kernel-fxtec-pro1x/kernel/module.c
Mathieu Desnoyers 6549864629 tracepoints: Fix section alignment using pointer array
Make the tracepoints more robust, making them solid enough to handle compiler
changes by not relying on anything based on compiler-specific behavior with
respect to structure alignment. Implement an approach proposed by David Miller:
use an array of const pointers to refer to the individual structures, and export
this pointer array through the linker script rather than the structures per se.
It will consume 32 extra bytes per tracepoint (24 for structure padding and 8
for the pointers), but are less likely to break due to compiler changes.

History:

commit 7e066fb8 tracepoints: add DECLARE_TRACE() and DEFINE_TRACE()
added the aligned(32) type and variable attribute to the tracepoint structures
to deal with gcc happily aligning statically defined structures on 32-byte
multiples.

One attempt was to use a 8-byte alignment for tracepoint structures by applying
both the variable and type attribute to tracepoint structures definitions and
declarations. It worked fine with gcc 4.5.1, but broke with gcc 4.4.4 and 4.4.5.

The reason is that the "aligned" attribute only specify the _minimum_ alignment
for a structure, leaving both the compiler and the linker free to align on
larger multiples. Because tracepoint.c expects the structures to be placed as an
array within each section, up-alignment cause NULL-pointer exceptions due to the
extra unexpected padding.

(this patch applies on top of -tip)

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
LKML-Reference: <20110126222622.GA10794@Krystal>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-02-03 09:28:46 -05:00

3447 lines
88 KiB
C

/*
Copyright (C) 2002 Richard Henderson
Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/moduleloader.h>
#include <linux/ftrace_event.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/elf.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <linux/rcupdate.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/vermagic.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/stop_machine.h>
#include <linux/device.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <linux/license.h>
#include <asm/sections.h>
#include <linux/tracepoint.h>
#include <linux/ftrace.h>
#include <linux/async.h>
#include <linux/percpu.h>
#include <linux/kmemleak.h>
#include <linux/jump_label.h>
#include <linux/pfn.h>
#define CREATE_TRACE_POINTS
#include <trace/events/module.h>
#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt , a...)
#endif
#ifndef ARCH_SHF_SMALL
#define ARCH_SHF_SMALL 0
#endif
/*
* Modules' sections will be aligned on page boundaries
* to ensure complete separation of code and data, but
* only when CONFIG_DEBUG_SET_MODULE_RONX=y
*/
#ifdef CONFIG_DEBUG_SET_MODULE_RONX
# define debug_align(X) ALIGN(X, PAGE_SIZE)
#else
# define debug_align(X) (X)
#endif
/*
* Given BASE and SIZE this macro calculates the number of pages the
* memory regions occupies
*/
#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
PFN_DOWN((unsigned long)BASE) + 1) \
: (0UL))
/* If this is set, the section belongs in the init part of the module */
#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
/*
* Mutex protects:
* 1) List of modules (also safely readable with preempt_disable),
* 2) module_use links,
* 3) module_addr_min/module_addr_max.
* (delete uses stop_machine/add uses RCU list operations). */
DEFINE_MUTEX(module_mutex);
EXPORT_SYMBOL_GPL(module_mutex);
static LIST_HEAD(modules);
#ifdef CONFIG_KGDB_KDB
struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
#endif /* CONFIG_KGDB_KDB */
/* Block module loading/unloading? */
int modules_disabled = 0;
/* Waiting for a module to finish initializing? */
static DECLARE_WAIT_QUEUE_HEAD(module_wq);
static BLOCKING_NOTIFIER_HEAD(module_notify_list);
/* Bounds of module allocation, for speeding __module_address.
* Protected by module_mutex. */
static unsigned long module_addr_min = -1UL, module_addr_max = 0;
int register_module_notifier(struct notifier_block * nb)
{
return blocking_notifier_chain_register(&module_notify_list, nb);
}
EXPORT_SYMBOL(register_module_notifier);
int unregister_module_notifier(struct notifier_block * nb)
{
return blocking_notifier_chain_unregister(&module_notify_list, nb);
}
EXPORT_SYMBOL(unregister_module_notifier);
struct load_info {
Elf_Ehdr *hdr;
unsigned long len;
Elf_Shdr *sechdrs;
char *secstrings, *strtab;
unsigned long *strmap;
unsigned long symoffs, stroffs;
struct _ddebug *debug;
unsigned int num_debug;
struct {
unsigned int sym, str, mod, vers, info, pcpu;
} index;
};
/* We require a truly strong try_module_get(): 0 means failure due to
ongoing or failed initialization etc. */
static inline int strong_try_module_get(struct module *mod)
{
if (mod && mod->state == MODULE_STATE_COMING)
return -EBUSY;
if (try_module_get(mod))
return 0;
else
return -ENOENT;
}
static inline void add_taint_module(struct module *mod, unsigned flag)
{
add_taint(flag);
mod->taints |= (1U << flag);
}
/*
* A thread that wants to hold a reference to a module only while it
* is running can call this to safely exit. nfsd and lockd use this.
*/
void __module_put_and_exit(struct module *mod, long code)
{
module_put(mod);
do_exit(code);
}
EXPORT_SYMBOL(__module_put_and_exit);
/* Find a module section: 0 means not found. */
static unsigned int find_sec(const struct load_info *info, const char *name)
{
unsigned int i;
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
/* Alloc bit cleared means "ignore it." */
if ((shdr->sh_flags & SHF_ALLOC)
&& strcmp(info->secstrings + shdr->sh_name, name) == 0)
return i;
}
return 0;
}
/* Find a module section, or NULL. */
static void *section_addr(const struct load_info *info, const char *name)
{
/* Section 0 has sh_addr 0. */
return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
}
/* Find a module section, or NULL. Fill in number of "objects" in section. */
static void *section_objs(const struct load_info *info,
const char *name,
size_t object_size,
unsigned int *num)
{
unsigned int sec = find_sec(info, name);
/* Section 0 has sh_addr 0 and sh_size 0. */
*num = info->sechdrs[sec].sh_size / object_size;
return (void *)info->sechdrs[sec].sh_addr;
}
/* Provided by the linker */
extern const struct kernel_symbol __start___ksymtab[];
extern const struct kernel_symbol __stop___ksymtab[];
extern const struct kernel_symbol __start___ksymtab_gpl[];
extern const struct kernel_symbol __stop___ksymtab_gpl[];
extern const struct kernel_symbol __start___ksymtab_gpl_future[];
extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
extern const unsigned long __start___kcrctab[];
extern const unsigned long __start___kcrctab_gpl[];
extern const unsigned long __start___kcrctab_gpl_future[];
#ifdef CONFIG_UNUSED_SYMBOLS
extern const struct kernel_symbol __start___ksymtab_unused[];
extern const struct kernel_symbol __stop___ksymtab_unused[];
extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
extern const unsigned long __start___kcrctab_unused[];
extern const unsigned long __start___kcrctab_unused_gpl[];
#endif
#ifndef CONFIG_MODVERSIONS
#define symversion(base, idx) NULL
#else
#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
#endif
static bool each_symbol_in_section(const struct symsearch *arr,
unsigned int arrsize,
struct module *owner,
bool (*fn)(const struct symsearch *syms,
struct module *owner,
unsigned int symnum, void *data),
void *data)
{
unsigned int i, j;
for (j = 0; j < arrsize; j++) {
for (i = 0; i < arr[j].stop - arr[j].start; i++)
if (fn(&arr[j], owner, i, data))
return true;
}
return false;
}
/* Returns true as soon as fn returns true, otherwise false. */
bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
unsigned int symnum, void *data), void *data)
{
struct module *mod;
static const struct symsearch arr[] = {
{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
NOT_GPL_ONLY, false },
{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
__start___kcrctab_gpl,
GPL_ONLY, false },
{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
__start___kcrctab_gpl_future,
WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
{ __start___ksymtab_unused, __stop___ksymtab_unused,
__start___kcrctab_unused,
NOT_GPL_ONLY, true },
{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
__start___kcrctab_unused_gpl,
GPL_ONLY, true },
#endif
};
if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
return true;
list_for_each_entry_rcu(mod, &modules, list) {
struct symsearch arr[] = {
{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
NOT_GPL_ONLY, false },
{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
mod->gpl_crcs,
GPL_ONLY, false },
{ mod->gpl_future_syms,
mod->gpl_future_syms + mod->num_gpl_future_syms,
mod->gpl_future_crcs,
WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
{ mod->unused_syms,
mod->unused_syms + mod->num_unused_syms,
mod->unused_crcs,
NOT_GPL_ONLY, true },
{ mod->unused_gpl_syms,
mod->unused_gpl_syms + mod->num_unused_gpl_syms,
mod->unused_gpl_crcs,
GPL_ONLY, true },
#endif
};
if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(each_symbol);
struct find_symbol_arg {
/* Input */
const char *name;
bool gplok;
bool warn;
/* Output */
struct module *owner;
const unsigned long *crc;
const struct kernel_symbol *sym;
};
static bool find_symbol_in_section(const struct symsearch *syms,
struct module *owner,
unsigned int symnum, void *data)
{
struct find_symbol_arg *fsa = data;
if (strcmp(syms->start[symnum].name, fsa->name) != 0)
return false;
if (!fsa->gplok) {
if (syms->licence == GPL_ONLY)
return false;
if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
printk(KERN_WARNING "Symbol %s is being used "
"by a non-GPL module, which will not "
"be allowed in the future\n", fsa->name);
printk(KERN_WARNING "Please see the file "
"Documentation/feature-removal-schedule.txt "
"in the kernel source tree for more details.\n");
}
}
#ifdef CONFIG_UNUSED_SYMBOLS
if (syms->unused && fsa->warn) {
printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
"however this module is using it.\n", fsa->name);
printk(KERN_WARNING
"This symbol will go away in the future.\n");
printk(KERN_WARNING
"Please evalute if this is the right api to use and if "
"it really is, submit a report the linux kernel "
"mailinglist together with submitting your code for "
"inclusion.\n");
}
#endif
fsa->owner = owner;
fsa->crc = symversion(syms->crcs, symnum);
fsa->sym = &syms->start[symnum];
return true;
}
/* Find a symbol and return it, along with, (optional) crc and
* (optional) module which owns it. Needs preempt disabled or module_mutex. */
const struct kernel_symbol *find_symbol(const char *name,
struct module **owner,
const unsigned long **crc,
bool gplok,
bool warn)
{
struct find_symbol_arg fsa;
fsa.name = name;
fsa.gplok = gplok;
fsa.warn = warn;
if (each_symbol(find_symbol_in_section, &fsa)) {
if (owner)
*owner = fsa.owner;
if (crc)
*crc = fsa.crc;
return fsa.sym;
}
DEBUGP("Failed to find symbol %s\n", name);
return NULL;
}
EXPORT_SYMBOL_GPL(find_symbol);
/* Search for module by name: must hold module_mutex. */
struct module *find_module(const char *name)
{
struct module *mod;
list_for_each_entry(mod, &modules, list) {
if (strcmp(mod->name, name) == 0)
return mod;
}
return NULL;
}
EXPORT_SYMBOL_GPL(find_module);
#ifdef CONFIG_SMP
static inline void __percpu *mod_percpu(struct module *mod)
{
return mod->percpu;
}
static int percpu_modalloc(struct module *mod,
unsigned long size, unsigned long align)
{
if (align > PAGE_SIZE) {
printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
mod->name, align, PAGE_SIZE);
align = PAGE_SIZE;
}
mod->percpu = __alloc_reserved_percpu(size, align);
if (!mod->percpu) {
printk(KERN_WARNING
"%s: Could not allocate %lu bytes percpu data\n",
mod->name, size);
return -ENOMEM;
}
mod->percpu_size = size;
return 0;
}
static void percpu_modfree(struct module *mod)
{
free_percpu(mod->percpu);
}
static unsigned int find_pcpusec(struct load_info *info)
{
return find_sec(info, ".data..percpu");
}
static void percpu_modcopy(struct module *mod,
const void *from, unsigned long size)
{
int cpu;
for_each_possible_cpu(cpu)
memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
}
/**
* is_module_percpu_address - test whether address is from module static percpu
* @addr: address to test
*
* Test whether @addr belongs to module static percpu area.
