kernel-fxtec-pro1x/fs/ufs/balloc.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

961 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ufs/balloc.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* UFS2 write support Evgeniy Dushistov <dushistov@mail.ru>, 2007
*/
#include <linux/fs.h>
#include <linux/stat.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/capability.h>
#include <linux/bitops.h>
#include <linux/bio.h>
#include <asm/byteorder.h>
#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"
#define INVBLOCK ((u64)-1L)
static u64 ufs_add_fragments(struct inode *, u64, unsigned, unsigned);
static u64 ufs_alloc_fragments(struct inode *, unsigned, u64, unsigned, int *);
static u64 ufs_alloccg_block(struct inode *, struct ufs_cg_private_info *, u64, int *);
static u64 ufs_bitmap_search (struct super_block *, struct ufs_cg_private_info *, u64, unsigned);
static unsigned char ufs_fragtable_8fpb[], ufs_fragtable_other[];
static void ufs_clusteracct(struct super_block *, struct ufs_cg_private_info *, unsigned, int);
/*
* Free 'count' fragments from fragment number 'fragment'
*/
void ufs_free_fragments(struct inode *inode, u64 fragment, unsigned count)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_cg_private_info * ucpi;
struct ufs_cylinder_group * ucg;
unsigned cgno, bit, end_bit, bbase, blkmap, i;
u64 blkno;
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
UFSD("ENTER, fragment %llu, count %u\n",
(unsigned long long)fragment, count);
if (ufs_fragnum(fragment) + count > uspi->s_fpg)
ufs_error (sb, "ufs_free_fragments", "internal error");
mutex_lock(&UFS_SB(sb)->s_lock);
cgno = ufs_dtog(uspi, fragment);
bit = ufs_dtogd(uspi, fragment);
if (cgno >= uspi->s_ncg) {
ufs_panic (sb, "ufs_free_fragments", "freeing blocks are outside device");
goto failed;
}
ucpi = ufs_load_cylinder (sb, cgno);
if (!ucpi)
goto failed;
ucg = ubh_get_ucg (UCPI_UBH(ucpi));
if (!ufs_cg_chkmagic(sb, ucg)) {
ufs_panic (sb, "ufs_free_fragments", "internal error, bad magic number on cg %u", cgno);
goto failed;
}
end_bit = bit + count;
bbase = ufs_blknum (bit);
blkmap = ubh_blkmap (UCPI_UBH(ucpi), ucpi->c_freeoff, bbase);
ufs_fragacct (sb, blkmap, ucg->cg_frsum, -1);
for (i = bit; i < end_bit; i++) {
if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, i))
ubh_setbit (UCPI_UBH(ucpi), ucpi->c_freeoff, i);
else
ufs_error (sb, "ufs_free_fragments",
"bit already cleared for fragment %u", i);
}
inode_sub_bytes(inode, count << uspi->s_fshift);
fs32_add(sb, &ucg->cg_cs.cs_nffree, count);
uspi->cs_total.cs_nffree += count;
fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count);
blkmap = ubh_blkmap (UCPI_UBH(ucpi), ucpi->c_freeoff, bbase);
ufs_fragacct(sb, blkmap, ucg->cg_frsum, 1);
/*
* Trying to reassemble free fragments into block
*/
blkno = ufs_fragstoblks (bbase);
if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno)) {
fs32_sub(sb, &ucg->cg_cs.cs_nffree, uspi->s_fpb);
uspi->cs_total.cs_nffree -= uspi->s_fpb;
fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, uspi->s_fpb);
if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD)
ufs_clusteracct (sb, ucpi, blkno, 1);
fs32_add(sb, &ucg->cg_cs.cs_nbfree, 1);
uspi->cs_total.cs_nbfree++;
fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nbfree, 1);
if (uspi->fs_magic != UFS2_MAGIC) {
unsigned cylno = ufs_cbtocylno (bbase);
fs16_add(sb, &ubh_cg_blks(ucpi, cylno,
ufs_cbtorpos(bbase)), 1);
fs32_add(sb, &ubh_cg_blktot(ucpi, cylno), 1);
}
}
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
ufs_mark_sb_dirty(sb);
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT\n");
return;
failed:
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT (FAILED)\n");
return;
}
/*
* Free 'count' fragments from fragment number 'fragment' (free whole blocks)
*/
void ufs_free_blocks(struct inode *inode, u64 fragment, unsigned count)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_cg_private_info * ucpi;
