOVAL_ERROR;
smctr_ring_status_chg(dev);
smctr_bypass_state(dev);
}
else
smctr_issue_insert_cmd(dev);
break;
/* case 0x0a-0xff, illegal states */
default:
break;
}
tp->ring_status_flags = MONITOR_STATE_CHANGED;
err = smctr_ring_status_chg(dev);
smctr_enable_16bit(dev);
break;
/* Type 0x02 - MAC Error Counters Interrupt
* One or more MAC Error Counter is half full
* MAC Error Counters
* Lost_FR_Error_Counter
* RCV_Congestion_Counter
* FR_copied_Error_Counter
* FREQ_Error_Counter
* Token_Error_Counter
* Line_Error_Counter
* Internal_Error_Count
*/
case ISB_IMC_MAC_ERROR_COUNTERS:
/* Read 802.5 Error Counters */
err = smctr_issue_read_ring_status_cmd(dev);
break;
/* Type 0x04 - MAC Type 2 Interrupt
* HOST needs to enqueue MAC Frame for transmission
* SubType Bit 15 - RQ_INIT_PDU( Request Initialization) * Changed from RQ_INIT_PDU to
* TRC_Status_Changed_Indicate
*/
case ISB_IMC_MAC_TYPE_2:
err = smctr_issue_read_ring_status_cmd(dev);
break;
/* Type 0x05 - TX Frame Interrupt (FI). */
case ISB_IMC_TX_FRAME:
/* BUG QUEUE for TRC stuck receive BUG */
if(isb_subtype & TX_PENDING_PRIORITY_2)
{
if((err = smctr_tx_complete(dev, BUG_QUEUE)) != SUCCESS)
break;
}
/* NON-MAC frames only */
if(isb_subtype & TX_PENDING_PRIORITY_1)
{
if((err = smctr_tx_complete(dev, NON_MAC_QUEUE)) != SUCCESS)
break;
}
/* MAC frames only */
if(isb_subtype & TX_PENDING_PRIORITY_0)
err = smctr_tx_complete(dev, MAC_QUEUE); break;
/* Type 0x06 - TX END OF QUEUE (FE) */
case ISB_IMC_END_OF_TX_QUEUE:
/* BUG queue */
if(isb_subtype & TX_PENDING_PRIORITY_2)
{
/* ok to clear Receive FIFO overrun
* imask send_BUG now completes.
*/
interrupt_unmask_bits |= 0x800;
tp->tx_queue_status[BUG_QUEUE] = NOT_TRANSMITING;
if((err = smctr_tx_complete(dev, BUG_QUEUE)) != SUCCESS)
break;
if((err = smctr_restart_tx_chain(dev, BUG_QUEUE)) != SUCCESS)
break;
}
/* NON-MAC queue only */
if(isb_subtype & TX_PENDING_PRIORITY_1)
{
tp->tx_queue_status[NON_MAC_QUEUE] = NOT_TRANSMITING;
if((err = smctr_tx_complete(dev, NON_MAC_QUEUE)) != SUCCESS)
break;
if((err = smctr_restart_tx_chain(dev, NON_MAC_QUEUE)) != SUCCESS)
break;
}
/* MAC queue only */
if(isb_subtype & TX_PENDING_PRIORITY_0)
{
tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING;
if((err = smctr_tx_complete(dev, MAC_QUEUE)) != SUCCESS)
break;
err = smctr_restart_tx_chain(dev, MAC_QUEUE);
}
break;
/* Type 0x07 - NON-MAC RX Resource Interrupt
* Subtype bit 12 - (BW) BDB warning
* Subtype bit 13 - (FW) FCB warning
* Subtype bit 14 - (BE) BDB End of chain
* Subtype bit 15 - (FE) FCB End of chain
*/
case ISB_IMC_NON_MAC_RX_RESOURCE:
tp->rx_fifo_overrun_count = 0;
tp->receive_queue_number = NON_MAC_QUEUE;
err1 = smctr_rx_frame(dev);
if(isb_subtype & NON_MAC_RX_RESOURCE_FE)
{
if((err = smctr_issue_resume_rx_fcb_cmd( dev, NON_MAC_QUEUE)) != SUCCESS) break;
if(tp->ptr_rx_fcb_overruns)
(*tp->ptr_rx_fcb_overruns)++;
}
if(isb_subtype & NON_MAC_RX_RESOURCE_BE)
{
if((err = smctr_issue_resume_rx_bdb_cmd( dev, NON_MAC_QUEUE)) != SUCCESS) break;
if(tp->ptr_rx_bdb_overruns)
(*tp->ptr_rx_bdb_overruns)++;
}
err = err1;
break;
/* Type 0x08 - MAC RX Resource Interrupt
* Subtype bit 12 - (BW) BDB warning
* Subtype bit 13 - (FW) FCB warning
* Subtype bit 14 - (BE) BDB End of chain
* Subtype bit 15 - (FE) FCB End of chain
*/
case ISB_IMC_MAC_RX_RESOURCE:
tp->receive_queue_number = MAC_QUEUE;
err1 = smctr_rx_frame(dev);
if(isb_subtype & MAC_RX_RESOURCE_FE)
{
if((err = smctr_issue_resume_rx_fcb_cmd( dev, MAC_QUEUE)) != SUCCESS)
break;
if(tp->ptr_rx_fcb_overruns)
(*tp->ptr_rx_fcb_overruns)++;
}
if(isb_subtype & MAC_RX_RESOURCE_BE)
{
if((err = smctr_issue_resume_rx_bdb_cmd( dev, MAC_QUEUE)) != SUCCESS)
break;
if(tp->ptr_rx_bdb_overruns)
(*tp->ptr_rx_bdb_overruns)++;
}
err = err1;
break;
/* Type 0x09 - NON_MAC RX Frame Interrupt */
case ISB_IMC_NON_MAC_RX_FRAME:
tp->rx_fifo_overrun_count = 0;
tp->receive_queue_number = NON_MAC_QUEUE;
err = smctr_rx_frame(dev);
break;
/* Type 0x0A - MAC RX Frame Interrupt */
case ISB_IMC_MAC_RX_FRAME:
tp->receive_queue_number = MAC_QUEUE;
err = smctr_rx_frame(dev);
break;
/* Type 0x0B - TRC status
* TRC has encountered an error condition
* subtype bit 14 - transmit FIFO underrun
* subtype bit 15 - receive FIFO overrun
*/
case ISB_IMC_TRC_FIFO_STATUS:
if(isb_subtype & TRC_FIFO_STATUS_TX_UNDERRUN)
{
if(tp->ptr_tx_fifo_underruns)
(*tp->ptr_tx_fifo_underruns)++;
}
if(isb_subtype & TRC_FIFO_STATUS_RX_OVERRUN)
{
/* update overrun stuck receive counter
* if >= 3, has to clear it by sending
* back to back frames. We pick
* DAT(duplicate address MAC frame)
*/
tp->rx_fifo_overrun_count++;
if(tp->rx_fifo_overrun_count >= 3)
{
tp->rx_fifo_overrun_count = 0;
/* delay clearing fifo overrun
* imask till send_BUG tx
* complete posted
*/
interrupt_unmask_bits &= (~0x800);
printk(KERN_CRIT "Jay please send bug\n");// smctr_send_bug(dev);
}
if(tp->ptr_rx_fifo_overruns)
(*tp->ptr_rx_fifo_overruns)++;
}
err = SUCCESS;
break;
/* Type 0x0C - Action Command Status Interrupt
* Subtype bit 14 - CB end of command chain (CE)
* Subtype bit 15 - CB command interrupt (CI)
*/
case ISB_IMC_COMMAND_STATUS:
err = SUCCESS;
if(tp->acb_head->cmd == ACB_CMD_HIC_NOP)
{
printk(KERN_ERR "i1\n");
smctr_disable_16bit(dev);
/* XXXXXXXXXXXXXXXXX */
/* err = UM_Interrupt(dev); */
smctr_enable_16bit(dev);
}
else
{
if((tp->acb_head->cmd
== ACB_CMD_READ_TRC_STATUS)
&& (tp->acb_head->subcmd
== RW_TRC_STATUS_BLOCK))
{
if(tp->ptr_bcn_type)
{
*(tp->ptr_bcn_type)
= (__u32)((SBlock *)tp->misc_command_data)->BCN_Type;
}
if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & ERROR_COUNTERS_CHANGED)
{
smctr_update_err_stats(dev);
}
if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & TI_NDIS_RING_STATUS_CHANGED)
{
tp->ring_status
= ((SBlock*)tp->misc_command_data)->TI_NDIS_Ring_Status;
smctr_disable_16bit(dev);
err = smctr_ring_status_chg(dev);
smctr_enable_16bit(dev);
if((tp->ring_status & REMOVE_RECEIVED)
&& (tp->config_word0 & NO_AUTOREMOVE))
{
smctr_issue_remove_cmd(dev);
}
if(err != SUCCESS)
{
tp->acb_pending = 0;
break;
}
}
if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & UNA_CHANGED)
{
if(tp->ptr_una)
{
tp->ptr_una[0] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[0]);
tp->ptr_una[1] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[1]);
tp->ptr_una[2] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[2]);
}
}
if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & READY_TO_SEND_RQ_INIT) {
err = smctr_send_rq_init(dev);
}
}
}
tp->acb_pending = 0;
break;
/* Type 0x0D - MAC Type 1 interrupt
* Subtype -- 00 FR_BCN received at S12
* 01 FR_BCN received at S21
* 02 FR_DAT(DA=MA, A<>0) received at S21
* 03 TSM_EXP at S21
* 04 FR_REMOVE received at S42
* 05 TBR_EXP, BR_FLAG_SET at S42
* 06 TBT_EXP at S53
*/
case ISB_IMC_MAC_TYPE_1:
if(isb_subtype > 8)
{
err = HARDWARE_FAILED;
break;
}
err = SUCCESS;
switch(isb_subtype)
{
case 0:
tp->join_state = JS_BYPASS_STATE;
if(tp->status != CLOSED)
{
tp->status = CLOSED;
err = smctr_status_chg(dev);
}
break;
case 1:
tp->join_state = JS_LOBE_TEST_STATE;
break;
case 2:
tp->join_state = JS_DETECT_MONITOR_PRESENT_STATE;
break;
case 3:
tp->join_state = JS_AWAIT_NEW_MONITOR_STATE;
break;
case 4:
tp->join_state = JS_DUPLICATE_ADDRESS_TEST_STATE;
break;
case 5:
tp->join_state = JS_NEIGHBOR_NOTIFICATION_STATE;
break;
case 6:
tp->join_state = JS_REQUEST_INITIALIZATION_STATE;
break;
case 7:
tp->join_state = JS_JOIN_COMPLETE_STATE;
tp->status = OPEN;
err = smctr_status_chg(dev);
break;
case 8:
tp->join_state = JS_BYPASS_WAIT_STATE;
break;
}
break ;
/* Type 0x0E - TRC Initialization Sequence Interrupt
* Subtype -- 00-FF Initializatin sequence complete
*/
case ISB_IMC_TRC_INTRNL_TST_STATUS:
tp->status = INITIALIZED;
smctr_disable_16bit(dev);
err = smctr_status_chg(dev);
smctr_enable_16bit(dev);
break;
/* other interrupt types, illegal */
default:
break;
}
if(err != SUCCESS)
break;
}
/* Checking the ack code instead of the unmask bits here is because :
* while fixing the stuck receive, DAT frame are sent and mask off
* FIFO overrun interrupt temporarily (interrupt_unmask_bits = 0)
* but we still want to issue ack to ISB
*/
if(!(interrupt_ack_code & 0xff00))
smctr_issue_int_ack(dev, interrupt_ack_code, interrupt_unmask_bits);
smctr_disable_16bit(dev);
smctr_enable_bic_int(dev);
spin_unlock(&tp->lock);
return IRQ_HANDLED;
}
static int smctr_issue_enable_int_cmd(struct net_device *dev,
__u16 interrupt_enable_mask)
{
struct net_local *tp = netdev_priv(dev);
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
tp->sclb_ptr->int_mask_control = interrupt_enable_mask;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_CLEAR_INTERRUPT_MASK;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_int_ack(struct net_device *dev, __u16 iack_code, __u16 ibits)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_wait_while_cbusy(dev))
return (-1);
tp->sclb_ptr->int_mask_control = ibits;
tp->sclb_ptr->iack_code = iack_code << 1; /* use the offset from base */ tp->sclb_ptr->resume_control = 0;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_IACK_CODE_VALID | SCLB_CMD_CLEAR_INTERRUPT_MASK;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_init_timers_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i;
int err;
__u16 *pTimer_Struc = (__u16 *)tp->misc_command_data;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
tp->config_word0 = THDREN | DMA_TRIGGER | USETPT | NO_AUTOREMOVE;
tp->config_word1 = 0;
if((tp->media_type == MEDIA_STP_16)
|| (tp->media_type == MEDIA_UTP_16)
|| (tp->media_type == MEDIA_STP_16_UTP_16))
{
tp->config_word0 |= FREQ_16MB_BIT;
}
if(tp->mode_bits & EARLY_TOKEN_REL)
tp->config_word0 |= ETREN;
if(tp->mode_bits & LOOPING_MODE_MASK)
tp->config_word0 |= RX_OWN_BIT;
else
tp->config_word0 &= ~RX_OWN_BIT;
if(tp->receive_mask & PROMISCUOUS_MODE)
tp->config_word0 |= PROMISCUOUS_BIT;
else
tp->config_word0 &= ~PROMISCUOUS_BIT;
if(tp->receive_mask & ACCEPT_ERR_PACKETS)
tp->config_word0 |= SAVBAD_BIT;
else
tp->config_word0 &= ~SAVBAD_BIT;
if(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES)
tp->config_word0 |= RXATMAC;
else
tp->config_word0 &= ~RXATMAC;
if(tp->receive_mask & ACCEPT_MULTI_PROM)
tp->config_word1 |= MULTICAST_ADDRESS_BIT;
else
tp->config_word1 &= ~MULTICAST_ADDRESS_BIT;
if(tp->receive_mask & ACCEPT_SOURCE_ROUTING_SPANNING)
tp->config_word1 |= SOURCE_ROUTING_SPANNING_BITS;
else
{
if(tp->receive_mask & ACCEPT_SOURCE_ROUTING)
tp->config_word1 |= SOURCE_ROUTING_EXPLORER_BIT;
else