*
* RETURNS:
* %true if @addr is from module static percpu area
*/
bool is_module_percpu_address(unsigned long addr)
{
struct module *mod;
unsigned int cpu;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (!mod->percpu_size)
continue;
for_each_possible_cpu(cpu) {
void *start = per_cpu_ptr(mod->percpu, cpu);
if ((void *)addr >= start &&
(void *)addr < start + mod->percpu_size) {
preempt_enable();
return true;
}
}
}
preempt_enable();
return false;
}
#else /* ... !CONFIG_SMP */
static inline void __percpu *mod_percpu(struct module *mod)
{
return NULL;
}
static inline int percpu_modalloc(struct module *mod,
unsigned long size, unsigned long align)
{
return -ENOMEM;
}
static inline void percpu_modfree(struct module *mod)
{
}
static unsigned int find_pcpusec(struct load_info *info)
{
return 0;
}
static inline void percpu_modcopy(struct module *mod,
const void *from, unsigned long size)
{
/* pcpusec should be 0, and size of that section should be 0. */
BUG_ON(size != 0);
}
bool is_module_percpu_address(unsigned long addr)
{
return false;
}
#endif /* CONFIG_SMP */
#define MODINFO_ATTR(field) \
static void setup_modinfo_##field(struct module *mod, const char *s) \
{ \
mod->field = kstrdup(s, GFP_KERNEL); \
} \
static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
struct module *mod, char *buffer) \
{ \
return sprintf(buffer, "%s\n", mod->field); \
} \
static int modinfo_##field##_exists(struct module *mod) \
{ \
return mod->field != NULL; \
} \
static void free_modinfo_##field(struct module *mod) \
{ \
kfree(mod->field); \
mod->field = NULL; \
} \
static struct module_attribute modinfo_##field = { \
.attr = { .name = __stringify(field), .mode = 0444 }, \
.show = show_modinfo_##field, \
.setup = setup_modinfo_##field, \
.test = modinfo_##field##_exists, \
.free = free_modinfo_##field, \
};
MODINFO_ATTR(version);
MODINFO_ATTR(srcversion);
static char last_unloaded_module[MODULE_NAME_LEN+1];
#ifdef CONFIG_MODULE_UNLOAD
EXPORT_TRACEPOINT_SYMBOL(module_get);
/* Init the unload section of the module. */
static int module_unload_init(struct module *mod)
{
mod->refptr = alloc_percpu(struct module_ref);
if (!mod->refptr)
return -ENOMEM;
INIT_LIST_HEAD(&mod->source_list);
INIT_LIST_HEAD(&mod->target_list);
/* Hold reference count during initialization. */
__this_cpu_write(mod->refptr->incs, 1);
/* Backwards compatibility macros put refcount during init. */
mod->waiter = current;
return 0;
}
/* Does a already use b? */
static int already_uses(struct module *a, struct module *b)
{
struct module_use *use;
list_for_each_entry(use, &b->source_list, source_list) {
if (use->source == a) {
DEBUGP("%s uses %s!\n", a->name, b->name);
return 1;
}
}
DEBUGP("%s does not use %s!\n", a->name, b->name);
return 0;
}
/*
* Module a uses b
* - we add 'a' as a "source", 'b' as a "target" of module use
* - the module_use is added to the list of 'b' sources (so
* 'b' can walk the list to see who sourced them), and of 'a'
* targets (so 'a' can see what modules it targets).
*/
static int add_module_usage(struct module *a, struct module *b)
{
struct module_use *use;
DEBUGP("Allocating new usage for %s.\n", a->name);
use = kmalloc(sizeof(*use), GFP_ATOMIC);
if (!use) {
printk(KERN_WARNING "%s: out of memory loading\n", a->name);
return -ENOMEM;
}
use->source = a;
use->target = b;
list_add(&use->source_list, &b->source_list);
list_add(&use->target_list, &a->target_list);
return 0;
}
/* Module a uses b: caller needs module_mutex() */
int ref_module(struct module *a, struct module *b)
{
int err;
if (b == NULL || already_uses(a, b))
return 0;
/* If module isn't available, we fail. */
err = strong_try_module_get(b);
if (err)
return err;
err = add_module_usage(a, b);
if (err) {
module_put(b);
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(ref_module);
/* Clear the unload stuff of the module. */
static void module_unload_free(struct module *mod)
{
struct module_use *use, *tmp;
mutex_lock(&module_mutex);
list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
struct module *i = use->target;
DEBUGP("%s unusing %s\n", mod->name, i->name);
module_put(i);
list_del(&use->source_list);
list_del(&use->target_list);
kfree(use);
}
mutex_unlock(&module_mutex);
free_percpu(mod->refptr);
}
#ifdef CONFIG_MODULE_FORCE_UNLOAD
static inline int try_force_unload(unsigned int flags)
{
int ret = (flags & O_TRUNC);
if (ret)
add_taint(TAINT_FORCED_RMMOD);
return ret;
}
#else
static inline int try_force_unload(unsigned int flags)
{
return 0;
}
#endif /* CONFIG_MODULE_FORCE_UNLOAD */
struct stopref
{
struct module *mod;
int flags;
int *forced;
};
/* Whole machine is stopped with interrupts off when this runs. */
static int __try_stop_module(void *_sref)
{
struct stopref *sref = _sref;
/* If it's not unused, quit unless we're forcing. */
if (module_refcount(sref->mod) != 0) {
if (!(*sref->forced = try_force_unload(sref->flags)))
return -EWOULDBLOCK;
}
/* Mark it as dying. */
sref->mod->state = MODULE_STATE_GOING;
return 0;
}
static int try_stop_module(struct module *mod, int flags, int *forced)
{
if (flags & O_NONBLOCK) {
struct stopref sref = { mod, flags, forced };
return stop_machine(__try_stop_module, &sref, NULL);
} else {
/* We don't need to stop the machine for this. */
mod->state = MODULE_STATE_GOING;
synchronize_sched();
return 0;
}
}
unsigned int module_refcount(struct module *mod)
{
unsigned int incs = 0, decs = 0;
int cpu;
for_each_possible_cpu(cpu)
decs += per_cpu_ptr(mod->refptr, cpu)->decs;
/*
* ensure the incs are added up after the decs.
* module_put ensures incs are visible before decs with smp_wmb.
*
* This 2-count scheme avoids the situation where the refcount
* for CPU0 is read, then CPU0 increments the module refcount,
* then CPU1 drops that refcount, then the refcount for CPU1 is
* read. We would record a decrement but not its corresponding
* increment so we would see a low count (disaster).
*
* Rare situation? But module_refcount can be preempted, and we
* might be tallying up 4096+ CPUs. So it is not impossible.