struct ufs_cylinder_group * ucg;
unsigned overflow, cgno, bit, end_bit, i;
u64 blkno;
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
UFSD("ENTER, fragment %llu, count %u\n",
(unsigned long long)fragment, count);
if ((fragment & uspi->s_fpbmask) || (count & uspi->s_fpbmask)) {
ufs_error (sb, "ufs_free_blocks", "internal error, "
"fragment %llu, count %u\n",
(unsigned long long)fragment, count);
goto failed;
}
mutex_lock(&UFS_SB(sb)->s_lock);
do_more:
overflow = 0;
cgno = ufs_dtog(uspi, fragment);
bit = ufs_dtogd(uspi, fragment);
if (cgno >= uspi->s_ncg) {
ufs_panic (sb, "ufs_free_blocks", "freeing blocks are outside device");
goto failed_unlock;
}
end_bit = bit + count;
if (end_bit > uspi->s_fpg) {
overflow = bit + count - uspi->s_fpg;
count -= overflow;
end_bit -= overflow;
}
ucpi = ufs_load_cylinder (sb, cgno);
if (!ucpi)
goto failed_unlock;
ucg = ubh_get_ucg (UCPI_UBH(ucpi));
if (!ufs_cg_chkmagic(sb, ucg)) {
ufs_panic (sb, "ufs_free_blocks", "internal error, bad magic number on cg %u", cgno);
goto failed_unlock;
}
for (i = bit; i < end_bit; i += uspi->s_fpb) {
blkno = ufs_fragstoblks(i);
if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno)) {
ufs_error(sb, "ufs_free_blocks", "freeing free fragment");
}
ubh_setblock(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno);
inode_sub_bytes(inode, uspi->s_fpb << uspi->s_fshift);
if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD)
ufs_clusteracct (sb, ucpi, blkno, 1);
fs32_add(sb, &ucg->cg_cs.cs_nbfree, 1);
uspi->cs_total.cs_nbfree++;
fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nbfree, 1);
if (uspi->fs_magic != UFS2_MAGIC) {
unsigned cylno = ufs_cbtocylno(i);
fs16_add(sb, &ubh_cg_blks(ucpi, cylno,
ufs_cbtorpos(i)), 1);
fs32_add(sb, &ubh_cg_blktot(ucpi, cylno), 1);
}
}
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
if (overflow) {
fragment += count;
count = overflow;
goto do_more;
}
ufs_mark_sb_dirty(sb);
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT\n");
return;
failed_unlock:
mutex_unlock(&UFS_SB(sb)->s_lock);
failed:
UFSD("EXIT (FAILED)\n");
return;
}
/*
* Modify inode page cache in such way:
* have - blocks with b_blocknr equal to oldb...oldb+count-1
* get - blocks with b_blocknr equal to newb...newb+count-1
* also we suppose that oldb...oldb+count-1 blocks
* situated at the end of file.
*
* We can come here from ufs_writepage or ufs_prepare_write,
* locked_page is argument of these functions, so we already lock it.
*/
static void ufs_change_blocknr(struct inode *inode, sector_t beg,
unsigned int count, sector_t oldb,
sector_t newb, struct page *locked_page)
{
const unsigned blks_per_page =
1 << (PAGE_SHIFT - inode->i_blkbits);
const unsigned mask = blks_per_page - 1;
struct address_space * const mapping = inode->i_mapping;
pgoff_t index, cur_index, last_index;
unsigned pos, j, lblock;
sector_t end, i;
struct page *page;
struct buffer_head *head, *bh;
UFSD("ENTER, ino %lu, count %u, oldb %llu, newb %llu\n",
inode->i_ino, count,
(unsigned long long)oldb, (unsigned long long)newb);
BUG_ON(!locked_page);
BUG_ON(!PageLocked(locked_page));
cur_index = locked_page->index;
end = count + beg;
last_index = end >> (PAGE_SHIFT - inode->i_blkbits);
for (i = beg; i < end; i = (i | mask) + 1) {
index = i >> (PAGE_SHIFT - inode->i_blkbits);
if (likely(cur_index != index)) {
page = ufs_get_locked_page(mapping, index);
if (!page)/* it was truncated */
continue;
if (IS_ERR(page)) {/* or EIO */
ufs_error(inode->i_sb, __func__,
"read of page %llu failed\n",
(unsigned long long)index);
continue;
}
} else
page = locked_page;
head = page_buffers(page);
bh = head;
pos = i & mask;
for (j = 0; j < pos; ++j)
bh = bh->b_this_page;
if (unlikely(index == last_index))
lblock = end & mask;
else
lblock = blks_per_page;
do {
if (j >= lblock)
break;
pos = (i - beg) + j;
if (!buffer_mapped(bh))
map_bh(bh, inode->i_sb, oldb + pos);
if (!buffer_uptodate(bh)) {
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