tp->config_word1 &= ~SOURCE_ROUTING_SPANNING_BITS;
}
if((tp->media_type == MEDIA_STP_16)
|| (tp->media_type == MEDIA_UTP_16)
|| (tp->media_type == MEDIA_STP_16_UTP_16))
{
tp->config_word1 |= INTERFRAME_SPACING_16;
}
else
tp->config_word1 |= INTERFRAME_SPACING_4;
*pTimer_Struc++ = tp->config_word0;
*pTimer_Struc++ = tp->config_word1;
if((tp->media_type == MEDIA_STP_4)
|| (tp->media_type == MEDIA_UTP_4)
|| (tp->media_type == MEDIA_STP_4_UTP_4))
{
*pTimer_Struc++ = 0x00FA; /* prescale */
*pTimer_Struc++ = 0x2710; /* TPT_limit */
*pTimer_Struc++ = 0x2710; /* TQP_limit */
*pTimer_Struc++ = 0x0A28; /* TNT_limit */
*pTimer_Struc++ = 0x3E80; /* TBT_limit */
*pTimer_Struc++ = 0x3A98; /* TSM_limit */
*pTimer_Struc++ = 0x1B58; /* TAM_limit */
*pTimer_Struc++ = 0x00C8; /* TBR_limit */
*pTimer_Struc++ = 0x07D0; /* TER_limit */
*pTimer_Struc++ = 0x000A; /* TGT_limit */
*pTimer_Struc++ = 0x1162; /* THT_limit */
*pTimer_Struc++ = 0x07D0; /* TRR_limit */
*pTimer_Struc++ = 0x1388; /* TVX_limit */
*pTimer_Struc++ = 0x0000; /* reserved */
}
else
{
*pTimer_Struc++ = 0x03E8; /* prescale */
*pTimer_Struc++ = 0x9C40; /* TPT_limit */
*pTimer_Struc++ = 0x9C40; /* TQP_limit */
*pTimer_Struc++ = 0x0A28; /* TNT_limit */
*pTimer_Struc++ = 0x3E80; /* TBT_limit */
*pTimer_Struc++ = 0x3A98; /* TSM_limit */
*pTimer_Struc++ = 0x1B58; /* TAM_limit */
*pTimer_Struc++ = 0x00C8; /* TBR_limit */
*pTimer_Struc++ = 0x07D0; /* TER_limit */
*pTimer_Struc++ = 0x000A; /* TGT_limit */
*pTimer_Struc++ = 0x4588; /* THT_limit */
*pTimer_Struc++ = 0x1F40; /* TRR_limit */
*pTimer_Struc++ = 0x4E20; /* TVX_limit */
*pTimer_Struc++ = 0x0000; /* reserved */
}
/* Set node address. */
*pTimer_Struc++ = dev->dev_addr[0] << 8
| (dev->dev_addr[1] & 0xFF);
*pTimer_Struc++ = dev->dev_addr[2] << 8
| (dev->dev_addr[3] & 0xFF);
*pTimer_Struc++ = dev->dev_addr[4] << 8
| (dev->dev_addr[5] & 0xFF);
/* Set group address. */
*pTimer_Struc++ = tp->group_address_0 << 8
| tp->group_address_0 >> 8;
*pTimer_Struc++ = tp->group_address[0] << 8
| tp->group_address[0] >> 8;
*pTimer_Struc++ = tp->group_address[1] << 8
| tp->group_address[1] >> 8;
/* Set functional address. */
*pTimer_Struc++ = tp->functional_address_0 << 8
| tp->functional_address_0 >> 8;
*pTimer_Struc++ = tp->functional_address[0] << 8
| tp->functional_address[0] >> 8;
*pTimer_Struc++ = tp->functional_address[1] << 8
| tp->functional_address[1] >> 8;
/* Set Bit-Wise group address. */
*pTimer_Struc++ = tp->bitwise_group_address[0] << 8
| tp->bitwise_group_address[0] >> 8;
*pTimer_Struc++ = tp->bitwise_group_address[1] << 8
| tp->bitwise_group_address[1] >> 8;
/* Set ring number address. */
*pTimer_Struc++ = tp->source_ring_number;
*pTimer_Struc++ = tp->target_ring_number;
/* Physical drop number. */
*pTimer_Struc++ = (unsigned short)0;
*pTimer_Struc++ = (unsigned short)0;
/* Product instance ID. */
for(i = 0; i < 9; i++)
*pTimer_Struc++ = (unsigned short)0;
err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_INIT_TRC_TIMERS, 0);
return (err);
}
static int smctr_issue_init_txrx_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i;
int err;
void **txrx_ptrs = (void *)tp->misc_command_data;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
{
printk(KERN_ERR "%s: Hardware failure\n", dev->name);
return (err);
}
/* Initialize Transmit Queue Pointers that are used, to point to
* a single FCB.
*/
for(i = 0; i < NUM_TX_QS_USED; i++)
*txrx_ptrs++ = (void *)TRC_POINTER(tp->tx_fcb_head[i]);
/* Initialize Transmit Queue Pointers that are NOT used to ZERO. */
for(; i < MAX_TX_QS; i++)
*txrx_ptrs++ = (void *)0;
/* Initialize Receive Queue Pointers (MAC and Non-MAC) that are
* used, to point to a single FCB and a BDB chain of buffers.
*/
for(i = 0; i < NUM_RX_QS_USED; i++)
{
*txrx_ptrs++ = (void *)TRC_POINTER(tp->rx_fcb_head[i]);
*txrx_ptrs++ = (void *)TRC_POINTER(tp->rx_bdb_head[i]);
}
/* Initialize Receive Queue Pointers that are NOT used to ZERO. */
for(; i < MAX_RX_QS; i++)
{
*txrx_ptrs++ = (void *)0;
*txrx_ptrs++ = (void *)0;
}
err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_INIT_TX_RX, 0);
return (err);
}
static int smctr_issue_insert_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_INSERT, ACB_SUB_CMD_NOP);
return (err);
}
static int smctr_issue_read_ring_status_cmd(struct net_device *dev)
{
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_READ_TRC_STATUS,
RW_TRC_STATUS_BLOCK);
return (err);
}
static int smctr_issue_read_word_cmd(struct net_device *dev, __u16 aword_cnt)
{
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_READ_VALUE,
aword_cnt);
return (err);
}
static int smctr_issue_remove_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
tp->sclb_ptr->resume_control = 0;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_REMOVE;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_resume_acb_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
tp->sclb_ptr->resume_control = SCLB_RC_ACB;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID;
tp->acb_pending = 1;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_resume_rx_bdb_cmd(struct net_device *dev, __u16 queue)
{
struct net_local *tp = netdev_priv(dev);
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if(queue == MAC_QUEUE)
tp->sclb_ptr->resume_control = SCLB_RC_RX_MAC_BDB;
else
tp->sclb_ptr->resume_control = SCLB_RC_RX_NON_MAC_BDB;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_resume_rx_fcb_cmd(struct net_device *dev, __u16 queue)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_issue_resume_rx_fcb_cmd\n", dev->name);
if(smctr_wait_while_cbusy(dev))
return (-1);
if(queue == MAC_QUEUE)
tp->sclb_ptr->resume_control = SCLB_RC_RX_MAC_FCB;
else
tp->sclb_ptr->resume_control = SCLB_RC_RX_NON_MAC_FCB;
tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_resume_tx_fcb_cmd(struct net_device *dev, __u16 queue)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_issue_resume_tx_fcb_cmd\n", dev->name);
if(smctr_wait_while_cbusy(dev))
return (-1);
tp->sclb_ptr->resume_control = (SCLB_RC_TFCB0 << queue);
tp->sclb_ptr->valid_command = SCLB_RESUME_CONTROL_VALID | SCLB_VALID;
smctr_set_ctrl_attention(dev);
return (0);
}
static int smctr_issue_test_internal_rom_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST,
TRC_INTERNAL_ROM_TEST);
return (err);
}
static int smctr_issue_test_hic_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_HIC_TEST,
TRC_HOST_INTERFACE_REG_TEST);
return (err);
}
static int smctr_issue_test_mac_reg_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST,
TRC_MAC_REGISTERS_TEST);
return (err);
}
static int smctr_issue_trc_loopback_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST,
TRC_INTERNAL_LOOPBACK);
return (err);
}
static int smctr_issue_tri_loopback_cmd(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST,
TRC_TRI_LOOPBACK);
return (err);
}
static int smctr_issue_write_byte_cmd(struct net_device *dev,
short aword_cnt, void *byte)
{
struct net_local *tp = netdev_priv(dev);
unsigned int iword, ibyte;
int err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
for(iword = 0, ibyte = 0; iword < (unsigned int)(aword_cnt & 0xff);
iword++, ibyte += 2)
{
tp->misc_command_data[iword] = (*((__u8 *)byte + ibyte) << 8)
| (*((__u8 *)byte + ibyte + 1));
}
return (smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_WRITE_VALUE,
aword_cnt));
}
static int smctr_issue_write_word_cmd(struct net_device *dev,
short aword_cnt, void *word)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, err;
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = smctr_wait_cmd(dev)))
return (err);
for(i = 0; i < (unsigned int)(aword_cnt & 0xff); i++)
tp->misc_command_data[i] = *((__u16 *)word + i);
err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_WRITE_VALUE,
aword_cnt);
return (err);
}
static int smctr_join_complete_state(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE,
JS_JOIN_COMPLETE_STATE);
return (err);
}
static int smctr_link_tx_fcbs_to_bdbs(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, j;
FCBlock *fcb;
BDBlock *bdb;
for(i = 0; i < NUM_TX_QS_USED; i++)
{
fcb = tp->tx_fcb_head[i];
bdb = tp->tx_bdb_head[i];
for(j = 0; j < tp->num_tx_fcbs[i]; j++)
{
fcb->bdb_ptr = bdb;
fcb->trc_bdb_ptr = TRC_POINTER(bdb);
fcb = (FCBlock *)((char *)fcb + sizeof(FCBlock));
bdb = (BDBlock *)((char *)bdb + sizeof(BDBlock));
}
}
return (0);
}
static int smctr_load_firmware(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
const struct firmware *fw;
__u16 i, checksum = 0;
int err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_load_firmware\n", dev->name);
if (request_firmware(&fw, "tr_smctr.bin", &dev->dev)) {
printk(KERN_ERR "%s: firmware not found\n", dev->name);
return (UCODE_NOT_PRESENT);
}
tp->num_of_tx_buffs = 4;
tp->mode_bits |= UMAC;
tp->receive_mask = 0;
tp->max_packet_size = 4177;
/* Can only upload the firmware once per adapter reset. */
if (tp->microcode_version != 0) {
err = (UCODE_PRESENT);
goto out;
}
/* Verify the firmware exists and is there in the right amount. */
if (!fw->data
|| (*(fw->data + UCODE_VERSION_OFFSET) < UCODE_VERSION))
{
err = (UCODE_NOT_PRESENT);
goto out;
}
/* UCODE_SIZE is not included in Checksum. */
for(i = 0; i < *((__u16 *)(fw->data + UCODE_SIZE_OFFSET)); i += 2)
checksum += *((__u16 *)(fw->data + 2 + i));
if (checksum) {
err = (UCODE_NOT_PRESENT);
goto out;
}
/* At this point we have a valid firmware image, lets kick it on up. */
smctr_enable_adapter_ram(dev);
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if((smctr_checksum_firmware(dev))
|| (*(fw->data + UCODE_VERSION_OFFSET)
> tp->microcode_version))
{
smctr_enable_adapter_ctrl_store(dev);
/* Zero out ram space for firmware. */
for(i = 0; i < CS_RAM_SIZE; i += 2)
*((__u16 *)(tp->ram_access + i)) = 0;
smctr_decode_firmware(dev, fw);
tp->microcode_version = *(fw->data + UCODE_VERSION_OFFSET); *((__u16 *)(tp->ram_access + CS_RAM_VERSION_OFFSET))
= (tp->microcode_version << 8);
*((__u16 *)(tp->ram_access + CS_RAM_CHECKSUM_OFFSET))
= ~(tp->microcode_version << 8) + 1;
smctr_disable_adapter_ctrl_store(dev);
if(smctr_checksum_firmware(dev))
err = HARDWARE_FAILED;
}
else
err = UCODE_PRESENT;
smctr_disable_16bit(dev);
out:
release_firmware(fw);
return (err);
}
static int smctr_load_node_addr(struct net_device *dev)
{
int ioaddr = dev->base_addr;
unsigned int i;
__u8 r;
for(i = 0; i < 6; i++)
{
r = inb(ioaddr + LAR0 + i);
dev->dev_addr[i] = (char)r;
}
dev->addr_len = 6;
return (0);
}
/* Lobe Media Test.