*/
smp_rmb();
for_each_possible_cpu(cpu)
incs += per_cpu_ptr(mod->refptr, cpu)->incs;
return incs - decs;
}
EXPORT_SYMBOL(module_refcount);
/* This exists whether we can unload or not */
static void free_module(struct module *mod);
static void wait_for_zero_refcount(struct module *mod)
{
/* Since we might sleep for some time, release the mutex first */
mutex_unlock(&module_mutex);
for (;;) {
DEBUGP("Looking at refcount...\n");
set_current_state(TASK_UNINTERRUPTIBLE);
if (module_refcount(mod) == 0)
break;
schedule();
}
current->state = TASK_RUNNING;
mutex_lock(&module_mutex);
}
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
unsigned int, flags)
{
struct module *mod;
char name[MODULE_NAME_LEN];
int ret, forced = 0;
if (!capable(CAP_SYS_MODULE) || modules_disabled)
return -EPERM;
if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
return -EFAULT;
name[MODULE_NAME_LEN-1] = '\0';
if (mutex_lock_interruptible(&module_mutex) != 0)
return -EINTR;
mod = find_module(name);
if (!mod) {
ret = -ENOENT;
goto out;
}
if (!list_empty(&mod->source_list)) {
/* Other modules depend on us: get rid of them first. */
ret = -EWOULDBLOCK;
goto out;
}
/* Doing init or already dying? */
if (mod->state != MODULE_STATE_LIVE) {
/* FIXME: if (force), slam module count and wake up
waiter --RR */
DEBUGP("%s already dying\n", mod->name);
ret = -EBUSY;
goto out;
}
/* If it has an init func, it must have an exit func to unload */
if (mod->init && !mod->exit) {
forced = try_force_unload(flags);
if (!forced) {
/* This module can't be removed */
ret = -EBUSY;
goto out;
}
}
/* Set this up before setting mod->state */
mod->waiter = current;
/* Stop the machine so refcounts can't move and disable module. */
ret = try_stop_module(mod, flags, &forced);
if (ret != 0)
goto out;
/* Never wait if forced. */
if (!forced && module_refcount(mod) != 0)
wait_for_zero_refcount(mod);
mutex_unlock(&module_mutex);
/* Final destruction now noone is using it. */
if (mod->exit != NULL)
mod->exit();
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
async_synchronize_full();
/* Store the name of the last unloaded module for diagnostic purposes */
strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
free_module(mod);
return 0;
out:
mutex_unlock(&module_mutex);
return ret;
}
static inline void print_unload_info(struct seq_file *m, struct module *mod)
{
struct module_use *use;
int printed_something = 0;
seq_printf(m, " %u ", module_refcount(mod));
/* Always include a trailing , so userspace can differentiate
between this and the old multi-field proc format. */
list_for_each_entry(use, &mod->source_list, source_list) {
printed_something = 1;
seq_printf(m, "%s,", use->source->name);
}
if (mod->init != NULL && mod->exit == NULL) {
printed_something = 1;
seq_printf(m, "[permanent],");
}
if (!printed_something)
seq_printf(m, "-");
}
void __symbol_put(const char *symbol)
{
struct module *owner;
preempt_disable();
if (!find_symbol(symbol, &owner, NULL, true, false))
BUG();
module_put(owner);
preempt_enable();
}
EXPORT_SYMBOL(__symbol_put);
/* Note this assumes addr is a function, which it currently always is. */
void symbol_put_addr(void *addr)
{
struct module *modaddr;
unsigned long a = (unsigned long)dereference_function_descriptor(addr);
if (core_kernel_text(a))
return;
/* module_text_address is safe here: we're supposed to have reference
* to module from symbol_get, so it can't go away. */
modaddr = __module_text_address(a);
BUG_ON(!modaddr);
module_put(modaddr);
}
EXPORT_SYMBOL_GPL(symbol_put_addr);
static ssize_t show_refcnt(struct module_attribute *mattr,
struct module *mod, char *buffer)
{
return sprintf(buffer, "%u\n", module_refcount(mod));
}
static struct module_attribute refcnt = {
.attr = { .name = "refcnt", .mode = 0444 },
.show = show_refcnt,
};
void module_put(struct module *module)
{
if (module) {
preempt_disable();
smp_wmb(); /* see comment in module_refcount */
__this_cpu_inc(module->refptr->decs);
trace_module_put(module, _RET_IP_);
/* Maybe they're waiting for us to drop reference? */
if (unlikely(!module_is_live(module)))
wake_up_process(module->waiter);
preempt_enable();
}
}
EXPORT_SYMBOL(module_put);
#else /* !CONFIG_MODULE_UNLOAD */
static inline void print_unload_info(struct seq_file *m, struct module *mod)
{
/* We don't know the usage count, or what modules are using. */
seq_printf(m, " - -");
}
static inline void module_unload_free(struct module *mod)
{
}
int ref_module(struct module *a, struct module *b)
{
return strong_try_module_get(b);
}
EXPORT_SYMBOL_GPL(ref_module);
static inline int module_unload_init(struct module *mod)
{
return 0;
}
#endif /* CONFIG_MODULE_UNLOAD */
static ssize_t show_initstate(struct module_attribute *mattr,
struct module *mod, char *buffer)
{
const char *state = "unknown";
switch (mod->state) {
case MODULE_STATE_LIVE:
state = "live";
break;
case MODULE_STATE_COMING:
state = "coming";
break;
case MODULE_STATE_GOING:
state = "going";
break;
}
return sprintf(buffer, "%s\n", state);
}
static struct module_attribute initstate = {
.attr = { .name = "initstate", .mode = 0444 },
.show = show_initstate,
};
static struct module_attribute *modinfo_attrs[] = {
&modinfo_version,
&modinfo_srcversion,
&initstate,
#ifdef CONFIG_MODULE_UNLOAD
&refcnt,
#endif
NULL,
};
static const char vermagic[] = VERMAGIC_STRING;
static int try_to_force_load(struct module *mod, const char *reason)
{
#ifdef CONFIG_MODULE_FORCE_LOAD
if (!test_taint(TAINT_FORCED_MODULE))
printk(KERN_WARNING "%s: %s: kernel tainted.\n",
mod->name, reason);
add_taint_module(mod, TAINT_FORCED_MODULE);
return 0;
#else
return -ENOEXEC;
#endif
}
#ifdef CONFIG_MODVERSIONS
/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
static unsigned long maybe_relocated(unsigned long crc,
const struct module *crc_owner)
{
#ifdef ARCH_RELOCATES_KCRCTAB
if (crc_owner == NULL)
return crc - (unsigned long)reloc_start;
#endif
return crc;
}
static int check_version(Elf_Shdr *sechdrs,
unsigned int versindex,
const char *symname,
struct module *mod,
const unsigned long *crc,
const struct module *crc_owner)
{
unsigned int i, num_versions;
struct modversion_info *versions;
/* Exporting module didn't supply crcs? OK, we're already tainted. */
if (!crc)
return 1;
/* No versions at all? modprobe --force does this. */
if (versindex == 0)
return try_to_force_load(mod, symname) == 0;
versions = (void *) sechdrs[versindex].sh_addr;
num_versions = sechdrs[versindex].sh_size
/ sizeof(struct modversion_info);
for (i = 0; i < num_versions; i++) {
if (strcmp(versions[i].name, symname) != 0)
continue;
if (versions[i].crc == maybe_relocated(*crc, crc_owner))
return 1;
DEBUGP("Found checksum %lX vs module %lX\n",
maybe_relocated(*crc, crc_owner), versions[i].crc);
goto bad_version;
}
printk(KERN_WARNING "%s: no symbol version for %s\n",
mod->name, symname);
return 0;
bad_version:
printk("%s: disagrees about version of symbol %s\n",
mod->name, symname);
return 0;
}
static inline int check_modstruct_version(Elf_Shdr *sechdrs,
unsigned int versindex,
struct module *mod)
{
const unsigned long *crc;
/* Since this should be found in kernel (which can't be removed),
* no locking is necessary. */
if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
&crc, true, false))
BUG();
return check_version(sechdrs, versindex, "module_layout", mod, crc,
NULL);
}
/* First part is kernel version, which we ignore if module has crcs. */
static inline int same_magic(const char *amagic, const char *bmagic,
bool has_crcs)
{
if (has_crcs) {
amagic += strcspn(amagic, " ");
bmagic += strcspn(bmagic, " ");
}
return strcmp(amagic, bmagic) == 0;
}
#else
static inline int check_version(Elf_Shdr *sechdrs,
unsigned int versindex,
const char *symname,
struct module *mod,
const unsigned long *crc,
const struct module *crc_owner)
{
return 1;
}
static inline int check_modstruct_version(Elf_Shdr *sechdrs,
unsigned int versindex,
struct module *mod)
{
return 1;
}
static inline int same_magic(const char *amagic, const char *bmagic,
bool has_crcs)
{
return strcmp(amagic, bmagic) == 0;
}
#endif /* CONFIG_MODVERSIONS */
/* Resolve a symbol for this module. I.e. if we find one, record usage. */
static const struct kernel_symbol *resolve_symbol(struct module *mod,
const struct load_info *info,
const char *name,
char ownername[])
{
struct module *owner;
const struct kernel_symbol *sym;
const unsigned long *crc;
int err;
mutex_lock(&module_mutex);
sym = find_symbol(name, &owner, &crc,
!(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
if (!sym)
goto unlock;
if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
owner)) {
sym = ERR_PTR(-EINVAL);
goto getname;
}
err = ref_module(mod, owner);
if (err) {
sym = ERR_PTR(err);
goto getname;
}
getname:
/* We must make copy under the lock if we failed to get ref. */
strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
unlock:
mutex_unlock(&module_mutex);
return sym;
}
static const struct kernel_symbol *
resolve_symbol_wait(struct module *mod,
const struct load_info *info,
const char *name)
{
const struct kernel_symbol *ksym;
char owner[MODULE_NAME_LEN];
if (wait_event_interruptible_timeout(module_wq,
!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
|| PTR_ERR(ksym) != -EBUSY,
30 * HZ) <= 0) {
printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
mod->name, owner);
}
return ksym;
}
/*
* /sys/module/foo/sections stuff
* J. Corbet <corbet@lwn.net>
*/
#ifdef CONFIG_SYSFS
#ifdef CONFIG_KALLSYMS
static inline bool sect_empty(const Elf_Shdr *sect)
{
return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
}
struct module_sect_attr
{
struct module_attribute mattr;
char *name;
unsigned long address;
};
struct module_sect_attrs
{
struct attribute_group grp;
unsigned int nsections;
struct module_sect_attr attrs[0];
};
static ssize_t module_sect_show(struct module_attribute *mattr,
struct module *mod, char *buf)
{
struct module_sect_attr *sattr =
container_of(mattr, struct module_sect_attr, mattr);
return sprintf(buf, "0x%lx\n", sattr->address);
}
static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
{
unsigned int section;
for (section = 0; section < sect_attrs->nsections; section++)
kfree(sect_attrs->attrs[section].name);
kfree(sect_attrs);
}
static void add_sect_attrs(struct module *mod, const struct load_info *info)
{
unsigned int nloaded = 0, i, size[2];
struct module_sect_attrs *sect_attrs;
struct module_sect_attr *sattr;
struct attribute **gattr;
/* Count loaded sections and allocate structures */
for (i = 0; i < info->hdr->e_shnum; i++)
if (!sect_empty(&info->sechdrs[i]))
nloaded++;
size[0] = ALIGN(sizeof(*sect_attrs)
+ nloaded * sizeof(sect_attrs->attrs[0]),
sizeof(sect_attrs->grp.attrs[0]));
size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
if (sect_attrs == NULL)
return;
/* Setup section attributes. */
sect_attrs->grp.name = "sections";
sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
sect_attrs->nsections = 0;
sattr = &sect_attrs->attrs[0];
gattr = &sect_attrs->grp.attrs[0];
for (i = 0; i < info->hdr->e_shnum; i++) {
Elf_Shdr *sec = &info->sechdrs[i];
if (sect_empty(sec))
continue;
sattr->address = sec->sh_addr;
sattr->name = kstrdup(info->secstrings + sec->sh_name,
GFP_KERNEL);
if (sattr->name == NULL)
goto out;
sect_attrs->nsections++;
sysfs_attr_init(&sattr->mattr.attr);
sattr->mattr.show = module_sect_show;
sattr->mattr.store = NULL;
sattr->mattr.attr.name = sattr->name;
sattr->mattr.attr.mode = S_IRUGO;
*(gattr++) = &(sattr++)->mattr.attr;
}
*gattr = NULL;
if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
goto out;
mod->sect_attrs = sect_attrs;
return;
out:
free_sect_attrs(sect_attrs);
}
static void remove_sect_attrs(struct module *mod)
{
if (mod->sect_attrs) {
sysfs_remove_group(&mod->mkobj.kobj,
&mod->sect_attrs->grp);
/* We are positive that no one is using any sect attrs
* at this point. Deallocate immediately. */
free_sect_attrs(mod->sect_attrs);
mod->sect_attrs = NULL;
}
}
/*
* /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
*/
struct module_notes_attrs {
struct kobject *dir;
unsigned int notes;
struct bin_attribute attrs[0];
};
static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count)
{
/*
* The caller checked the pos and count against our size.