* During the transmission of the initial 1500 lobe media MAC frames,
* the phase lock loop in the 805 chip may lock, and then un-lock, causing
* the 825 to go into a PURGE state. When performing a PURGE, the MCT
* microcode will not transmit any frames given to it by the host, and
* will consequently cause a timeout.
*
* NOTE 1: If the monitor_state is MS_BEACON_TEST_STATE, all transmit
* queues other then the one used for the lobe_media_test should be
* disabled.!?
*
* NOTE 2: If the monitor_state is MS_BEACON_TEST_STATE and the receive_mask
* has any multi-cast or promiscous bits set, the receive_mask needs to
* be changed to clear the multi-cast or promiscous mode bits, the lobe_test
* run, and then the receive mask set back to its original value if the test
* is successful.
*/
static int smctr_lobe_media_test(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, perror = 0;
unsigned short saved_rcv_mask;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_lobe_media_test\n", dev->name);
/* Clear receive mask for lobe test. */
saved_rcv_mask = tp->receive_mask;
tp->receive_mask = 0;
smctr_chg_rx_mask(dev);
/* Setup the lobe media test. */
smctr_lobe_media_test_cmd(dev);
if(smctr_wait_cmd(dev))
{
smctr_reset_adapter(dev);
tp->status = CLOSED;
return (LOBE_MEDIA_TEST_FAILED);
}
/* Tx lobe media test frames. */
for(i = 0; i < 1500; ++i)
{
if(smctr_send_lobe_media_test(dev))
{
if(perror)
{
smctr_reset_adapter(dev);
tp->state = CLOSED;
return (LOBE_MEDIA_TEST_FAILED);
}
else
{
perror = 1;
if(smctr_lobe_media_test_cmd(dev))
{
smctr_reset_adapter(dev);
tp->state = CLOSED;
return (LOBE_MEDIA_TEST_FAILED);
}
}
}
}
if(smctr_send_dat(dev))
{
if(smctr_send_dat(dev))
{
smctr_reset_adapter(dev);
tp->state = CLOSED;
return (LOBE_MEDIA_TEST_FAILED);
}
}
/* Check if any frames received during test. */
if((tp->rx_fcb_curr[MAC_QUEUE]->frame_status)
|| (tp->rx_fcb_curr[NON_MAC_QUEUE]->frame_status))
{
smctr_reset_adapter(dev);
tp->state = CLOSED;
return (LOBE_MEDIA_TEST_FAILED);
}
/* Set receive mask to "Promisc" mode. */
tp->receive_mask = saved_rcv_mask;
smctr_chg_rx_mask(dev);
return (0);
}
static int smctr_lobe_media_test_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_lobe_media_test_cmd\n", dev->name);
/* Change to lobe media test state. */
if(tp->monitor_state != MS_BEACON_TEST_STATE)
{
smctr_lobe_media_test_state(dev);
if(smctr_wait_cmd(dev))
{
printk(KERN_ERR "Lobe Failed test state\n");
return (LOBE_MEDIA_TEST_FAILED);
}
}
err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST,
TRC_LOBE_MEDIA_TEST);
return (err);
}
static int smctr_lobe_media_test_state(struct net_device *dev)
{
int err;
err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE,
JS_LOBE_TEST_STATE);
return (err);
}
static int smctr_make_8025_hdr(struct net_device *dev,
MAC_HEADER *rmf, MAC_HEADER *tmf, __u16 ac_fc)
{
tmf->ac = MSB(ac_fc); /* msb is access control */
tmf->fc = LSB(ac_fc); /* lsb is frame control */
tmf->sa[0] = dev->dev_addr[0];
tmf->sa[1] = dev->dev_addr[1];
tmf->sa[2] = dev->dev_addr[2];
tmf->sa[3] = dev->dev_addr[3];
tmf->sa[4] = dev->dev_addr[4];
tmf->sa[5] = dev->dev_addr[5];
switch(tmf->vc)
{
/* Send RQ_INIT to RPS */
case RQ_INIT:
tmf->da[0] = 0xc0;
tmf->da[1] = 0x00;
tmf->da[2] = 0x00;
tmf->da[3] = 0x00;
tmf->da[4] = 0x00;
tmf->da[5] = 0x02;
break;
/* Send RPT_TX_FORWARD to CRS */
case RPT_TX_FORWARD:
tmf->da[0] = 0xc0;
tmf->da[1] = 0x00;
tmf->da[2] = 0x00;
tmf->da[3] = 0x00;
tmf->da[4] = 0x00;
tmf->da[5] = 0x10;
break;
/* Everything else goes to sender */
default:
tmf->da[0] = rmf->sa[0];
tmf->da[1] = rmf->sa[1];
tmf->da[2] = rmf->sa[2];
tmf->da[3] = rmf->sa[3];
tmf->da[4] = rmf->sa[4];
tmf->da[5] = rmf->sa[5];
break;
}
return (0);
}
static int smctr_make_access_pri(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
tsv->svi = AUTHORIZED_ACCESS_PRIORITY;
tsv->svl = S_AUTHORIZED_ACCESS_PRIORITY;
tsv->svv[0] = MSB(tp->authorized_access_priority);
tsv->svv[1] = LSB(tp->authorized_access_priority);
return (0);
}
static int smctr_make_addr_mod(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
tsv->svi = ADDRESS_MODIFER;
tsv->svl = S_ADDRESS_MODIFER;
tsv->svv[0] = 0;
tsv->svv[1] = 0;
return (0);
}
static int smctr_make_auth_funct_class(struct net_device *dev,
MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
tsv->svi = AUTHORIZED_FUNCTION_CLASS;
tsv->svl = S_AUTHORIZED_FUNCTION_CLASS;
tsv->svv[0] = MSB(tp->authorized_function_classes);
tsv->svv[1] = LSB(tp->authorized_function_classes);
return (0);
}
static int smctr_make_corr(struct net_device *dev,
MAC_SUB_VECTOR *tsv, __u16 correlator)
{
tsv->svi = CORRELATOR;
tsv->svl = S_CORRELATOR;
tsv->svv[0] = MSB(correlator);
tsv->svv[1] = LSB(correlator);
return (0);
}
static int smctr_make_funct_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
smctr_get_functional_address(dev);
tsv->svi = FUNCTIONAL_ADDRESS;
tsv->svl = S_FUNCTIONAL_ADDRESS;
tsv->svv[0] = MSB(tp->misc_command_data[0]);
tsv->svv[1] = LSB(tp->misc_command_data[0]);
tsv->svv[2] = MSB(tp->misc_command_data[1]);
tsv->svv[3] = LSB(tp->misc_command_data[1]);
return (0);
}
static int smctr_make_group_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
smctr_get_group_address(dev);
tsv->svi = GROUP_ADDRESS;
tsv->svl = S_GROUP_ADDRESS;
tsv->svv[0] = MSB(tp->misc_command_data[0]);
tsv->svv[1] = LSB(tp->misc_command_data[0]);
tsv->svv[2] = MSB(tp->misc_command_data[1]);
tsv->svv[3] = LSB(tp->misc_command_data[1]);
/* Set Group Address Sub-vector to all zeros if only the
* Group Address/Functional Address Indicator is set.