*/
memcpy(buf, bin_attr->private + pos, count);
return count;
}
static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
unsigned int i)
{
if (notes_attrs->dir) {
while (i-- > 0)
sysfs_remove_bin_file(notes_attrs->dir,
&notes_attrs->attrs[i]);
kobject_put(notes_attrs->dir);
}
kfree(notes_attrs);
}
static void add_notes_attrs(struct module *mod, const struct load_info *info)
{
unsigned int notes, loaded, i;
struct module_notes_attrs *notes_attrs;
struct bin_attribute *nattr;
/* failed to create section attributes, so can't create notes */
if (!mod->sect_attrs)
return;
/* Count notes sections and allocate structures. */
notes = 0;
for (i = 0; i < info->hdr->e_shnum; i++)
if (!sect_empty(&info->sechdrs[i]) &&
(info->sechdrs[i].sh_type == SHT_NOTE))
++notes;
if (notes == 0)
return;
notes_attrs = kzalloc(sizeof(*notes_attrs)
+ notes * sizeof(notes_attrs->attrs[0]),
GFP_KERNEL);
if (notes_attrs == NULL)
return;
notes_attrs->notes = notes;
nattr = &notes_attrs->attrs[0];
for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
if (sect_empty(&info->sechdrs[i]))
continue;
if (info->sechdrs[i].sh_type == SHT_NOTE) {
sysfs_bin_attr_init(nattr);
nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
nattr->attr.mode = S_IRUGO;
nattr->size = info->sechdrs[i].sh_size;
nattr->private = (void *) info->sechdrs[i].sh_addr;
nattr->read = module_notes_read;
++nattr;
}
++loaded;
}
notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
if (!notes_attrs->dir)
goto out;
for (i = 0; i < notes; ++i)
if (sysfs_create_bin_file(notes_attrs->dir,
&notes_attrs->attrs[i]))
goto out;
mod->notes_attrs = notes_attrs;
return;
out:
free_notes_attrs(notes_attrs, i);
}
static void remove_notes_attrs(struct module *mod)
{
if (mod->notes_attrs)
free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
}
#else
static inline void add_sect_attrs(struct module *mod,
const struct load_info *info)
{
}
static inline void remove_sect_attrs(struct module *mod)
{
}
static inline void add_notes_attrs(struct module *mod,
const struct load_info *info)
{
}
static inline void remove_notes_attrs(struct module *mod)
{
}
#endif /* CONFIG_KALLSYMS */
static void add_usage_links(struct module *mod)
{
#ifdef CONFIG_MODULE_UNLOAD
struct module_use *use;
int nowarn;
mutex_lock(&module_mutex);
list_for_each_entry(use, &mod->target_list, target_list) {
nowarn = sysfs_create_link(use->target->holders_dir,
&mod->mkobj.kobj, mod->name);
}
mutex_unlock(&module_mutex);
#endif
}
static void del_usage_links(struct module *mod)
{
#ifdef CONFIG_MODULE_UNLOAD
struct module_use *use;
mutex_lock(&module_mutex);
list_for_each_entry(use, &mod->target_list, target_list)
sysfs_remove_link(use->target->holders_dir, mod->name);
mutex_unlock(&module_mutex);
#endif
}
static int module_add_modinfo_attrs(struct module *mod)
{
struct module_attribute *attr;
struct module_attribute *temp_attr;
int error = 0;
int i;
mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
(ARRAY_SIZE(modinfo_attrs) + 1)),
GFP_KERNEL);
if (!mod->modinfo_attrs)
return -ENOMEM;
temp_attr = mod->modinfo_attrs;
for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
if (!attr->test ||
(attr->test && attr->test(mod))) {
memcpy(temp_attr, attr, sizeof(*temp_attr));
sysfs_attr_init(&temp_attr->attr);
error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
++temp_attr;
}
}
return error;
}
static void module_remove_modinfo_attrs(struct module *mod)
{
struct module_attribute *attr;
int i;
for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
/* pick a field to test for end of list */
if (!attr->attr.name)
break;
sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
if (attr->free)
attr->free(mod);
}
kfree(mod->modinfo_attrs);
}
static int mod_sysfs_init(struct module *mod)
{
int err;
struct kobject *kobj;
if (!module_sysfs_initialized) {
printk(KERN_ERR "%s: module sysfs not initialized\n",
mod->name);
err = -EINVAL;
goto out;
}
kobj = kset_find_obj(module_kset, mod->name);
if (kobj) {
printk(KERN_ERR "%s: module is already loaded\n", mod->name);
kobject_put(kobj);
err = -EINVAL;
goto out;
}
mod->mkobj.mod = mod;
memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
mod->mkobj.kobj.kset = module_kset;
err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
"%s", mod->name);
if (err)
kobject_put(&mod->mkobj.kobj);
/* delay uevent until full sysfs population */
out:
return err;
}
static int mod_sysfs_setup(struct module *mod,
const struct load_info *info,
struct kernel_param *kparam,
unsigned int num_params)
{
int err;
err = mod_sysfs_init(mod);
if (err)
goto out;
mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
if (!mod->holders_dir) {
err = -ENOMEM;
goto out_unreg;
}
err = module_param_sysfs_setup(mod, kparam, num_params);
if (err)
goto out_unreg_holders;
err = module_add_modinfo_attrs(mod);
if (err)
goto out_unreg_param;
add_usage_links(mod);
add_sect_attrs(mod, info);
add_notes_attrs(mod, info);
kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
return 0;
out_unreg_param:
module_param_sysfs_remove(mod);
out_unreg_holders:
kobject_put(mod->holders_dir);
out_unreg:
kobject_put(&mod->mkobj.kobj);
out:
return err;
}
static void mod_sysfs_fini(struct module *mod)
{
remove_notes_attrs(mod);
remove_sect_attrs(mod);
kobject_put(&mod->mkobj.kobj);
}
#else /* !CONFIG_SYSFS */
static int mod_sysfs_setup(struct module *mod,
const struct load_info *info,
struct kernel_param *kparam,
unsigned int num_params)
{
return 0;
}
static void mod_sysfs_fini(struct module *mod)
{
}
static void module_remove_modinfo_attrs(struct module *mod)
{
}
static void del_usage_links(struct module *mod)
{
}
#endif /* CONFIG_SYSFS */
static void mod_sysfs_teardown(struct module *mod)
{
del_usage_links(mod);
module_remove_modinfo_attrs(mod);
module_param_sysfs_remove(mod);
kobject_put(mod->mkobj.drivers_dir);
kobject_put(mod->holders_dir);
mod_sysfs_fini(mod);
}
/*
* unlink the module with the whole machine is stopped with interrupts off
* - this defends against kallsyms not taking locks
*/
static int __unlink_module(void *_mod)
{
struct module *mod = _mod;
list_del(&mod->list);
module_bug_cleanup(mod);
return 0;
}
#ifdef CONFIG_DEBUG_SET_MODULE_RONX
/*
* LKM RO/NX protection: protect module's text/ro-data
* from modification and any data from execution.
*/
void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
{
unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
unsigned long end_pfn = PFN_DOWN((unsigned long)end);
if (end_pfn > begin_pfn)
set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
}
static void set_section_ro_nx(void *base,
unsigned long text_size,
unsigned long ro_size,
unsigned long total_size)
{
/* begin and end PFNs of the current subsection */
unsigned long begin_pfn;
unsigned long end_pfn;
/*
* Set RO for module text and RO-data:
* - Always protect first page.
* - Do not protect last partial page.
*/
if (ro_size > 0)
set_page_attributes(base, base + ro_size, set_memory_ro);
/*
* Set NX permissions for module data:
* - Do not protect first partial page.
* - Always protect last page.
*/
if (total_size > text_size) {
begin_pfn = PFN_UP((unsigned long)base + text_size);
end_pfn = PFN_UP((unsigned long)base + total_size);
if (end_pfn > begin_pfn)
set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
}
}
/* Setting memory back to RW+NX before releasing it */
void unset_section_ro_nx(struct module *mod, void *module_region)
{
unsigned long total_pages;
if (mod->module_core == module_region) {
/* Set core as NX+RW */
total_pages = MOD_NUMBER_OF_PAGES(mod->module_core, mod->core_size);
set_memory_nx((unsigned long)mod->module_core, total_pages);
set_memory_rw((unsigned long)mod->module_core, total_pages);
} else if (mod->module_init == module_region) {
/* Set init as NX+RW */
total_pages = MOD_NUMBER_OF_PAGES(mod->module_init, mod->init_size);
set_memory_nx((unsigned long)mod->module_init, total_pages);
set_memory_rw((unsigned long)mod->module_init, total_pages);
}
}
/* Iterate through all modules and set each module's text as RW */
void set_all_modules_text_rw()
{
struct module *mod;
mutex_lock(&module_mutex);
list_for_each_entry_rcu(mod, &modules, list) {
if ((mod->module_core) && (mod->core_text_size)) {
set_page_attributes(mod->module_core,
mod->module_core + mod->core_text_size,
set_memory_rw);
}
if ((mod->module_init) && (mod->init_text_size)) {
set_page_attributes(mod->module_init,
mod->module_init + mod->init_text_size,
set_memory_rw);
}
}
mutex_unlock(&module_mutex);
}
/* Iterate through all modules and set each module's text as RO */
void set_all_modules_text_ro()
{
struct module *mod;
mutex_lock(&module_mutex);
list_for_each_entry_rcu(mod, &modules, list) {
if ((mod->module_core) && (mod->core_text_size)) {
set_page_attributes(mod->module_core,
mod->module_core + mod->core_text_size,
set_memory_ro);
}
if ((mod->module_init) && (mod->init_text_size)) {
set_page_attributes(mod->module_init,
mod->module_init + mod->init_text_size,
set_memory_ro);
}
}
mutex_unlock(&module_mutex);
}
#else
static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
static inline void unset_section_ro_nx(struct module *mod, void *module_region) { }
#endif
/* Free a module, remove from lists, etc. */
static void free_module(struct module *mod)
{
trace_module_free(mod);
/* Delete from various lists */
mutex_lock(&module_mutex);
stop_machine(__unlink_module, mod, NULL);
mutex_unlock(&module_mutex);
mod_sysfs_teardown(mod);
/* Remove dynamic debug info */
ddebug_remove_module(mod->name);
/* Arch-specific cleanup. */
module_arch_cleanup(mod);
/* Module unload stuff */
module_unload_free(mod);
/* Free any allocated parameters. */
destroy_params(mod->kp, mod->num_kp);
/* This may be NULL, but that's OK */
unset_section_ro_nx(mod, mod->module_init);
module_free(mod, mod->module_init);
kfree(mod->args);
percpu_modfree(mod);
/* Free lock-classes: */
lockdep_free_key_range(mod->module_core, mod->core_size);
/* Finally, free the core (containing the module structure) */
unset_section_ro_nx(mod, mod->module_core);
module_free(mod, mod->module_core);
#ifdef CONFIG_MPU
update_protections(current->mm);
#endif
}
void *__symbol_get(const char *symbol)
{
struct module *owner;
const struct kernel_symbol *sym;
preempt_disable();
sym = find_symbol(symbol, &owner, NULL, true, true);
if (sym && strong_try_module_get(owner))
sym = NULL;
preempt_enable();
return sym ? (void *)sym->value : NULL;
}
EXPORT_SYMBOL_GPL(__symbol_get);
/*
* Ensure that an exported symbol [global namespace] does not already exist
* in the kernel or in some other module's exported symbol table.