*/
if(tsv->svv[0] == 0x80 && tsv->svv[1] == 0x00
&& tsv->svv[2] == 0x00 && tsv->svv[3] == 0x00)
tsv->svv[0] = 0x00;
return (0);
}
static int smctr_make_phy_drop_num(struct net_device *dev,
MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
smctr_get_physical_drop_number(dev);
tsv->svi = PHYSICAL_DROP;
tsv->svl = S_PHYSICAL_DROP;
tsv->svv[0] = MSB(tp->misc_command_data[0]);
tsv->svv[1] = LSB(tp->misc_command_data[0]);
tsv->svv[2] = MSB(tp->misc_command_data[1]);
tsv->svv[3] = LSB(tp->misc_command_data[1]);
return (0);
}
static int smctr_make_product_id(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
int i;
tsv->svi = PRODUCT_INSTANCE_ID;
tsv->svl = S_PRODUCT_INSTANCE_ID;
for(i = 0; i < 18; i++)
tsv->svv[i] = 0xF0;
return (0);
}
static int smctr_make_station_id(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
smctr_get_station_id(dev);
tsv->svi = STATION_IDENTIFER;
tsv->svl = S_STATION_IDENTIFER;
tsv->svv[0] = MSB(tp->misc_command_data[0]);
tsv->svv[1] = LSB(tp->misc_command_data[0]);
tsv->svv[2] = MSB(tp->misc_command_data[1]);
tsv->svv[3] = LSB(tp->misc_command_data[1]);
tsv->svv[4] = MSB(tp->misc_command_data[2]);
tsv->svv[5] = LSB(tp->misc_command_data[2]);
return (0);
}
static int smctr_make_ring_station_status(struct net_device *dev,
MAC_SUB_VECTOR * tsv)
{
tsv->svi = RING_STATION_STATUS;
tsv->svl = S_RING_STATION_STATUS;
tsv->svv[0] = 0;
tsv->svv[1] = 0;
tsv->svv[2] = 0;
tsv->svv[3] = 0;
tsv->svv[4] = 0;
tsv->svv[5] = 0;
return (0);
}
static int smctr_make_ring_station_version(struct net_device *dev,
MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
tsv->svi = RING_STATION_VERSION_NUMBER;
tsv->svl = S_RING_STATION_VERSION_NUMBER;
tsv->svv[0] = 0xe2; /* EBCDIC - S */
tsv->svv[1] = 0xd4; /* EBCDIC - M */
tsv->svv[2] = 0xc3; /* EBCDIC - C */
tsv->svv[3] = 0x40; /* EBCDIC - */
tsv->svv[4] = 0xe5; /* EBCDIC - V */
tsv->svv[5] = 0xF0 + (tp->microcode_version >> 4);
tsv->svv[6] = 0xF0 + (tp->microcode_version & 0x0f);
tsv->svv[7] = 0x40; /* EBCDIC - */
tsv->svv[8] = 0xe7; /* EBCDIC - X */
if(tp->extra_info & CHIP_REV_MASK)
tsv->svv[9] = 0xc5; /* EBCDIC - E */
else
tsv->svv[9] = 0xc4; /* EBCDIC - D */
return (0);
}
static int smctr_make_tx_status_code(struct net_device *dev,
MAC_SUB_VECTOR *tsv, __u16 tx_fstatus)
{
tsv->svi = TRANSMIT_STATUS_CODE;
tsv->svl = S_TRANSMIT_STATUS_CODE;
tsv->svv[0] = ((tx_fstatus & 0x0100 >> 6) | IBM_PASS_SOURCE_ADDR);
/* Stripped frame status of Transmitted Frame */
tsv->svv[1] = tx_fstatus & 0xff;
return (0);
}
static int smctr_make_upstream_neighbor_addr(struct net_device *dev,
MAC_SUB_VECTOR *tsv)
{
struct net_local *tp = netdev_priv(dev);
smctr_get_upstream_neighbor_addr(dev);
tsv->svi = UPSTREAM_NEIGHBOR_ADDRESS;
tsv->svl = S_UPSTREAM_NEIGHBOR_ADDRESS;
tsv->svv[0] = MSB(tp->misc_command_data[0]);
tsv->svv[1] = LSB(tp->misc_command_data[0]);
tsv->svv[2] = MSB(tp->misc_command_data[1]);
tsv->svv[3] = LSB(tp->misc_command_data[1]);
tsv->svv[4] = MSB(tp->misc_command_data[2]);
tsv->svv[5] = LSB(tp->misc_command_data[2]);
return (0);
}
static int smctr_make_wrap_data(struct net_device *dev, MAC_SUB_VECTOR *tsv)
{
tsv->svi = WRAP_DATA;
tsv->svl = S_WRAP_DATA;
return (0);
}
/*
* Open/initialize the board. This is called sometime after
* booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int smctr_open(struct net_device *dev)
{
int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_open\n", dev->name);
err = smctr_init_adapter(dev);
if(err < 0)
return (err);
return (err);
}
/* Interrupt driven open of Token card. */
static int smctr_open_tr(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned long flags;
int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_open_tr\n", dev->name);
/* Now we can actually open the adapter. */
if(tp->status == OPEN)
return (0);
if(tp->status != INITIALIZED)
return (-1);
/* FIXME: it would work a lot better if we masked the irq sources
on the card here, then we could skip the locking and poll nicely */
spin_lock_irqsave(&tp->lock, flags);
smctr_set_page(dev, (__u8 *)tp->ram_access);
if((err = smctr_issue_resume_rx_fcb_cmd(dev, (short)MAC_QUEUE)))
goto out;
if((err = smctr_issue_resume_rx_bdb_cmd(dev, (short)MAC_QUEUE)))
goto out;
if((err = smctr_issue_resume_rx_fcb_cmd(dev, (short)NON_MAC_QUEUE)))
goto out;
if((err = smctr_issue_resume_rx_bdb_cmd(dev, (short)NON_MAC_QUEUE)))
goto out;
tp->status = CLOSED;
/* Insert into the Ring or Enter Loopback Mode. */
if((tp->mode_bits & LOOPING_MODE_MASK) == LOOPBACK_MODE_1)
{
tp->status = CLOSED;
if(!(err = smctr_issue_trc_loopback_cmd(dev)))
{
if(!(err = smctr_wait_cmd(dev)))
tp->status = OPEN;
}
smctr_status_chg(dev);
}
else
{
if((tp->mode_bits & LOOPING_MODE_MASK) == LOOPBACK_MODE_2)
{
tp->status = CLOSED;
if(!(err = smctr_issue_tri_loopback_cmd(dev)))
{
if(!(err = smctr_wait_cmd(dev)))
tp->status = OPEN;
}
smctr_status_chg(dev);
}
else
{
if((tp->mode_bits & LOOPING_MODE_MASK)
== LOOPBACK_MODE_3)
{
tp->status = CLOSED;
if(!(err = smctr_lobe_media_test_cmd(dev)))
{
if(!(err = smctr_wait_cmd(dev)))
tp->status = OPEN;
}
smctr_status_chg(dev);
}
else
{
if(!(err = smctr_lobe_media_test(dev)))
err = smctr_issue_insert_cmd(dev);
else
{
if(err == LOBE_MEDIA_TEST_FAILED)
printk(KERN_WARNING "%s: Lobe Media Test Failure - Check cable?\n", dev->name);
}
}
}
}
out:
spin_unlock_irqrestore(&tp->lock, flags);
return (err);
}
/* Check for a network adapter of this type,
* and return device structure if one exists.
*/
struct net_device __init *smctr_probe(int unit)
{
struct net_device *dev = alloc_trdev(sizeof(struct net_local));
static const unsigned ports[] = {
0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0, 0x300,
0x320, 0x340, 0x360, 0x380, 0
};
const unsigned *port;
int err = 0;
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0) {
sprintf(dev->name, "tr%d", unit);
netdev_boot_setup_check(dev);
}
if (dev->base_addr > 0x1ff) /* Check a single specified location. */
err = smctr_probe1(dev, dev->base_addr);
else if(dev->base_addr != 0) /* Don't probe at all. */
err =-ENXIO;
else {
for (port = ports; *port; port++) {
err = smctr_probe1(dev, *port);
if (!err)
break;
}
}
if (err)
goto out;
err = register_netdev(dev);
if (err)
goto out1;
return dev;
out1:
#ifdef CONFIG_MCA_LEGACY
{ struct net_local *tp = netdev_priv(dev);
if (tp->slot_num)
mca_mark_as_unused(tp->slot_num);
}
#endif
release_region(dev->base_addr, SMCTR_IO_EXTENT);
free_irq(dev->irq, dev);
out:
free_netdev(dev);
return ERR_PTR(err);
}
static int __init smctr_probe1(struct net_device *dev, int ioaddr)
{
static unsigned version_printed;
struct net_local *tp = netdev_priv(dev);
int err;
__u32 *ram;
if(smctr_debug && version_printed++ == 0)
printk(version);
spin_lock_init(&tp->lock);
dev->base_addr = ioaddr;
/* Actually detect an adapter now. */
err = smctr_chk_isa(dev);
if(err < 0)
{
if ((err = smctr_chk_mca(dev)) < 0) {
err = -ENODEV;
goto out;
}
}
tp = netdev_priv(dev);
dev->mem_start = tp->ram_base;
dev->mem_end = dev->mem_start + 0x10000;
ram = (__u32 *)phys_to_virt(dev->mem_start);
tp->ram_access = *(__u32 *)&ram;
tp->status = NOT_INITIALIZED;
err = smctr_load_firmware(dev);
if(err != UCODE_PRESENT && err != SUCCESS)
{
printk(KERN_ERR "%s: Firmware load failed (%d)\n", dev->name, err);
err = -EIO;
goto out;
}
/* Allow user to specify ring speed on module insert. */
if(ringspeed == 4)
tp->media_type = MEDIA_UTP_4;
else
tp->media_type = MEDIA_UTP_16;
printk(KERN_INFO "%s: %s %s at Io %#4x, Irq %d, Rom %#4x, Ram %#4x.\n",
dev->name, smctr_name, smctr_model,
(unsigned int)dev->base_addr,
dev->irq, tp->rom_base, tp->ram_base);
dev->open = smctr_open;
dev->stop = smctr_close;
dev->hard_start_xmit = smctr_send_packet;
dev->tx_timeout = smctr_timeout;
dev->watchdog_timeo = HZ;
dev->get_stats = smctr_get_stats;
dev->set_multicast_list = &smctr_set_multicast_list;
return (0);
out:
return err;
}
static int smctr_process_rx_packet(MAC_HEADER *rmf, __u16 size,
struct net_device *dev, __u16 rx_status)
{
struct net_local *tp = netdev_priv(dev);
struct sk_buff *skb;
__u16 rcode, correlator;
int err = 0;
__u8 xframe = 1;
rmf->vl = SWAP_BYTES(rmf->vl);
if(rx_status & FCB_RX_STATUS_DA_MATCHED)
{
switch(rmf->vc)
{
/* Received MAC Frames Processed by RS. */
case INIT:
if((rcode = smctr_rcv_init(dev, rmf, &correlator)) == HARDWARE_FAILED)
{
return (rcode);
}
if((err = smctr_send_rsp(dev, rmf, rcode,
correlator)))
{
return (err);
}
break;
case CHG_PARM:
if((rcode = smctr_rcv_chg_param(dev, rmf,
&correlator)) ==HARDWARE_FAILED)
{
return (rcode);
}
if((err = smctr_send_rsp(dev, rmf, rcode,
correlator)))
{
return (err);
}
break;
case RQ_ADDR:
if((rcode = smctr_rcv_rq_addr_state_attch(dev,
rmf, &correlator)) != POSITIVE_ACK)
{
if(rcode == HARDWARE_FAILED)
return (rcode);
else
return (smctr_send_rsp(dev, rmf,
rcode, correlator));
}
if((err = smctr_send_rpt_addr(dev, rmf,
correlator)))
{
return (err);
}
break;
case RQ_ATTCH:
if((rcode = smctr_rcv_rq_addr_state_attch(dev,
rmf, &correlator)) != POSITIVE_ACK)
{
if(rcode == HARDWARE_FAILED)
return (rcode);
else
return (smctr_send_rsp(dev, rmf,
rcode,
correlator));
}
if((err = smctr_send_rpt_attch(dev, rmf,
correlator)))
{
return (err);
}
break;
case RQ_STATE:
if((rcode = smctr_rcv_rq_addr_state_attch(dev,
rmf, &correlator)) != POSITIVE_ACK)
{
if(rcode == HARDWARE_FAILED)
return (rcode);
else
return (smctr_send_rsp(dev, rmf,
rcode,
correlator));
}
if((err = smctr_send_rpt_state(dev, rmf,
correlator)))
{
return (err);
}
break;
case TX_FORWARD: {
__u16 uninitialized_var(tx_fstatus);
if((rcode = smctr_rcv_tx_forward(dev, rmf))
!= POSITIVE_ACK)
{
if(rcode == HARDWARE_FAILED)
return (rcode);
else
return (smctr_send_rsp(dev, rmf,
rcode,
correlator));
}
if((err = smctr_send_tx_forward(dev, rmf,
&tx_fstatus)) == HARDWARE_FAILED)
{
return (err);
}
if(err == A_FRAME_WAS_FORWARDED)
{
if((err = smctr_send_rpt_tx_forward(dev,
rmf, tx_fstatus))
== HARDWARE_FAILED)
{
return (err);
}
}
break;
}
/* Received MAC Frames Processed by CRS/REM/RPS. */
case RSP:
case RQ_INIT:
case RPT_NEW_MON:
case RPT_SUA_CHG:
case RPT_ACTIVE_ERR:
case RPT_NN_INCMP:
case RPT_ERROR:
case RPT_ATTCH:
case RPT_STATE:
case RPT_ADDR:
break;
/* Rcvd Att. MAC Frame (if RXATMAC set) or UNKNOWN */
default:
xframe = 0;
if(!(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES))
{
rcode = smctr_rcv_unknown(dev, rmf,
&correlator);
if((err = smctr_send_rsp(dev, rmf,rcode,
correlator)))
{
return (err);
}
}
break;
}
}
else
{
/* 1. DA doesn't match (Promiscuous Mode).
* 2. Parse for Extended MAC Frame Type.
*/
switch(rmf->vc)
{
case RSP:
case INIT:
case RQ_INIT:
case RQ_ADDR:
case RQ_ATTCH:
case RQ_STATE:
case CHG_PARM:
case RPT_ADDR:
case RPT_ERROR:
case RPT_ATTCH:
case RPT_STATE:
case RPT_NEW_MON:
case RPT_SUA_CHG:
case RPT_NN_INCMP:
case RPT_ACTIVE_ERR:
break;
default:
xframe = 0;
break;
}
}
/* NOTE: UNKNOWN MAC frames will NOT be passed up unless
* ACCEPT_ATT_MAC_FRAMES is set.
*/
if(((tp->receive_mask & ACCEPT_ATT_MAC_FRAMES)
&& (xframe == (__u8)0))
|| ((tp->receive_mask & ACCEPT_EXT_MAC_FRAMES)
&& (xframe == (__u8)1)))
{
rmf->vl = SWAP_BYTES(rmf->vl);
if (!(skb = dev_alloc_skb(size)))
return -ENOMEM;
skb->len = size;
/* Slide data into a sleek skb. */
skb_put(skb, skb->len);
skb_copy_to_linear_data(skb, rmf, skb->len);
/* Update Counters */
tp->MacStat.rx_packets++;
tp->MacStat.rx_bytes += skb->len;
/* Kick the packet on up. */
skb->protocol = tr_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
err = 0;
}
return (err);
}
/* Adapter RAM test. Incremental word ODD boundary data test. */
static int smctr_ram_memory_test(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
__u16 page, pages_of_ram, start_pattern = 0, word_pattern = 0,
word_read = 0, err_word = 0, err_pattern = 0;
unsigned int err_offset;
__u32 j, pword;
__u8 err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_ram_memory_test\n", dev->name);
start_pattern = 0x0001;
pages_of_ram = tp->ram_size / tp->ram_usable;
pword = tp->ram_access;
/* Incremental word ODD boundary test. */
for(page = 0; (page < pages_of_ram) && (~err);
page++, start_pattern += 0x8000)
{
smctr_set_page(dev, (__u8 *)(tp->ram_access
+ (page * tp->ram_usable * 1024) + 1));
word_pattern = start_pattern;
for(j = 1; j < (__u32)(tp->ram_usable * 1024) - 1; j += 2)
*(__u16 *)(pword + j) = word_pattern++;
word_pattern = start_pattern;
for(j = 1; j < (__u32)(tp->ram_usable * 1024) - 1
&& (~err); j += 2, word_pattern++)
{
word_read = *(__u16 *)(pword + j);
if(word_read != word_pattern)
{
err = (__u8)1;
err_offset = j;
err_word = word_read;
err_pattern = word_pattern;
return (RAM_TEST_FAILED);
}
}
}
/* Zero out memory. */
for(page = 0; page < pages_of_ram && (~err); page++)
{
smctr_set_page(dev, (__u8 *)(tp->ram_access
+ (page * tp->ram_usable * 1024)));
word_pattern = 0;
for(j = 0; j < (__u32)tp->ram_usable * 1024; j +=2)
*(__u16 *)(pword + j) = word_pattern;
for(j =0; j < (__u32)tp->ram_usable * 1024
&& (~err); j += 2)
{
word_read = *(__u16 *)(pword + j);
if(word_read != word_pattern)
{
err = (__u8)1;
err_offset = j;
err_word = word_read;
err_pattern = word_pattern;
return (RAM_TEST_FAILED);
}
}
}
smctr_set_page(dev, (__u8 *)tp->ram_access);
return (0);
}
static int smctr_rcv_chg_param(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator)
{
MAC_SUB_VECTOR *rsv;
signed short vlen;
__u16 rcode = POSITIVE_ACK;
unsigned int svectors = F_NO_SUB_VECTORS_FOUND;
/* This Frame can only come from a CRS */
if((rmf->dc_sc & SC_MASK) != SC_CRS)
return(E_INAPPROPRIATE_SOURCE_CLASS);
/* Remove MVID Length from total length. */
vlen = (signed short)rmf->vl - 4;
/* Point to First SVID */
rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER));
/* Search for Appropriate SVID's. */
while((vlen > 0) && (rcode == POSITIVE_ACK))
{
switch(rsv->svi)
{
case CORRELATOR:
svectors |= F_CORRELATOR;
rcode = smctr_set_corr(dev, rsv, correlator);
break;
case LOCAL_RING_NUMBER:
svectors |= F_LOCAL_RING_NUMBER;
rcode = smctr_set_local_ring_num(dev, rsv);
break;
case ASSIGN_PHYSICAL_DROP:
svectors |= F_ASSIGN_PHYSICAL_DROP;
rcode = smctr_set_phy_drop(dev, rsv);
break;
case ERROR_TIMER_VALUE:
svectors |= F_ERROR_TIMER_VALUE;
rcode = smctr_set_error_timer_value(dev, rsv);
break;
case AUTHORIZED_FUNCTION_CLASS:
svectors |= F_AUTHORIZED_FUNCTION_CLASS;
rcode = smctr_set_auth_funct_class(dev, rsv);
break;
case AUTHORIZED_ACCESS_PRIORITY:
svectors |= F_AUTHORIZED_ACCESS_PRIORITY;
rcode = smctr_set_auth_access_pri(dev, rsv);
break;
default:
rcode = E_SUB_VECTOR_UNKNOWN;
break;
}
/* Let Sender Know if SUM of SV length's is
* larger then length in MVID length field
*/
if((vlen -= rsv->svl) < 0)
rcode = E_VECTOR_LENGTH_ERROR;
rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl);
}
if(rcode == POSITIVE_ACK)
{
/* Let Sender Know if MVID length field
* is larger then SUM of SV length's
*/
if(vlen != 0)
rcode = E_VECTOR_LENGTH_ERROR;
else
{
/* Let Sender Know if Expected SVID Missing */
if((svectors & R_CHG_PARM) ^ R_CHG_PARM)
rcode = E_MISSING_SUB_VECTOR;
}
}
return (rcode);
}
static int smctr_rcv_init(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator)
{
MAC_SUB_VECTOR *rsv;
signed short vlen;
__u16 rcode = POSITIVE_ACK;
unsigned int svectors = F_NO_SUB_VECTORS_FOUND;
/* This Frame can only come from a RPS */
if((rmf->dc_sc & SC_MASK) != SC_RPS)
return (E_INAPPROPRIATE_SOURCE_CLASS);
/* Remove MVID Length from total length. */
vlen = (signed short)rmf->vl - 4;
/* Point to First SVID */
rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER));
/* Search for Appropriate SVID's */
while((vlen > 0) && (rcode == POSITIVE_ACK))
{
switch(rsv->svi)
{
case CORRELATOR:
svectors |= F_CORRELATOR;
rcode = smctr_set_corr(dev, rsv, correlator);
break;
case LOCAL_RING_NUMBER:
svectors |= F_LOCAL_RING_NUMBER;
rcode = smctr_set_local_ring_num(dev, rsv);
break;
case ASSIGN_PHYSICAL_DROP:
svectors |= F_ASSIGN_PHYSICAL_DROP;
rcode = smctr_set_phy_drop(dev, rsv);
break;
case ERROR_TIMER_VALUE:
svectors |= F_ERROR_TIMER_VALUE;
rcode = smctr_set_error_timer_value(dev, rsv);
break;
default:
rcode = E_SUB_VECTOR_UNKNOWN;
break;
}
/* Let Sender Know if SUM of SV length's is
* larger then length in MVID length field
*/
if((vlen -= rsv->svl) < 0)
rcode = E_VECTOR_LENGTH_ERROR;
rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl);
}
if(rcode == POSITIVE_ACK)
{
/* Let Sender Know if MVID length field
* is larger then SUM of SV length's
*/
if(vlen != 0)
rcode = E_VECTOR_LENGTH_ERROR;
else
{
/* Let Sender Know if Expected SV Missing */
if((svectors & R_INIT) ^ R_INIT)
rcode = E_MISSING_SUB_VECTOR;
}
}
return (rcode);
}
static int smctr_rcv_tx_forward(struct net_device *dev, MAC_HEADER *rmf)
{
MAC_SUB_VECTOR *rsv;
signed short vlen;
__u16 rcode = POSITIVE_ACK;
unsigned int svectors = F_NO_SUB_VECTORS_FOUND;
/* This Frame can only come from a CRS */
if((rmf->dc_sc & SC_MASK) != SC_CRS)
return (E_INAPPROPRIATE_SOURCE_CLASS);
/* Remove MVID Length from total length */
vlen = (signed short)rmf->vl - 4;
/* Point to First SVID */
rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER));
/* Search for Appropriate SVID's */
while((vlen > 0) && (rcode == POSITIVE_ACK))
{
switch(rsv->svi)
{
case FRAME_FORWARD:
svectors |= F_FRAME_FORWARD;
rcode = smctr_set_frame_forward(dev, rsv,
rmf->dc_sc);
break;
default:
rcode = E_SUB_VECTOR_UNKNOWN;
break;
}
/* Let Sender Know if SUM of SV length's is
* larger then length in MVID length field
*/
if((vlen -= rsv->svl) < 0)
rcode = E_VECTOR_LENGTH_ERROR;
rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl);
}
if(rcode == POSITIVE_ACK)
{
/* Let Sender Know if MVID length field
* is larger then SUM of SV length's
*/
if(vlen != 0)
rcode = E_VECTOR_LENGTH_ERROR;
else
{
/* Let Sender Know if Expected SV Missing */
if((svectors & R_TX_FORWARD) ^ R_TX_FORWARD)
rcode = E_MISSING_SUB_VECTOR;
}
}
return (rcode);
}
static int smctr_rcv_rq_addr_state_attch(struct net_device *dev,
MAC_HEADER *rmf, __u16 *correlator)
{
MAC_SUB_VECTOR *rsv;
signed short vlen;
__u16 rcode = POSITIVE_ACK;
unsigned int svectors = F_NO_SUB_VECTORS_FOUND;
/* Remove MVID Length from total length */
vlen = (signed short)rmf->vl - 4;
/* Point to First SVID */
rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER));
/* Search for Appropriate SVID's */
while((vlen > 0) && (rcode == POSITIVE_ACK))
{
switch(rsv->svi)
{
case CORRELATOR:
svectors |= F_CORRELATOR;
rcode = smctr_set_corr(dev, rsv, correlator);
break;
default:
rcode = E_SUB_VECTOR_UNKNOWN;
break;
}
/* Let Sender Know if SUM of SV length's is
* larger then length in MVID length field
*/
if((vlen -= rsv->svl) < 0)
rcode = E_VECTOR_LENGTH_ERROR;
rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl);
}
if(rcode == POSITIVE_ACK)
{
/* Let Sender Know if MVID length field
* is larger then SUM of SV length's
*/
if(vlen != 0)
rcode = E_VECTOR_LENGTH_ERROR;
else
{
/* Let Sender Know if Expected SVID Missing */
if((svectors & R_RQ_ATTCH_STATE_ADDR)
^ R_RQ_ATTCH_STATE_ADDR)
rcode = E_MISSING_SUB_VECTOR;
}
}
return (rcode);
}
static int smctr_rcv_unknown(struct net_device *dev, MAC_HEADER *rmf,
__u16 *correlator)
{
MAC_SUB_VECTOR *rsv;
signed short vlen;
*correlator = 0;
/* Remove MVID Length from total length */
vlen = (signed short)rmf->vl - 4;
/* Point to First SVID */
rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER));
/* Search for CORRELATOR for RSP to UNKNOWN */
while((vlen > 0) && (*correlator == 0))
{
switch(rsv->svi)
{
case CORRELATOR:
smctr_set_corr(dev, rsv, correlator);
break;
default:
break;
}
vlen -= rsv->svl;
rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl);
}
return (E_UNRECOGNIZED_VECTOR_ID);
}
/*
* Reset the 825 NIC and exit w:
* 1. The NIC reset cleared (non-reset state), halted and un-initialized.