*
* You must hold the module_mutex.
*/
static int verify_export_symbols(struct module *mod)
{
unsigned int i;
struct module *owner;
const struct kernel_symbol *s;
struct {
const struct kernel_symbol *sym;
unsigned int num;
} arr[] = {
{ mod->syms, mod->num_syms },
{ mod->gpl_syms, mod->num_gpl_syms },
{ mod->gpl_future_syms, mod->num_gpl_future_syms },
#ifdef CONFIG_UNUSED_SYMBOLS
{ mod->unused_syms, mod->num_unused_syms },
{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
#endif
};
for (i = 0; i < ARRAY_SIZE(arr); i++) {
for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
if (find_symbol(s->name, &owner, NULL, true, false)) {
printk(KERN_ERR
"%s: exports duplicate symbol %s"
" (owned by %s)\n",
mod->name, s->name, module_name(owner));
return -ENOEXEC;
}
}
}
return 0;
}
/* Change all symbols so that st_value encodes the pointer directly. */
static int simplify_symbols(struct module *mod, const struct load_info *info)
{
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
Elf_Sym *sym = (void *)symsec->sh_addr;
unsigned long secbase;
unsigned int i;
int ret = 0;
const struct kernel_symbol *ksym;
for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
const char *name = info->strtab + sym[i].st_name;
switch (sym[i].st_shndx) {
case SHN_COMMON:
/* We compiled with -fno-common. These are not
supposed to happen. */
DEBUGP("Common symbol: %s\n", name);
printk("%s: please compile with -fno-common\n",
mod->name);
ret = -ENOEXEC;
break;
case SHN_ABS:
/* Don't need to do anything */
DEBUGP("Absolute symbol: 0x%08lx\n",
(long)sym[i].st_value);
break;
case SHN_UNDEF:
ksym = resolve_symbol_wait(mod, info, name);
/* Ok if resolved. */
if (ksym && !IS_ERR(ksym)) {
sym[i].st_value = ksym->value;
break;
}
/* Ok if weak. */
if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
break;
printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
mod->name, name, PTR_ERR(ksym));
ret = PTR_ERR(ksym) ?: -ENOENT;
break;
default:
/* Divert to percpu allocation if a percpu var. */
if (sym[i].st_shndx == info->index.pcpu)
secbase = (unsigned long)mod_percpu(mod);
else
secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
sym[i].st_value += secbase;
break;
}
}
return ret;
}
static int apply_relocations(struct module *mod, const struct load_info *info)
{
unsigned int i;
int err = 0;
/* Now do relocations. */
for (i = 1; i < info->hdr->e_shnum; i++) {
unsigned int infosec = info->sechdrs[i].sh_info;
/* Not a valid relocation section? */
if (infosec >= info->hdr->e_shnum)
continue;
/* Don't bother with non-allocated sections */
if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
continue;
if (info->sechdrs[i].sh_type == SHT_REL)
err = apply_relocate(info->sechdrs, info->strtab,
info->index.sym, i, mod);
else if (info->sechdrs[i].sh_type == SHT_RELA)
err = apply_relocate_add(info->sechdrs, info->strtab,
info->index.sym, i, mod);
if (err < 0)
break;
}
return err;
}
/* Additional bytes needed by arch in front of individual sections */
unsigned int __weak arch_mod_section_prepend(struct module *mod,
unsigned int section)
{
/* default implementation just returns zero */
return 0;
}
/* Update size with this section: return offset. */
static long get_offset(struct module *mod, unsigned int *size,
Elf_Shdr *sechdr, unsigned int section)
{
long ret;
*size += arch_mod_section_prepend(mod, section);
ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
*size = ret + sechdr->sh_size;
return ret;
}
/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
might -- code, read-only data, read-write data, small data. Tally
sizes, and place the offsets into sh_entsize fields: high bit means it
belongs in init. */
static void layout_sections(struct module *mod, struct load_info *info)
{
static unsigned long const masks[][2] = {
/* NOTE: all executable code must be the first section
* in this array; otherwise modify the text_size
* finder in the two loops below */
{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
};
unsigned int m, i;
for (i = 0; i < info->hdr->e_shnum; i++)
info->sechdrs[i].sh_entsize = ~0UL;
DEBUGP("Core section allocation order:\n");
for (m = 0; m < ARRAY_SIZE(masks); ++m) {
for (i = 0; i < info->hdr->e_shnum; ++i) {
Elf_Shdr *s = &info->sechdrs[i];
const char *sname = info->secstrings + s->sh_name;
if ((s->sh_flags & masks[m][0]) != masks[m][0]
|| (s->sh_flags & masks[m][1])
|| s->sh_entsize != ~0UL
|| strstarts(sname, ".init"))
continue;
s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
DEBUGP("\t%s\n", name);
}
switch (m) {
case 0: /* executable */
mod->core_size = debug_align(mod->core_size);
mod->core_text_size = mod->core_size;
break;
case 1: /* RO: text and ro-data */
mod->core_size = debug_align(mod->core_size);
mod->core_ro_size = mod->core_size;
break;
case 3: /* whole core */
mod->core_size = debug_align(mod->core_size);
break;
}
}
DEBUGP("Init section allocation order:\n");
for (m = 0; m < ARRAY_SIZE(masks); ++m) {
for (i = 0; i < info->hdr->e_shnum; ++i) {
Elf_Shdr *s = &info->sechdrs[i];
const char *sname = info->secstrings + s->sh_name;
if ((s->sh_flags & masks[m][0]) != masks[m][0]
|| (s->sh_flags & masks[m][1])
|| s->sh_entsize != ~0UL
|| !strstarts(sname, ".init"))
continue;
s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
| INIT_OFFSET_MASK);
DEBUGP("\t%s\n", sname);
}
switch (m) {
case 0: /* executable */
mod->init_size = debug_align(mod->init_size);
mod->init_text_size = mod->init_size;
break;
case 1: /* RO: text and ro-data */
mod->init_size = debug_align(mod->init_size);
mod->init_ro_size = mod->init_size;
break;
case 3: /* whole init */
mod->init_size = debug_align(mod->init_size);
break;
}
}
}
static void set_license(struct module *mod, const char *license)
{
if (!license)
license = "unspecified";
if (!license_is_gpl_compatible(license)) {
if (!test_taint(TAINT_PROPRIETARY_MODULE))
printk(KERN_WARNING "%s: module license '%s' taints "
"kernel.\n", mod->name, license);
add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
}
}
/* Parse tag=value strings from .modinfo section */
static char *next_string(char *string, unsigned long *secsize)
{
/* Skip non-zero chars */
while (string[0]) {
string++;
if ((*secsize)-- <= 1)
return NULL;
}
/* Skip any zero padding. */
while (!string[0]) {
string++;
if ((*secsize)-- <= 1)
return NULL;
}
return string;
}
static char *get_modinfo(struct load_info *info, const char *tag)
{
char *p;
unsigned int taglen = strlen(tag);
Elf_Shdr *infosec = &info->sechdrs[info->index.info];
unsigned long size = infosec->sh_size;
for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
return p + taglen + 1;
}
return NULL;
}
static void setup_modinfo(struct module *mod, struct load_info *info)
{
struct module_attribute *attr;
int i;
for (i = 0; (attr = modinfo_attrs[i]); i++) {
if (attr->setup)
attr->setup(mod, get_modinfo(info, attr->attr.name));
}
}
static void free_modinfo(struct module *mod)
{
struct module_attribute *attr;
int i;
for (i = 0; (attr = modinfo_attrs[i]); i++) {
if (attr->free)
attr->free(mod);
}
}
#ifdef CONFIG_KALLSYMS
/* lookup symbol in given range of kernel_symbols */
static const struct kernel_symbol *lookup_symbol(const char *name,
const struct kernel_symbol *start,
const struct kernel_symbol *stop)
{
const struct kernel_symbol *ks = start;
for (; ks < stop; ks++)
if (strcmp(ks->name, name) == 0)
return ks;
return NULL;
}
static int is_exported(const char *name, unsigned long value,
const struct module *mod)
{
const struct kernel_symbol *ks;
if (!mod)
ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
else
ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
return ks != NULL && ks->value == value;
}
/* As per nm */
static char elf_type(const Elf_Sym *sym, const struct load_info *info)
{
const Elf_Shdr *sechdrs = info->sechdrs;
if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
return 'v';
else
return 'w';
}
if (sym->st_shndx == SHN_UNDEF)
return 'U';
if (sym->st_shndx == SHN_ABS)
return 'a';
if (sym->st_shndx >= SHN_LORESERVE)
return '?';
if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
return 't';
if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
&& sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
return 'r';
else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
return 'g';
else
return 'd';
}
if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
return 's';
else
return 'b';
}
if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
".debug")) {
return 'n';
}
return '?';
}
static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
unsigned int shnum)
{
const Elf_Shdr *sec;
if (src->st_shndx == SHN_UNDEF
|| src->st_shndx >= shnum
|| !src->st_name)
return false;
sec = sechdrs + src->st_shndx;
if (!(sec->sh_flags & SHF_ALLOC)
#ifndef CONFIG_KALLSYMS_ALL
|| !(sec->sh_flags & SHF_EXECINSTR)
#endif
|| (sec->sh_entsize & INIT_OFFSET_MASK))
return false;
return true;
}
static void layout_symtab(struct module *mod, struct load_info *info)
{
Elf_Shdr *symsect = info->sechdrs + info->index.sym;
Elf_Shdr *strsect = info->sechdrs + info->index.str;
const Elf_Sym *src;
unsigned int i, nsrc, ndst;
/* Put symbol section at end of init part of module. */
symsect->sh_flags |= SHF_ALLOC;
symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
info->index.sym) | INIT_OFFSET_MASK;
DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
src = (void *)info->hdr + symsect->sh_offset;
nsrc = symsect->sh_size / sizeof(*src);
for (ndst = i = 1; i < nsrc; ++i, ++src)
if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
unsigned int j = src->st_name;
while (!__test_and_set_bit(j, info->strmap)
&& info->strtab[j])
++j;
++ndst;
}
/* Append room for core symbols at end of core part. */
info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
/* Put string table section at end of init part of module. */
strsect->sh_flags |= SHF_ALLOC;
strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
info->index.str) | INIT_OFFSET_MASK;
DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
/* Append room for core symbols' strings at end of core part. */
info->stroffs = mod->core_size;
__set_bit(0, info->strmap);
mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
}
static void add_kallsyms(struct module *mod, const struct load_info *info)
{
unsigned int i, ndst;
const Elf_Sym *src;
Elf_Sym *dst;
char *s;
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
mod->symtab = (void *)symsec->sh_addr;
mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
/* Make sure we get permanent strtab: don't use info->strtab. */
mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