* 2. TINT masked.
* 3. CBUSY masked.
* 4. TINT clear.
* 5. CBUSY clear.
*/
static int smctr_reset_adapter(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
/* Reseting the NIC will put it in a halted and un-initialized state. */ smctr_set_trc_reset(ioaddr);
mdelay(200); /* ~2 ms */
smctr_clear_trc_reset(ioaddr);
mdelay(200); /* ~2 ms */
/* Remove any latched interrupts that occurred prior to reseting the
* adapter or possibily caused by line glitches due to the reset.
*/
outb(tp->trc_mask | CSR_CLRTINT | CSR_CLRCBUSY, ioaddr + CSR);
return (0);
}
static int smctr_restart_tx_chain(struct net_device *dev, short queue)
{
struct net_local *tp = netdev_priv(dev);
int err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_restart_tx_chain\n", dev->name);
if(tp->num_tx_fcbs_used[queue] != 0
&& tp->tx_queue_status[queue] == NOT_TRANSMITING)
{
tp->tx_queue_status[queue] = TRANSMITING;
err = smctr_issue_resume_tx_fcb_cmd(dev, queue);
}
return (err);
}
static int smctr_ring_status_chg(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_ring_status_chg\n", dev->name);
/* Check for ring_status_flag: whenever MONITOR_STATE_BIT
* Bit is set, check value of monitor_state, only then we
* enable and start transmit/receive timeout (if and only
* if it is MS_ACTIVE_MONITOR_STATE or MS_STANDBY_MONITOR_STATE)
*/
if(tp->ring_status_flags == MONITOR_STATE_CHANGED)
{
if((tp->monitor_state == MS_ACTIVE_MONITOR_STATE)
|| (tp->monitor_state == MS_STANDBY_MONITOR_STATE))
{
tp->monitor_state_ready = 1;
}
else
{
/* if adapter is NOT in either active monitor
* or standby monitor state => Disable
* transmit/receive timeout.
*/
tp->monitor_state_ready = 0;
/* Ring speed problem, switching to auto mode. */
if(tp->monitor_state == MS_MONITOR_FSM_INACTIVE
&& !tp->cleanup)
{
printk(KERN_INFO "%s: Incorrect ring speed switching.\n",
dev->name);
smctr_set_ring_speed(dev);
}
}
}
if(!(tp->ring_status_flags & RING_STATUS_CHANGED))
return (0);
switch(tp->ring_status)
{
case RING_RECOVERY:
printk(KERN_INFO "%s: Ring Recovery\n", dev->name);
tp->current_ring_status |= RING_RECOVERY;
break;
case SINGLE_STATION:
printk(KERN_INFO "%s: Single Statinon\n", dev->name);
tp->current_ring_status |= SINGLE_STATION;
break;
case COUNTER_OVERFLOW:
printk(KERN_INFO "%s: Counter Overflow\n", dev->name);
tp->current_ring_status |= COUNTER_OVERFLOW;
break;
case REMOVE_RECEIVED:
printk(KERN_INFO "%s: Remove Received\n", dev->name);
tp->current_ring_status |= REMOVE_RECEIVED;
break;
case AUTO_REMOVAL_ERROR:
printk(KERN_INFO "%s: Auto Remove Error\n", dev->name);
tp->current_ring_status |= AUTO_REMOVAL_ERROR;
break;
case LOBE_WIRE_FAULT:
printk(KERN_INFO "%s: Lobe Wire Fault\n", dev->name);
tp->current_ring_status |= LOBE_WIRE_FAULT;
break;
case TRANSMIT_BEACON:
printk(KERN_INFO "%s: Transmit Beacon\n", dev->name);
tp->current_ring_status |= TRANSMIT_BEACON;
break;
case SOFT_ERROR:
printk(KERN_INFO "%s: Soft Error\n", dev->name);
tp->current_ring_status |= SOFT_ERROR;
break;
case HARD_ERROR:
printk(KERN_INFO "%s: Hard Error\n", dev->name);
tp->current_ring_status |= HARD_ERROR;
break;
case SIGNAL_LOSS:
printk(KERN_INFO "%s: Signal Loss\n", dev->name);
tp->current_ring_status |= SIGNAL_LOSS;
break;
default:
printk(KERN_INFO "%s: Unknown ring status change\n",
dev->name);
break;
}
return (0);
}
static int smctr_rx_frame(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
__u16 queue, status, rx_size, err = 0;
__u8 *pbuff;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_rx_frame\n", dev->name);
queue = tp->receive_queue_number;
while((status = tp->rx_fcb_curr[queue]->frame_status) != SUCCESS)
{
err = HARDWARE_FAILED;
if(((status & 0x007f) == 0)
|| ((tp->receive_mask & ACCEPT_ERR_PACKETS) != 0))
{
/* frame length less the CRC (4 bytes) + FS (1 byte) */
rx_size = tp->rx_fcb_curr[queue]->frame_length - 5;
pbuff = smctr_get_rx_pointer(dev, queue);
smctr_set_page(dev, pbuff);
smctr_disable_16bit(dev);
/* pbuff points to addr within one page */
pbuff = (__u8 *)PAGE_POINTER(pbuff);
if(queue == NON_MAC_QUEUE)
{
struct sk_buff *skb;
skb = dev_alloc_skb(rx_size);
if (skb) {
skb_put(skb, rx_size);
skb_copy_to_linear_data(skb, pbuff, rx_size);
/* Update Counters */
tp->MacStat.rx_packets++;
tp->MacStat.rx_bytes += skb->len;
/* Kick the packet on up. */
skb->protocol = tr_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
} else {
}
}
else
smctr_process_rx_packet((MAC_HEADER *)pbuff,
rx_size, dev, status);
}
smctr_enable_16bit(dev);
smctr_set_page(dev, (__u8 *)tp->ram_access);
smctr_update_rx_chain(dev, queue);
if(err != SUCCESS)
break;
}
return (err);
}
static int smctr_send_dat(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int i, err;
MAC_HEADER *tmf;
FCBlock *fcb;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_send_dat\n", dev->name);
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE,
sizeof(MAC_HEADER))) == (FCBlock *)(-1L))
{
return (OUT_OF_RESOURCES);
}
/* Initialize DAT Data Fields. */
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->ac = MSB(AC_FC_DAT);
tmf->fc = LSB(AC_FC_DAT);
for(i = 0; i < 6; i++)
{
tmf->sa[i] = dev->dev_addr[i];
tmf->da[i] = dev->dev_addr[i];
}
tmf->vc = DAT;
tmf->dc_sc = DC_RS | SC_RS;
tmf->vl = 4;
tmf->vl = SWAP_BYTES(tmf->vl);
/* Start Transmit. */
if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE)))
return (err);
/* Wait for Transmit to Complete */
for(i = 0; i < 10000; i++)
{
if(fcb->frame_status & FCB_COMMAND_DONE)
break;
mdelay(1);
}
/* Check if GOOD frame Tx'ed. */
if(!(fcb->frame_status & FCB_COMMAND_DONE)
|| fcb->frame_status & (FCB_TX_STATUS_E | FCB_TX_AC_BITS))
{
return (INITIALIZE_FAILED);
}
/* De-allocated Tx FCB and Frame Buffer
* The FCB must be de-allocated manually if executing with
* interrupts disabled, other wise the ISR (LM_Service_Events)
* will de-allocate it when the interrupt occurs.
*/
tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING;
smctr_update_tx_chain(dev, fcb, MAC_QUEUE);
return (0);
}
static void smctr_timeout(struct net_device *dev)
{
/*
* If we get here, some higher level has decided we are broken.
* There should really be a "kick me" function call instead.
*
* Resetting the token ring adapter takes a long time so just
* fake transmission time and go on trying. Our own timeout
* routine is in sktr_timer_chk()
*/
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* Gets skb from system, queues it and checks if it can be sent
*/
static int smctr_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_send_packet\n", dev->name);
/*
* Block a transmit overlap
*/
netif_stop_queue(dev);
if(tp->QueueSkb == 0)
return (1); /* Return with tbusy set: queue full */
tp->QueueSkb--;
skb_queue_tail(&tp->SendSkbQueue, skb);
smctr_hardware_send_packet(dev, tp);
if(tp->QueueSkb > 0)
netif_wake_queue(dev);
return (0);
}
static int smctr_send_lobe_media_test(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
MAC_SUB_VECTOR *tsv;
MAC_HEADER *tmf;
FCBlock *fcb;
__u32 i;
int err;
if(smctr_debug > 15)
printk(KERN_DEBUG "%s: smctr_send_lobe_media_test\n", dev->name);
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(struct trh_hdr)
+ S_WRAP_DATA + S_WRAP_DATA)) == (FCBlock *)(-1L))
{
return (OUT_OF_RESOURCES);
}
/* Initialize DAT Data Fields. */
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->ac = MSB(AC_FC_LOBE_MEDIA_TEST);
tmf->fc = LSB(AC_FC_LOBE_MEDIA_TEST);
for(i = 0; i < 6; i++)
{
tmf->da[i] = 0;
tmf->sa[i] = dev->dev_addr[i];
}
tmf->vc = LOBE_MEDIA_TEST;
tmf->dc_sc = DC_RS | SC_RS;
tmf->vl = 4;
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_wrap_data(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_wrap_data(dev, tsv);
tmf->vl += tsv->svl;
/* Start Transmit. */
tmf->vl = SWAP_BYTES(tmf->vl);
if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE)))
return (err);
/* Wait for Transmit to Complete. (10 ms). */
for(i=0; i < 10000; i++)
{
if(fcb->frame_status & FCB_COMMAND_DONE)
break;
mdelay(1);
}
/* Check if GOOD frame Tx'ed */
if(!(fcb->frame_status & FCB_COMMAND_DONE)
|| fcb->frame_status & (FCB_TX_STATUS_E | FCB_TX_AC_BITS))
{
return (LOBE_MEDIA_TEST_FAILED);
}
/* De-allocated Tx FCB and Frame Buffer
* The FCB must be de-allocated manually if executing with
* interrupts disabled, other wise the ISR (LM_Service_Events)
* will de-allocate it when the interrupt occurs.
*/
tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING;
smctr_update_tx_chain(dev, fcb, MAC_QUEUE);
return (0);
}
static int smctr_send_rpt_addr(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator)
{
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_CORRELATOR + S_PHYSICAL_DROP + S_UPSTREAM_NEIGHBOR_ADDRESS
+ S_ADDRESS_MODIFER + S_GROUP_ADDRESS + S_FUNCTIONAL_ADDRESS))
== (FCBlock *)(-1L))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RPT_ADDR;
tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4;
tmf->vl = 4;
smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_ADDR);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_corr(dev, tsv, correlator);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_phy_drop_num(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_upstream_neighbor_addr(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_addr_mod(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_group_addr(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_funct_addr(dev, tsv);
tmf->vl += tsv->svl;
/* Subtract out MVID and MVL which is
* include in both vl and MAC_HEADER
*/
/* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4;
fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4;
*/
tmf->vl = SWAP_BYTES(tmf->vl);
return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE));
}
static int smctr_send_rpt_attch(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator)
{
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_CORRELATOR + S_PRODUCT_INSTANCE_ID + S_FUNCTIONAL_ADDRESS
+ S_AUTHORIZED_FUNCTION_CLASS + S_AUTHORIZED_ACCESS_PRIORITY))
== (FCBlock *)(-1L))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RPT_ATTCH;
tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4;
tmf->vl = 4;
smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_ATTCH);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_corr(dev, tsv, correlator);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_product_id(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_funct_addr(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_auth_funct_class(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_access_pri(dev, tsv);
tmf->vl += tsv->svl;
/* Subtract out MVID and MVL which is
* include in both vl and MAC_HEADER
*/
/* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4;
fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4;
*/
tmf->vl = SWAP_BYTES(tmf->vl);
return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE));
}
static int smctr_send_rpt_state(struct net_device *dev, MAC_HEADER *rmf,
__u16 correlator)
{
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_CORRELATOR + S_RING_STATION_VERSION_NUMBER
+ S_RING_STATION_STATUS + S_STATION_IDENTIFER))
== (FCBlock *)(-1L))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RPT_STATE;
tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4;
tmf->vl = 4;
smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_STATE);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_corr(dev, tsv, correlator);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_ring_station_version(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_ring_station_status(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_station_id(dev, tsv);
tmf->vl += tsv->svl;
/* Subtract out MVID and MVL which is
* include in both vl and MAC_HEADER
*/
/* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4;
fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4;
*/
tmf->vl = SWAP_BYTES(tmf->vl);
return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE));
}
static int smctr_send_rpt_tx_forward(struct net_device *dev,
MAC_HEADER *rmf, __u16 tx_fstatus)
{
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_TRANSMIT_STATUS_CODE)) == (FCBlock *)(-1L))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RPT_TX_FORWARD;
tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4;
tmf->vl = 4;
smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_TX_FORWARD);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_tx_status_code(dev, tsv, tx_fstatus);
tmf->vl += tsv->svl;
/* Subtract out MVID and MVL which is
* include in both vl and MAC_HEADER
*/
/* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4;
fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4;
*/
tmf->vl = SWAP_BYTES(tmf->vl);
return(smctr_trc_send_packet(dev, fcb, MAC_QUEUE));
}
static int smctr_send_rsp(struct net_device *dev, MAC_HEADER *rmf,
__u16 rcode, __u16 correlator)
{
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_CORRELATOR + S_RESPONSE_CODE)) == (FCBlock *)(-1L))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RSP;
tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4;
tmf->vl = 4;
smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RSP);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_corr(dev, tsv, correlator);
return (0);
}
static int smctr_send_rq_init(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
MAC_HEADER *tmf;
MAC_SUB_VECTOR *tsv;
FCBlock *fcb;
unsigned int i, count = 0;
__u16 fstatus;
int err;
do {
if(((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER)
+ S_PRODUCT_INSTANCE_ID + S_UPSTREAM_NEIGHBOR_ADDRESS
+ S_RING_STATION_VERSION_NUMBER + S_ADDRESS_MODIFER))
== (FCBlock *)(-1L)))
{
return (0);
}
tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr;
tmf->vc = RQ_INIT;
tmf->dc_sc = DC_RPS | SC_RS;
tmf->vl = 4;
smctr_make_8025_hdr(dev, NULL, tmf, AC_FC_RQ_INIT);
tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER));
smctr_make_product_id(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_upstream_neighbor_addr(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_ring_station_version(dev, tsv);
tmf->vl += tsv->svl;
tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl);
smctr_make_addr_mod(dev, tsv);
tmf->vl += tsv->svl;
/* Subtract out MVID and MVL which is
* include in both vl and MAC_HEADER
*/
/* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4;
fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4;
*/
tmf->vl = SWAP_BYTES(tmf->vl);
if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE)))
return (err);
/* Wait for Transmit to Complete */
for(i = 0; i < 10000; i++)
{
if(fcb->frame_status & FCB_COMMAND_DONE)
break;
mdelay(1);
}
/* Check if GOOD frame Tx'ed */
fstatus = fcb->frame_status;
if(!(fstatus & FCB_COMMAND_DONE))
return (HARDWARE_FAILED);
if(!(fstatus & FCB_TX_STATUS_E))
count++;
/* De-allocated Tx FCB and Frame Buffer
* The FCB must be de-allocated manually if executing with
* interrupts disabled, other wise the ISR (LM_Service_Events)
* will de-allocate it when the interrupt occurs.
*/
tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING;
smctr_update_tx_chain(dev, fcb, MAC_QUEUE);
} while(count < 4 && ((fstatus & FCB_TX_AC_BITS) ^ FCB_TX_AC_BITS));
return (smctr_join_complete_state(dev));
}
static int smctr_send_tx_forward(struct net_device *dev, MAC_HEADER *rmf,
__u16 *tx_fstatus)
{
struct net_local *tp = netdev_priv(dev);
FCBlock *fcb;
unsigned int i;
int err;
/* Check if this is the END POINT of the Transmit Forward Chain. */
if(rmf->vl <= 18)
return (0);
/* Allocate Transmit FCB only by requesting 0 bytes
* of data buffer.
*/
if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, 0)) == (FCBlock *)(-1L))
return (0);
/* Set pointer to Transmit Frame Buffer to the data
* portion of the received TX Forward frame, making
* sure to skip over the Vector Code (vc) and Vector
* length (vl).
*/
fcb->bdb_ptr->trc_data_block_ptr = TRC_POINTER((__u32)rmf
+ sizeof(MAC_HEADER) + 2);
fcb->bdb_ptr->data_block_ptr = (__u16 *)((__u32)rmf
+ sizeof(MAC_HEADER) + 2);
fcb->frame_length = rmf->vl - 4 - 2;
fcb->bdb_ptr->buffer_length = rmf->vl - 4 - 2;
if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE)))
return (err);
/* Wait for Transmit to Complete */
for(i = 0; i < 10000; i++)
{
if(fcb->frame_status & FCB_COMMAND_DONE)
break;
mdelay(1);
}
/* Check if GOOD frame Tx'ed */
if(!(fcb->frame_status & FCB_COMMAND_DONE))
{
if((err = smctr_issue_resume_tx_fcb_cmd(dev, MAC_QUEUE)))
return (err);
for(i = 0; i < 10000; i++)
{
if(fcb->frame_status & FCB_COMMAND_DONE)
break;
mdelay(1);
}
if(!(fcb->frame_status & FCB_COMMAND_DONE))
return (HARDWARE_FAILED);
}
*tx_fstatus = fcb->frame_status;
return (A_FRAME_WAS_FORWARDED);
}
static int smctr_set_auth_access_pri(struct net_device *dev,
MAC_SUB_VECTOR *rsv)
{
struct net_local *tp = netdev_priv(dev);
if(rsv->svl != S_AUTHORIZED_ACCESS_PRIORITY)
return (E_SUB_VECTOR_LENGTH_ERROR);
tp->authorized_access_priority = (rsv->svv[0] << 8 | rsv->svv[1]);
return (POSITIVE_ACK);
}
static int smctr_set_auth_funct_class(struct net_device *dev,
MAC_SUB_VECTOR *rsv)
{
struct net_local *tp = netdev_priv(dev);
if(rsv->svl != S_AUTHORIZED_FUNCTION_CLASS)
return (E_SUB_VECTOR_LENGTH_ERROR);
tp->authorized_function_classes = (rsv->svv[0] << 8 | rsv->svv[1]);
return (POSITIVE_ACK);
}
static int smctr_set_corr(struct net_device *dev, MAC_SUB_VECTOR *rsv,
__u16 *correlator)
{
if(rsv->svl != S_CORRELATOR)
return (E_SUB_VECTOR_LENGTH_ERROR);
*correlator = (rsv->svv[0] << 8 | rsv->svv[1]);
return (POSITIVE_ACK);
}
static int smctr_set_error_timer_value(struct net_device *dev,
MAC_SUB_VECTOR *rsv)
{
__u16 err_tval;
int err;
if(rsv->svl != S_ERROR_TIMER_VALUE)
return (E_SUB_VECTOR_LENGTH_ERROR);
err_tval = (rsv->svv[0] << 8 | rsv->svv[1])*10;
smctr_issue_write_word_cmd(dev, RW_TER_THRESHOLD, &err_tval);
if((err = smctr_wait_cmd(dev)))
return (err);
return (POSITIVE_ACK);
}
static int smctr_set_frame_forward(struct net_device *dev,
MAC_SUB_VECTOR *rsv, __u8 dc_sc)
{
if((rsv->svl < 2) || (rsv->svl > S_FRAME_FORWARD))
return (E_SUB_VECTOR_LENGTH_ERROR);
if((dc_sc & DC_MASK) != DC_CRS)
{
if(rsv->svl >= 2 && rsv->svl < 20)
return (E_TRANSMIT_FORWARD_INVALID);
if((rsv->svv[0] != 0) || (rsv->svv[1] != 0))
return (E_TRANSMIT_FORWARD_INVALID);
}
return (POSITIVE_ACK);
}
static int smctr_set_local_ring_num(struct net_device *dev,
MAC_SUB_VECTOR *rsv)
{
struct net_local *tp = netdev_priv(dev);
if(rsv->svl != S_LOCAL_RING_NUMBER)
return (E_SUB_VECTOR_LENGTH_ERROR);
if(tp->ptr_local_ring_num)
*(__u16 *)(tp->ptr_local_ring_num)
= (rsv->svv[0] << 8 | rsv->svv[1]);
return (POSITIVE_ACK);
}
static unsigned short smctr_set_ctrl_attention(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int ioaddr = dev->base_addr;
if(tp->bic_type == BIC_585_CHIP)
outb((tp->trc_mask | HWR_CA), ioaddr + HWR);
else
{
outb((tp->trc_mask | CSR_CA), ioaddr + CSR);
outb(tp->trc_mask, ioaddr + CSR);
}
return (0);
}
static void smctr_set_multicast_list(struct net_device *dev)
{
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_set_multicast_list\n", dev->name);
return;
}
static int smctr_set_page(struct net_device *dev, __u8 *buf)
{
struct net_local *tp = netdev_priv(dev);
__u8 amask;
__u32 tptr;
tptr = (__u32)buf - (__u32)tp->ram_access;
amask = (__u8)((tptr & PR_PAGE_MASK) >> 8);
outb(amask, dev->base_addr + PR);
return (0);
}
static int smctr_set_phy_drop(struct net_device *dev, MAC_SUB_VECTOR *rsv)
{
int err;
if(rsv->svl != S_PHYSICAL_DROP)
return (E_SUB_VECTOR_LENGTH_ERROR);
smctr_issue_write_byte_cmd(dev, RW_PHYSICAL_DROP_NUMBER, &rsv->svv[0]);
if((err = smctr_wait_cmd(dev)))
return (err);
return (POSITIVE_ACK);
}
/* Reset the ring speed to the opposite of what it was. This auto-pilot
* mode requires a complete reset and re-init of the adapter.
*/
static int smctr_set_ring_speed(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
if(tp->media_type == MEDIA_UTP_16)
tp->media_type = MEDIA_UTP_4;
else
tp->media_type = MEDIA_UTP_16;
smctr_enable_16bit(dev);
/* Re-Initialize adapter's internal registers */
smctr_reset_adapter(dev);
if((err = smctr_init_card_real(dev)))
return (err);
smctr_enable_bic_int(dev);
if((err = smctr_issue_enable_int_cmd(dev, TRC_INTERRUPT_ENABLE_MASK)))
return (err);
smctr_disable_16bit(dev);
return (0);
}
static int smctr_set_rx_look_ahead(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
__u16 sword, rword;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_set_rx_look_ahead_flag\n", dev->name);
tp->adapter_flags &= ~(FORCED_16BIT_MODE);
tp->adapter_flags |= RX_VALID_LOOKAHEAD;
if(tp->adapter_bus == BUS_ISA16_TYPE)
{
sword = *((__u16 *)(tp->ram_access));
*((__u16 *)(tp->ram_access)) = 0x1234;
smctr_disable_16bit(dev);
rword = *((__u16 *)(tp->ram_access));
smctr_enable_16bit(dev);
if(rword != 0x1234)
tp->adapter_flags |= FORCED_16BIT_MODE;
*((__u16 *)(tp->ram_access)) = sword;
}
return (0);
}
static int smctr_set_trc_reset(int ioaddr)
{
__u8 r;
r = inb(ioaddr + MSR);
outb(MSR_RST | r, ioaddr + MSR);
return (0);
}
/*
* This function can be called if the adapter is busy or not.