/* Set types up while we still have access to sections. */
for (i = 0; i < mod->num_symtab; i++)
mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
mod->core_symtab = dst = mod->module_core + info->symoffs;
src = mod->symtab;
*dst = *src;
for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
continue;
dst[ndst] = *src;
dst[ndst].st_name = bitmap_weight(info->strmap,
dst[ndst].st_name);
++ndst;
}
mod->core_num_syms = ndst;
mod->core_strtab = s = mod->module_core + info->stroffs;
for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
if (test_bit(i, info->strmap))
*++s = mod->strtab[i];
}
#else
static inline void layout_symtab(struct module *mod, struct load_info *info)
{
}
static void add_kallsyms(struct module *mod, const struct load_info *info)
{
}
#endif /* CONFIG_KALLSYMS */
static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
{
if (!debug)
return;
#ifdef CONFIG_DYNAMIC_DEBUG
if (ddebug_add_module(debug, num, debug->modname))
printk(KERN_ERR "dynamic debug error adding module: %s\n",
debug->modname);
#endif
}
static void dynamic_debug_remove(struct _ddebug *debug)
{
if (debug)
ddebug_remove_module(debug->modname);
}
static void *module_alloc_update_bounds(unsigned long size)
{
void *ret = module_alloc(size);
if (ret) {
mutex_lock(&module_mutex);
/* Update module bounds. */
if ((unsigned long)ret < module_addr_min)
module_addr_min = (unsigned long)ret;
if ((unsigned long)ret + size > module_addr_max)
module_addr_max = (unsigned long)ret + size;
mutex_unlock(&module_mutex);
}
return ret;
}
#ifdef CONFIG_DEBUG_KMEMLEAK
static void kmemleak_load_module(const struct module *mod,
const struct load_info *info)
{
unsigned int i;
/* only scan the sections containing data */
kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
for (i = 1; i < info->hdr->e_shnum; i++) {
const char *name = info->secstrings + info->sechdrs[i].sh_name;
if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
continue;
if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
continue;
kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
info->sechdrs[i].sh_size, GFP_KERNEL);
}
}
#else
static inline void kmemleak_load_module(const struct module *mod,
const struct load_info *info)
{
}
#endif
/* Sets info->hdr and info->len. */
static int copy_and_check(struct load_info *info,
const void __user *umod, unsigned long len,
const char __user *uargs)
{
int err;
Elf_Ehdr *hdr;
if (len < sizeof(*hdr))
return -ENOEXEC;
/* Suck in entire file: we'll want most of it. */
/* vmalloc barfs on "unusual" numbers. Check here */
if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
return -ENOMEM;
if (copy_from_user(hdr, umod, len) != 0) {
err = -EFAULT;
goto free_hdr;
}
/* Sanity checks against insmoding binaries or wrong arch,
weird elf version */
if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
|| hdr->e_type != ET_REL
|| !elf_check_arch(hdr)
|| hdr->e_shentsize != sizeof(Elf_Shdr)) {
err = -ENOEXEC;
goto free_hdr;
}
if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
err = -ENOEXEC;
goto free_hdr;
}
info->hdr = hdr;
info->len = len;
return 0;
free_hdr:
vfree(hdr);
return err;
}
static void free_copy(struct load_info *info)
{
vfree(info->hdr);
}
static int rewrite_section_headers(struct load_info *info)
{
unsigned int i;
/* This should always be true, but let's be sure. */
info->sechdrs[0].sh_addr = 0;
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
if (shdr->sh_type != SHT_NOBITS
&& info->len < shdr->sh_offset + shdr->sh_size) {
printk(KERN_ERR "Module len %lu truncated\n",
info->len);
return -ENOEXEC;
}
/* Mark all sections sh_addr with their address in the
temporary image. */
shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
#ifndef CONFIG_MODULE_UNLOAD
/* Don't load .exit sections */
if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
#endif
}
/* Track but don't keep modinfo and version sections. */
info->index.vers = find_sec(info, "__versions");
info->index.info = find_sec(info, ".modinfo");
info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
return 0;
}
/*
* Set up our basic convenience variables (pointers to section headers,
* search for module section index etc), and do some basic section
* verification.
*
* Return the temporary module pointer (we'll replace it with the final
* one when we move the module sections around).
*/
static struct module *setup_load_info(struct load_info *info)
{
unsigned int i;
int err;
struct module *mod;
/* Set up the convenience variables */
info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
info->secstrings = (void *)info->hdr
+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
err = rewrite_section_headers(info);
if (err)
return ERR_PTR(err);
/* Find internal symbols and strings. */
for (i = 1; i < info->hdr->e_shnum; i++) {
if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
info->index.sym = i;
info->index.str = info->sechdrs[i].sh_link;
info->strtab = (char *)info->hdr
+ info->sechdrs[info->index.str].sh_offset;
break;
}
}
info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
if (!info->index.mod) {
printk(KERN_WARNING "No module found in object\n");
return ERR_PTR(-ENOEXEC);
}
/* This is temporary: point mod into copy of data. */
mod = (void *)info->sechdrs[info->index.mod].sh_addr;
if (info->index.sym == 0) {
printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
mod->name);
return ERR_PTR(-ENOEXEC);
}
info->index.pcpu = find_pcpusec(info);
/* Check module struct version now, before we try to use module. */
if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
return ERR_PTR(-ENOEXEC);
return mod;
}
static int check_modinfo(struct module *mod, struct load_info *info)
{
const char *modmagic = get_modinfo(info, "vermagic");
int err;
/* This is allowed: modprobe --force will invalidate it. */
if (!modmagic) {
err = try_to_force_load(mod, "bad vermagic");
if (err)
return err;
} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
mod->name, modmagic, vermagic);
return -ENOEXEC;
}
if (get_modinfo(info, "staging")) {
add_taint_module(mod, TAINT_CRAP);
printk(KERN_WARNING "%s: module is from the staging directory,"
" the quality is unknown, you have been warned.\n",
mod->name);
}
/* Set up license info based on the info section */
set_license(mod, get_modinfo(info, "license"));
return 0;
}
static void find_module_sections(struct module *mod, struct load_info *info)
{
mod->kp = section_objs(info, "__param",
sizeof(*mod->kp), &mod->num_kp);
mod->syms = section_objs(info, "__ksymtab",
sizeof(*mod->syms), &mod->num_syms);
mod->crcs = section_addr(info, "__kcrctab");
mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
sizeof(*mod->gpl_syms),
&mod->num_gpl_syms);
mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
mod->gpl_future_syms = section_objs(info,
"__ksymtab_gpl_future",
sizeof(*mod->gpl_future_syms),
&mod->num_gpl_future_syms);
mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
#ifdef CONFIG_UNUSED_SYMBOLS
mod->unused_syms = section_objs(info, "__ksymtab_unused",
sizeof(*mod->unused_syms),
&mod->num_unused_syms);
mod->unused_crcs = section_addr(info, "__kcrctab_unused");
mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
sizeof(*mod->unused_gpl_syms),
&mod->num_unused_gpl_syms);
mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
#endif
#ifdef CONFIG_CONSTRUCTORS
mod->ctors = section_objs(info, ".ctors",
sizeof(*mod->ctors), &mod->num_ctors);
#endif
#ifdef CONFIG_TRACEPOINTS
mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
sizeof(*mod->tracepoints_ptrs),
&mod->num_tracepoints);
#endif
#ifdef HAVE_JUMP_LABEL
mod->jump_entries = section_objs(info, "__jump_table",
sizeof(*mod->jump_entries),
&mod->num_jump_entries);
#endif
#ifdef CONFIG_EVENT_TRACING
mod->trace_events = section_objs(info, "_ftrace_events",
sizeof(*mod->trace_events),
&mod->num_trace_events);
/*
* This section contains pointers to allocated objects in the trace
* code and not scanning it leads to false positives.
*/
kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
mod->num_trace_events, GFP_KERNEL);
#endif
#ifdef CONFIG_TRACING
mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
sizeof(*mod->trace_bprintk_fmt_start),
&mod->num_trace_bprintk_fmt);
/*
* This section contains pointers to allocated objects in the trace
* code and not scanning it leads to false positives.
*/
kmemleak_scan_area(mod->trace_bprintk_fmt_start,
sizeof(*mod->trace_bprintk_fmt_start) *
mod->num_trace_bprintk_fmt, GFP_KERNEL);
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
/* sechdrs[0].sh_size is always zero */
mod->ftrace_callsites = section_objs(info, "__mcount_loc",
sizeof(*mod->ftrace_callsites),
&mod->num_ftrace_callsites);
#endif
mod->extable = section_objs(info, "__ex_table",
sizeof(*mod->extable), &mod->num_exentries);
if (section_addr(info, "__obsparm"))
printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
mod->name);
info->debug = section_objs(info, "__verbose",
sizeof(*info->debug), &info->num_debug);
}
static int move_module(struct module *mod, struct load_info *info)
{
int i;
void *ptr;
/* Do the allocs. */
ptr = module_alloc_update_bounds(mod->core_size);
/*
* The pointer to this block is stored in the module structure
* which is inside the block. Just mark it as not being a
* leak.
*/
kmemleak_not_leak(ptr);
if (!ptr)
return -ENOMEM;
memset(ptr, 0, mod->core_size);
mod->module_core = ptr;
ptr = module_alloc_update_bounds(mod->init_size);
/*
* The pointer to this block is stored in the module structure
* which is inside the block. This block doesn't need to be
* scanned as it contains data and code that will be freed
* after the module is initialized.
*/
kmemleak_ignore(ptr);
if (!ptr && mod->init_size) {
module_free(mod, mod->module_core);
return -ENOMEM;
}
memset(ptr, 0, mod->init_size);
mod->module_init = ptr;
/* Transfer each section which specifies SHF_ALLOC */
DEBUGP("final section addresses:\n");
for (i = 0; i < info->hdr->e_shnum; i++) {
void *dest;
Elf_Shdr *shdr = &info->sechdrs[i];
if (!(shdr->sh_flags & SHF_ALLOC))
continue;
if (shdr->sh_entsize & INIT_OFFSET_MASK)
dest = mod->module_init
+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
else
dest = mod->module_core + shdr->sh_entsize;
if (shdr->sh_type != SHT_NOBITS)
memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
/* Update sh_addr to point to copy in image. */
shdr->sh_addr = (unsigned long)dest;
DEBUGP("\t0x%lx %s\n",
shdr->sh_addr, info->secstrings + shdr->sh_name);
}
return 0;
}
static int check_module_license_and_versions(struct module *mod)
{
/*
* ndiswrapper is under GPL by itself, but loads proprietary modules.
* Don't use add_taint_module(), as it would prevent ndiswrapper from
* using GPL-only symbols it needs.
*/
if (strcmp(mod->name, "ndiswrapper") == 0)
add_taint(TAINT_PROPRIETARY_MODULE);
/* driverloader was caught wrongly pretending to be under GPL */
if (strcmp(mod->name, "driverloader") == 0)
add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
#ifdef CONFIG_MODVERSIONS
if ((mod->num_syms && !mod->crcs)
|| (mod->num_gpl_syms && !mod->gpl_crcs)
|| (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
#ifdef CONFIG_UNUSED_SYMBOLS
|| (mod->num_unused_syms && !mod->unused_crcs)
|| (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
#endif
) {
return try_to_force_load(mod,
"no versions for exported symbols");
}
#endif
return 0;
}
static void flush_module_icache(const struct module *mod)
{
mm_segment_t old_fs;
/* flush the icache in correct context */
old_fs = get_fs();
set_fs(KERNEL_DS);
/*
* Flush the instruction cache, since we've played with text.
* Do it before processing of module parameters, so the module
* can provide parameter accessor functions of its own.
*/
if (mod->module_init)
flush_icache_range((unsigned long)mod->module_init,
(unsigned long)mod->module_init
+ mod->init_size);
flush_icache_range((unsigned long)mod->module_core,
(unsigned long)mod->module_core + mod->core_size);
set_fs(old_fs);
}
static struct module *layout_and_allocate(struct load_info *info)
{
/* Module within temporary copy. */
struct module *mod;
Elf_Shdr *pcpusec;
int err;
mod = setup_load_info(info);
if (IS_ERR(mod))
return mod;
err = check_modinfo(mod, info);
if (err)
return ERR_PTR(err);
/* Allow arches to frob section contents and sizes. */
err = module_frob_arch_sections(info->hdr, info->sechdrs,
info->secstrings, mod);
if (err < 0)
goto out;
pcpusec = &info->sechdrs[info->index.pcpu];
if (pcpusec->sh_size) {
/* We have a special allocation for this section. */
err = percpu_modalloc(mod,
pcpusec->sh_size, pcpusec->sh_addralign);
if (err)
goto out;
pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
}
/* Determine total sizes, and put offsets in sh_entsize. For now
this is done generically; there doesn't appear to be any
special cases for the architectures. */
layout_sections(mod, info);
info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
* sizeof(long), GFP_KERNEL);
if (!info->strmap) {
err = -ENOMEM;
goto free_percpu;
}
layout_symtab(mod, info);
/* Allocate and move to the final place */
err = move_module(mod, info);
if (err)
goto free_strmap;
/* Module has been copied to its final place now: return it. */
mod = (void *)info->sechdrs[info->index.mod].sh_addr;
kmemleak_load_module(mod, info);
return mod;
free_strmap:
kfree(info->strmap);
free_percpu:
percpu_modfree(mod);
out:
return ERR_PTR(err);
}
/* mod is no longer valid after this! */
static void module_deallocate(struct module *mod, struct load_info *info)
{
kfree(info->strmap);
percpu_modfree(mod);
module_free(mod, mod->module_init);
module_free(mod, mod->module_core);
}
static int post_relocation(struct module *mod, const struct load_info *info)
{
/* Sort exception table now relocations are done. */
sort_extable(mod->extable, mod->extable + mod->num_exentries);
/* Copy relocated percpu area over. */
percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
info->sechdrs[info->index.pcpu].sh_size);
/* Setup kallsyms-specific fields. */
add_kallsyms(mod, info);
/* Arch-specific module finalizing. */
return module_finalize(info->hdr, info->sechdrs, mod);
}
/* Allocate and load the module: note that size of section 0 is always
zero, and we rely on this for optional sections. */
static struct module *load_module(void __user *umod,
unsigned long len,
const char __user *uargs)
{
struct load_info info = { NULL, };
struct module *mod;
long err;
DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
umod, len, uargs);
/* Copy in the blobs from userspace, check they are vaguely sane. */
err = copy_and_check(&info, umod, len, uargs);
if (err)
return ERR_PTR(err);
/* Figure out module layout, and allocate all the memory. */
mod = layout_and_allocate(&info);
if (IS_ERR(mod)) {
err = PTR_ERR(mod);
goto free_copy;
}
/* Now module is in final location, initialize linked lists, etc. */
err = module_unload_init(mod);
if (err)
goto free_module;
/* Now we've got everything in the final locations, we can
* find optional sections. */
find_module_sections(mod, &info);
err = check_module_license_and_versions(mod);
if (err)
goto free_unload;
/* Set up MODINFO_ATTR fields */
setup_modinfo(mod, &info);
/* Fix up syms, so that st_value is a pointer to location. */
err = simplify_symbols(mod, &info);
if (err < 0)
goto free_modinfo;
err = apply_relocations(mod, &info);
if (err < 0)
goto free_modinfo;
err = post_relocation(mod, &info);
if (err < 0)
goto free_modinfo;
flush_module_icache(mod);
/* Now copy in args */
mod->args = strndup_user(uargs, ~0UL >> 1);
if (IS_ERR(mod->args)) {
err = PTR_ERR(mod->args);
goto free_arch_cleanup;
}
/* Mark state as coming so strong_try_module_get() ignores us. */
mod->state = MODULE_STATE_COMING;
/* Now sew it into the lists so we can get lockdep and oops
* info during argument parsing. Noone should access us, since
* strong_try_module_get() will fail.
* lockdep/oops can run asynchronous, so use the RCU list insertion
* function to insert in a way safe to concurrent readers.
* The mutex protects against concurrent writers.
*/
mutex_lock(&module_mutex);
if (find_module(mod->name)) {
err = -EEXIST;
goto unlock;
}
/* This has to be done once we're sure module name is unique. */
if (!mod->taints)
dynamic_debug_setup(info.debug, info.num_debug);
/* Find duplicate symbols */
err = verify_export_symbols(mod);
if (err < 0)
goto ddebug;
module_bug_finalize(info.hdr, info.sechdrs, mod);
list_add_rcu(&mod->list, &modules);
mutex_unlock(&module_mutex);
/* Module is ready to execute: parsing args may do that. */
err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
if (err < 0)
goto unlink;
/* Link in to syfs. */
err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
if (err < 0)
goto unlink;
/* Get rid of temporary copy and strmap. */
kfree(info.strmap);
free_copy(&info);
/* Done! */
trace_module_load(mod);
return mod;
unlink:
mutex_lock(&module_mutex);
/* Unlink carefully: kallsyms could be walking list. */
list_del_rcu(&mod->list);
module_bug_cleanup(mod);
ddebug:
if (!mod->taints)
dynamic_debug_remove(info.debug);
unlock:
mutex_unlock(&module_mutex);
synchronize_sched();
kfree(mod->args);
free_arch_cleanup:
module_arch_cleanup(mod);
free_modinfo:
free_modinfo(mod);
free_unload:
module_unload_free(mod);
free_module:
module_deallocate(mod, &info);
free_copy:
free_copy(&info);
return ERR_PTR(err);
}
/* Call module constructors. */
static void do_mod_ctors(struct module *mod)
{
#ifdef CONFIG_CONSTRUCTORS
unsigned long i;
for (i = 0; i < mod->num_ctors; i++)
mod->ctors[i]();
#endif
}
/* This is where the real work happens */
SYSCALL_DEFINE3(init_module, void __user *, umod,
unsigned long, len, const char __user *, uargs)
{
struct module *mod;
int ret = 0;
/* Must have permission */
if (!capable(CAP_SYS_MODULE) || modules_disabled)
return -EPERM;
/* Do all the hard work */
mod = load_module(umod, len, uargs);
if (IS_ERR(mod))
return PTR_ERR(mod);
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_COMING, mod);
/* Set RO and NX regions for core */
set_section_ro_nx(mod->module_core,
mod->core_text_size,
mod->core_ro_size,
mod->core_size);
/* Set RO and NX regions for init */
set_section_ro_nx(mod->module_init,
mod->init_text_size,
mod->init_ro_size,
mod->init_size);
do_mod_ctors(mod);
/* Start the module */
if (mod->init != NULL)
ret = do_one_initcall(mod->init);
if (ret < 0) {
/* Init routine failed: abort. Try to protect us from
buggy refcounters. */
mod->state = MODULE_STATE_GOING;
synchronize_sched();
module_put(mod);
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
free_module(mod);
wake_up(&module_wq);
return ret;
}
if (ret > 0) {
printk(KERN_WARNING
"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
"%s: loading module anyway...\n",
__func__, mod->name, ret,
__func__);
dump_stack();
}
/* Now it's a first class citizen! Wake up anyone waiting for it. */
mod->state = MODULE_STATE_LIVE;
wake_up(&module_wq);
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_LIVE, mod);
/* We need to finish all async code before the module init sequence is done */
async_synchronize_full();
mutex_lock(&module_mutex);
/* Drop initial reference. */
module_put(mod);
trim_init_extable(mod);
#ifdef CONFIG_KALLSYMS
mod->num_symtab = mod->core_num_syms;
mod->symtab = mod->core_symtab;
mod->strtab = mod->core_strtab;
#endif
unset_section_ro_nx(mod, mod->module_init);
module_free(mod, mod->module_init);
mod->module_init = NULL;
mod->init_size = 0;
mod->init_text_size = 0;
mutex_unlock(&module_mutex);
return 0;
}
static inline int within(unsigned long addr, void *start, unsigned long size)
{
return ((void *)addr >= start && (void *)addr < start + size);
}
#ifdef CONFIG_KALLSYMS
/*
* This ignores the intensely annoying "mapping symbols" found
* in ARM ELF files: $a, $t and $d.