*/
static int smctr_setup_single_cmd(struct net_device *dev,
__u16 command, __u16 subcommand)
{
struct net_local *tp = netdev_priv(dev);
unsigned int err;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_setup_single_cmd\n", dev->name);
if((err = smctr_wait_while_cbusy(dev)))
return (err);
if((err = (unsigned int)smctr_wait_cmd(dev)))
return (err);
tp->acb_head->cmd_done_status = 0;
tp->acb_head->cmd = command;
tp->acb_head->subcmd = subcommand;
err = smctr_issue_resume_acb_cmd(dev);
return (err);
}
/*
* This function can not be called with the adapter busy.
*/
static int smctr_setup_single_cmd_w_data(struct net_device *dev,
__u16 command, __u16 subcommand)
{
struct net_local *tp = netdev_priv(dev);
tp->acb_head->cmd_done_status = ACB_COMMAND_NOT_DONE;
tp->acb_head->cmd = command;
tp->acb_head->subcmd = subcommand;
tp->acb_head->data_offset_lo
= (__u16)TRC_POINTER(tp->misc_command_data);
return(smctr_issue_resume_acb_cmd(dev));
}
static char *smctr_malloc(struct net_device *dev, __u16 size)
{
struct net_local *tp = netdev_priv(dev);
char *m;
m = (char *)(tp->ram_access + tp->sh_mem_used);
tp->sh_mem_used += (__u32)size;
return (m);
}
static int smctr_status_chg(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_status_chg\n", dev->name);
switch(tp->status)
{
case OPEN:
break;
case CLOSED:
break;
/* Interrupt driven open() completion. XXX */
case INITIALIZED:
tp->group_address_0 = 0;
tp->group_address[0] = 0;
tp->group_address[1] = 0;
tp->functional_address_0 = 0;
tp->functional_address[0] = 0;
tp->functional_address[1] = 0;
smctr_open_tr(dev);
break;
default:
printk(KERN_INFO "%s: status change unknown %x\n",
dev->name, tp->status);
break;
}
return (0);
}
static int smctr_trc_send_packet(struct net_device *dev, FCBlock *fcb,
__u16 queue)
{
struct net_local *tp = netdev_priv(dev);
int err = 0;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_trc_send_packet\n", dev->name);
fcb->info = FCB_CHAIN_END | FCB_ENABLE_TFS;
if(tp->num_tx_fcbs[queue] != 1)
fcb->back_ptr->info = FCB_INTERRUPT_ENABLE | FCB_ENABLE_TFS;
if(tp->tx_queue_status[queue] == NOT_TRANSMITING)
{
tp->tx_queue_status[queue] = TRANSMITING;
err = smctr_issue_resume_tx_fcb_cmd(dev, queue);
}
return (err);
}
static __u16 smctr_tx_complete(struct net_device *dev, __u16 queue)
{
struct net_local *tp = netdev_priv(dev);
__u16 status, err = 0;
int cstatus;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_tx_complete\n", dev->name);
while((status = tp->tx_fcb_end[queue]->frame_status) != SUCCESS)
{
if(status & 0x7e00 )
{
err = HARDWARE_FAILED;
break;
}
if((err = smctr_update_tx_chain(dev, tp->tx_fcb_end[queue],
queue)) != SUCCESS)
break;
smctr_disable_16bit(dev);
if(tp->mode_bits & UMAC)
{
if(!(status & (FCB_TX_STATUS_AR1 | FCB_TX_STATUS_AR2)))
cstatus = NO_SUCH_DESTINATION;
else
{
if(!(status & (FCB_TX_STATUS_CR1 | FCB_TX_STATUS_CR2)))
cstatus = DEST_OUT_OF_RESOURCES;
else
{
if(status & FCB_TX_STATUS_E)
cstatus = MAX_COLLISIONS;
else
cstatus = SUCCESS;
}
}
}
else
cstatus = SUCCESS;
if(queue == BUG_QUEUE)
err = SUCCESS;
smctr_enable_16bit(dev);
if(err != SUCCESS)
break;
}
return (err);
}
static unsigned short smctr_tx_move_frame(struct net_device *dev,
struct sk_buff *skb, __u8 *pbuff, unsigned int bytes)
{
struct net_local *tp = netdev_priv(dev);
unsigned int ram_usable;
__u32 flen, len, offset = 0;
__u8 *frag, *page;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_tx_move_frame\n", dev->name);
ram_usable = ((unsigned int)tp->ram_usable) << 10;
frag = skb->data;
flen = skb->len;
while(flen > 0 && bytes > 0)
{
smctr_set_page(dev, pbuff);
offset = SMC_PAGE_OFFSET(pbuff);
if(offset + flen > ram_usable)
len = ram_usable - offset;
else
len = flen;
if(len > bytes)
len = bytes;
page = (char *) (offset + tp->ram_access);
memcpy(page, frag, len);
flen -=len;
bytes -= len;
frag += len;
pbuff += len;
}
return (0);
}
/* Update the error statistic counters for this adapter. */
static int smctr_update_err_stats(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
struct tr_statistics *tstat = &tp->MacStat;
if(tstat->internal_errors)
tstat->internal_errors
+= *(tp->misc_command_data + 0) & 0x00ff;
if(tstat->line_errors)
tstat->line_errors += *(tp->misc_command_data + 0) >> 8;
if(tstat->A_C_errors)
tstat->A_C_errors += *(tp->misc_command_data + 1) & 0x00ff;
if(tstat->burst_errors)
tstat->burst_errors += *(tp->misc_command_data + 1) >> 8;
if(tstat->abort_delimiters)
tstat->abort_delimiters += *(tp->misc_command_data + 2) >> 8;
if(tstat->recv_congest_count)
tstat->recv_congest_count
+= *(tp->misc_command_data + 3) & 0x00ff;
if(tstat->lost_frames)
tstat->lost_frames
+= *(tp->misc_command_data + 3) >> 8;
if(tstat->frequency_errors)
tstat->frequency_errors += *(tp->misc_command_data + 4) & 0x00ff;
if(tstat->frame_copied_errors)
tstat->frame_copied_errors
+= *(tp->misc_command_data + 4) >> 8;
if(tstat->token_errors)
tstat->token_errors += *(tp->misc_command_data + 5) >> 8;
return (0);
}
static int smctr_update_rx_chain(struct net_device *dev, __u16 queue)
{
struct net_local *tp = netdev_priv(dev);
FCBlock *fcb;
BDBlock *bdb;
__u16 size, len;
fcb = tp->rx_fcb_curr[queue];
len = fcb->frame_length;
fcb->frame_status = 0;
fcb->info = FCB_CHAIN_END;
fcb->back_ptr->info = FCB_WARNING;
tp->rx_fcb_curr[queue] = tp->rx_fcb_curr[queue]->next_ptr;
/* update RX BDBs */
size = (len >> RX_BDB_SIZE_SHIFT);
if(len & RX_DATA_BUFFER_SIZE_MASK)
size += sizeof(BDBlock);
size &= (~RX_BDB_SIZE_MASK);
/* check if wrap around */
bdb = (BDBlock *)((__u32)(tp->rx_bdb_curr[queue]) + (__u32)(size));
if((__u32)bdb >= (__u32)tp->rx_bdb_end[queue])
{
bdb = (BDBlock *)((__u32)(tp->rx_bdb_head[queue])
+ (__u32)(bdb) - (__u32)(tp->rx_bdb_end[queue]));
}
bdb->back_ptr->info = BDB_CHAIN_END;
tp->rx_bdb_curr[queue]->back_ptr->info = BDB_NOT_CHAIN_END;
tp->rx_bdb_curr[queue] = bdb;
return (0);
}
static int smctr_update_tx_chain(struct net_device *dev, FCBlock *fcb,
__u16 queue)
{
struct net_local *tp = netdev_priv(dev);
if(smctr_debug > 20)
printk(KERN_DEBUG "smctr_update_tx_chain\n");
if(tp->num_tx_fcbs_used[queue] <= 0)
return (HARDWARE_FAILED);
else
{
if(tp->tx_buff_used[queue] < fcb->memory_alloc)
{
tp->tx_buff_used[queue] = 0;
return (HARDWARE_FAILED);
}
tp->tx_buff_used[queue] -= fcb->memory_alloc;
/* if all transmit buffer are cleared
* need to set the tx_buff_curr[] to tx_buff_head[]
* otherwise, tx buffer will be segregate and cannot
* accommodate and buffer greater than (curr - head) and
* (end - curr) since we do not allow wrap around allocation.
*/
if(tp->tx_buff_used[queue] == 0)
tp->tx_buff_curr[queue] = tp->tx_buff_head[queue];
tp->num_tx_fcbs_used[queue]--;
fcb->frame_status = 0;
tp->tx_fcb_end[queue] = fcb->next_ptr;
netif_wake_queue(dev);
return (0);
}
}
static int smctr_wait_cmd(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int loop_count = 0x20000;
if(smctr_debug > 10)
printk(KERN_DEBUG "%s: smctr_wait_cmd\n", dev->name);
while(loop_count)
{
if(tp->acb_head->cmd_done_status & ACB_COMMAND_DONE)
break;
udelay(1);
loop_count--;
}
if(loop_count == 0)
return(HARDWARE_FAILED);
if(tp->acb_head->cmd_done_status & 0xff)
return(HARDWARE_FAILED);
return (0);
}
static int smctr_wait_while_cbusy(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int timeout = 0x20000;
int ioaddr = dev->base_addr;
__u8 r;
if(tp->bic_type == BIC_585_CHIP)
{
while(timeout)
{
r = inb(ioaddr + HWR);
if((r & HWR_CBUSY) == 0)
break;
timeout--;
}
}
else
{
while(timeout)
{
r = inb(ioaddr + CSR);
if((r & CSR_CBUSY) == 0)
break;
timeout--;
}
}
if(timeout)
return (0);
else
return (HARDWARE_FAILED);
}
#ifdef MODULE
static struct net_device* dev_smctr[SMCTR_MAX_ADAPTERS];
static int io[SMCTR_MAX_ADAPTERS];
static int irq[SMCTR_MAX_ADAPTERS];
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("tr_smctr.bin");
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
module_param(ringspeed, int, 0);
static struct net_device * __init setup_card(int n)
{
struct net_device *dev = alloc_trdev(sizeof(struct net_local));
int err;
if (!dev)
return ERR_PTR(-ENOMEM);
dev->irq = irq[n];
err = smctr_probe1(dev, io[n]);
if (err)
goto out;
err = register_netdev(dev);
if (err)
goto out1;
return dev;
out1:
#ifdef CONFIG_MCA_LEGACY
{ struct net_local *tp = netdev_priv(dev);
if (tp->slot_num)
mca_mark_as_unused(tp->slot_num);
}
#endif
release_region(dev->base_addr, SMCTR_IO_EXTENT);
free_irq(dev->irq, dev);
out:
free_netdev(dev);
return ERR_PTR(err);
}
int __init init_module(void)
{
int i, found = 0;
struct net_device *dev;
for(i = 0; i < SMCTR_MAX_ADAPTERS; i++) {
dev = io[0]? setup_card(i) : smctr_probe(-1);
if (!IS_ERR(dev)) {
++found;
dev_smctr[i] = dev;
}
}
return found ? 0 : -ENODEV;
}
void __exit cleanup_module(void)
{
int i;
for(i = 0; i < SMCTR_MAX_ADAPTERS; i++) {
struct net_device *dev = dev_smctr[i];
if (dev) {
unregister_netdev(dev);
#ifdef CONFIG_MCA_LEGACY
{ struct net_local *tp = netdev_priv(dev);
if (tp->slot_num)
mca_mark_as_unused(tp->slot_num);
}
#endif
release_region(dev->base_addr, SMCTR_IO_EXTENT);
if (dev->irq)
free_irq(dev->irq, dev);
free_netdev(dev);
}
}
}
#endif /* MODULE */