*/
static inline int is_arm_mapping_symbol(const char *str)
{
return str[0] == '$' && strchr("atd", str[1])
&& (str[2] == '\0' || str[2] == '.');
}
static const char *get_ksymbol(struct module *mod,
unsigned long addr,
unsigned long *size,
unsigned long *offset)
{
unsigned int i, best = 0;
unsigned long nextval;
/* At worse, next value is at end of module */
if (within_module_init(addr, mod))
nextval = (unsigned long)mod->module_init+mod->init_text_size;
else
nextval = (unsigned long)mod->module_core+mod->core_text_size;
/* Scan for closest preceeding symbol, and next symbol. (ELF
starts real symbols at 1). */
for (i = 1; i < mod->num_symtab; i++) {
if (mod->symtab[i].st_shndx == SHN_UNDEF)
continue;
/* We ignore unnamed symbols: they're uninformative
* and inserted at a whim. */
if (mod->symtab[i].st_value <= addr
&& mod->symtab[i].st_value > mod->symtab[best].st_value
&& *(mod->strtab + mod->symtab[i].st_name) != '\0'
&& !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
best = i;
if (mod->symtab[i].st_value > addr
&& mod->symtab[i].st_value < nextval
&& *(mod->strtab + mod->symtab[i].st_name) != '\0'
&& !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
nextval = mod->symtab[i].st_value;
}
if (!best)
return NULL;
if (size)
*size = nextval - mod->symtab[best].st_value;
if (offset)
*offset = addr - mod->symtab[best].st_value;
return mod->strtab + mod->symtab[best].st_name;
}
/* For kallsyms to ask for address resolution. NULL means not found. Careful
* not to lock to avoid deadlock on oopses, simply disable preemption. */
const char *module_address_lookup(unsigned long addr,
unsigned long *size,
unsigned long *offset,
char **modname,
char *namebuf)
{
struct module *mod;
const char *ret = NULL;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (within_module_init(addr, mod) ||
within_module_core(addr, mod)) {
if (modname)
*modname = mod->name;
ret = get_ksymbol(mod, addr, size, offset);
break;
}
}
/* Make a copy in here where it's safe */
if (ret) {
strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
ret = namebuf;
}
preempt_enable();
return ret;
}
int lookup_module_symbol_name(unsigned long addr, char *symname)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (within_module_init(addr, mod) ||
within_module_core(addr, mod)) {
const char *sym;
sym = get_ksymbol(mod, addr, NULL, NULL);
if (!sym)
goto out;
strlcpy(symname, sym, KSYM_NAME_LEN);
preempt_enable();
return 0;
}
}
out:
preempt_enable();
return -ERANGE;
}
int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
unsigned long *offset, char *modname, char *name)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (within_module_init(addr, mod) ||
within_module_core(addr, mod)) {
const char *sym;
sym = get_ksymbol(mod, addr, size, offset);
if (!sym)
goto out;
if (modname)
strlcpy(modname, mod->name, MODULE_NAME_LEN);
if (name)
strlcpy(name, sym, KSYM_NAME_LEN);
preempt_enable();
return 0;
}
}
out:
preempt_enable();
return -ERANGE;
}
int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *name, char *module_name, int *exported)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (symnum < mod->num_symtab) {
*value = mod->symtab[symnum].st_value;
*type = mod->symtab[symnum].st_info;
strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
KSYM_NAME_LEN);
strlcpy(module_name, mod->name, MODULE_NAME_LEN);
*exported = is_exported(name, *value, mod);
preempt_enable();
return 0;
}
symnum -= mod->num_symtab;
}
preempt_enable();
return -ERANGE;
}
static unsigned long mod_find_symname(struct module *mod, const char *name)
{
unsigned int i;
for (i = 0; i < mod->num_symtab; i++)
if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
mod->symtab[i].st_info != 'U')
return mod->symtab[i].st_value;
return 0;
}
/* Look for this name: can be of form module:name. */
unsigned long module_kallsyms_lookup_name(const char *name)
{
struct module *mod;
char *colon;
unsigned long ret = 0;
/* Don't lock: we're in enough trouble already. */
preempt_disable();
if ((colon = strchr(name, ':')) != NULL) {
*colon = '\0';
if ((mod = find_module(name)) != NULL)
ret = mod_find_symname(mod, colon+1);
*colon = ':';
} else {
list_for_each_entry_rcu(mod, &modules, list)
if ((ret = mod_find_symname(mod, name)) != 0)
break;
}
preempt_enable();
return ret;
}
int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
struct module *, unsigned long),
void *data)
{
struct module *mod;
unsigned int i;
int ret;
list_for_each_entry(mod, &modules, list) {
for (i = 0; i < mod->num_symtab; i++) {
ret = fn(data, mod->strtab + mod->symtab[i].st_name,
mod, mod->symtab[i].st_value);
if (ret != 0)
return ret;
}
}
return 0;
}
#endif /* CONFIG_KALLSYMS */
static char *module_flags(struct module *mod, char *buf)
{
int bx = 0;
if (mod->taints ||
mod->state == MODULE_STATE_GOING ||
mod->state == MODULE_STATE_COMING) {
buf[bx++] = '(';
if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
buf[bx++] = 'P';
if (mod->taints & (1 << TAINT_FORCED_MODULE))
buf[bx++] = 'F';
if (mod->taints & (1 << TAINT_CRAP))
buf[bx++] = 'C';
/*
* TAINT_FORCED_RMMOD: could be added.
* TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
* apply to modules.
*/
/* Show a - for module-is-being-unloaded */
if (mod->state == MODULE_STATE_GOING)
buf[bx++] = '-';
/* Show a + for module-is-being-loaded */
if (mod->state == MODULE_STATE_COMING)
buf[bx++] = '+';
buf[bx++] = ')';
}
buf[bx] = '\0';
return buf;
}
#ifdef CONFIG_PROC_FS
/* Called by the /proc file system to return a list of modules. */
static void *m_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&module_mutex);
return seq_list_start(&modules, *pos);
}
static void *m_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &modules, pos);
}
static void m_stop(struct seq_file *m, void *p)
{
mutex_unlock(&module_mutex);
}
static int m_show(struct seq_file *m, void *p)
{
struct module *mod = list_entry(p, struct module, list);
char buf[8];
seq_printf(m, "%s %u",
mod->name, mod->init_size + mod->core_size);
print_unload_info(m, mod);
/* Informative for users. */
seq_printf(m, " %s",
mod->state == MODULE_STATE_GOING ? "Unloading":
mod->state == MODULE_STATE_COMING ? "Loading":
"Live");
/* Used by oprofile and other similar tools. */
seq_printf(m, " 0x%p", mod->module_core);
/* Taints info */
if (mod->taints)
seq_printf(m, " %s", module_flags(mod, buf));
seq_printf(m, "\n");
return 0;
}
/* Format: modulename size refcount deps address
Where refcount is a number or -, and deps is a comma-separated list
of depends or -.
*/
static const struct seq_operations modules_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = m_show
};
static int modules_open(struct inode *inode, struct file *file)
{
return seq_open(file, &modules_op);
}
static const struct file_operations proc_modules_operations = {
.open = modules_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init proc_modules_init(void)
{
proc_create("modules", 0, NULL, &proc_modules_operations);
return 0;
}
module_init(proc_modules_init);
#endif
/* Given an address, look for it in the module exception tables. */
const struct exception_table_entry *search_module_extables(unsigned long addr)
{
const struct exception_table_entry *e = NULL;
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (mod->num_exentries == 0)
continue;
e = search_extable(mod->extable,
mod->extable + mod->num_exentries - 1,
addr);
if (e)
break;
}
preempt_enable();
/* Now, if we found one, we are running inside it now, hence
we cannot unload the module, hence no refcnt needed. */
return e;
}
/*
* is_module_address - is this address inside a module?
* @addr: the address to check.
*
* See is_module_text_address() if you simply want to see if the address
* is code (not data).
*/
bool is_module_address(unsigned long addr)
{
bool ret;
preempt_disable();
ret = __module_address(addr) != NULL;
preempt_enable();
return ret;
}
/*
* __module_address - get the module which contains an address.
* @addr: the address.
*
* Must be called with preempt disabled or module mutex held so that
* module doesn't get freed during this.
*/
struct module *__module_address(unsigned long addr)
{
struct module *mod;
if (addr < module_addr_min || addr > module_addr_max)
return NULL;
list_for_each_entry_rcu(mod, &modules, list)
if (within_module_core(addr, mod)
|| within_module_init(addr, mod))
return mod;
return NULL;
}
EXPORT_SYMBOL_GPL(__module_address);
/*
* is_module_text_address - is this address inside module code?
* @addr: the address to check.
*
* See is_module_address() if you simply want to see if the address is
* anywhere in a module. See kernel_text_address() for testing if an
* address corresponds to kernel or module code.
*/
bool is_module_text_address(unsigned long addr)
{
bool ret;
preempt_disable();
ret = __module_text_address(addr) != NULL;
preempt_enable();
return ret;
}
/*
* __module_text_address - get the module whose code contains an address.
* @addr: the address.
*
* Must be called with preempt disabled or module mutex held so that
* module doesn't get freed during this.
*/
struct module *__module_text_address(unsigned long addr)
{
struct module *mod = __module_address(addr);
if (mod) {
/* Make sure it's within the text section. */
if (!within(addr, mod->module_init, mod->init_text_size)
&& !within(addr, mod->module_core, mod->core_text_size))
mod = NULL;
}
return mod;
}
EXPORT_SYMBOL_GPL(__module_text_address);
/* Don't grab lock, we're oopsing. */
void print_modules(void)
{
struct module *mod;
char buf[8];
printk(KERN_DEFAULT "Modules linked in:");
/* Most callers should already have preempt disabled, but make sure */
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list)
printk(" %s%s", mod->name, module_flags(mod, buf));
preempt_enable();
if (last_unloaded_module[0])
printk(" [last unloaded: %s]", last_unloaded_module);
printk("\n");
}
#ifdef CONFIG_MODVERSIONS
/* Generate the signature for all relevant module structures here.
* If these change, we don't want to try to parse the module. */
void module_layout(struct module *mod,
struct modversion_info *ver,
struct kernel_param *kp,
struct kernel_symbol *ks,
struct tracepoint * const *tp)
{
}
EXPORT_SYMBOL(module_layout);
#endif
#ifdef CONFIG_TRACEPOINTS
void module_update_tracepoints(void)
{
struct module *mod;
mutex_lock(&module_mutex);
list_for_each_entry(mod, &modules, list)
if (!mod->taints)
tracepoint_update_probe_range(mod->tracepoints_ptrs,
mod->tracepoints_ptrs + mod->num_tracepoints);
mutex_unlock(&module_mutex);
}
/*
* Returns 0 if current not found.
* Returns 1 if current found.
*/
int module_get_iter_tracepoints(struct tracepoint_iter *iter)
{
struct module *iter_mod;
int found = 0;
mutex_lock(&module_mutex);
list_for_each_entry(iter_mod, &modules, list) {
if (!iter_mod->taints) {
/*
* Sorted module list
*/
if (iter_mod < iter->module)
continue;
else if (iter_mod > iter->module)
iter->tracepoint = NULL;
found = tracepoint_get_iter_range(&iter->tracepoint,
iter_mod->tracepoints_ptrs,
iter_mod->tracepoints_ptrs
+ iter_mod->num_tracepoints);
if (found) {
iter->module = iter_mod;
break;
}
}
}
mutex_unlock(&module_mutex);
return found;
}
#endif