ufs_error(inode->i_sb, __func__,
"read of block failed\n");
break;
}
}
UFSD(" change from %llu to %llu, pos %u\n",
(unsigned long long)(pos + oldb),
(unsigned long long)(pos + newb), pos);
bh->b_blocknr = newb + pos;
clean_bdev_bh_alias(bh);
mark_buffer_dirty(bh);
++j;
bh = bh->b_this_page;
} while (bh != head);
if (likely(cur_index != index))
ufs_put_locked_page(page);
}
UFSD("EXIT\n");
}
static void ufs_clear_frags(struct inode *inode, sector_t beg, unsigned int n,
int sync)
{
struct buffer_head *bh;
sector_t end = beg + n;
for (; beg < end; ++beg) {
bh = sb_getblk(inode->i_sb, beg);
lock_buffer(bh);
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
if (IS_SYNC(inode) || sync)
sync_dirty_buffer(bh);
brelse(bh);
}
}
u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
u64 goal, unsigned count, int *err,
struct page *locked_page)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
unsigned cgno, oldcount, newcount;
u64 tmp, request, result;
UFSD("ENTER, ino %lu, fragment %llu, goal %llu, count %u\n",
inode->i_ino, (unsigned long long)fragment,
(unsigned long long)goal, count);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
*err = -ENOSPC;
mutex_lock(&UFS_SB(sb)->s_lock);
tmp = ufs_data_ptr_to_cpu(sb, p);
if (count + ufs_fragnum(fragment) > uspi->s_fpb) {
ufs_warning(sb, "ufs_new_fragments", "internal warning"
" fragment %llu, count %u",
(unsigned long long)fragment, count);
count = uspi->s_fpb - ufs_fragnum(fragment);
}
oldcount = ufs_fragnum (fragment);
newcount = oldcount + count;
/*
* Somebody else has just allocated our fragments
*/
if (oldcount) {
if (!tmp) {
ufs_error(sb, "ufs_new_fragments", "internal error, "
"fragment %llu, tmp %llu\n",
(unsigned long long)fragment,
(unsigned long long)tmp);
mutex_unlock(&UFS_SB(sb)->s_lock);
return INVBLOCK;
}
if (fragment < UFS_I(inode)->i_lastfrag) {
UFSD("EXIT (ALREADY ALLOCATED)\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
return 0;
}
}
else {
if (tmp) {
UFSD("EXIT (ALREADY ALLOCATED)\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
return 0;
}
}
/*
* There is not enough space for user on the device
*/
if (unlikely(ufs_freefrags(uspi) <= uspi->s_root_blocks)) {
if (!capable(CAP_SYS_RESOURCE)) {
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT (FAILED)\n");
return 0;
}
}
if (goal >= uspi->s_size)
goal = 0;
if (goal == 0)
cgno = ufs_inotocg (inode->i_ino);
else
cgno = ufs_dtog(uspi, goal);
/*
* allocate new fragment
*/
if (oldcount == 0) {
result = ufs_alloc_fragments (inode, cgno, goal, count, err);
if (result) {
ufs_clear_frags(inode, result + oldcount,
newcount - oldcount, locked_page != NULL);
*err = 0;
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_cpu_to_data_ptr(sb, p, result);
UFS_I(inode)->i_lastfrag =
max(UFS_I(inode)->i_lastfrag, fragment + count);
write_sequnlock(&UFS_I(inode)->meta_lock);
}
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result;
}
/*
* resize block
*/
result = ufs_add_fragments(inode, tmp, oldcount, newcount);
if (result) {
*err = 0;
read_seqlock_excl(&UFS_I(inode)->meta_lock);
UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag,
fragment + count);
read_sequnlock_excl(&UFS_I(inode)->meta_lock);
ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
locked_page != NULL);
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result;
}
/*
* allocate new block and move data
*/
if (fs32_to_cpu(sb, usb1->fs_optim) == UFS_OPTSPACE) {
request = newcount;
if (uspi->cs_total.cs_nffree < uspi->s_space_to_time)
usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
} else {
request = uspi->s_fpb;
if (uspi->cs_total.cs_nffree > uspi->s_time_to_space)
usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTSPACE);
}
result = ufs_alloc_fragments (inode, cgno, goal, request, err);
if (result) {
ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
locked_page != NULL);
mutex_unlock(&UFS_SB(sb)->s_lock);
ufs_change_blocknr(inode, fragment - oldcount, oldcount,
uspi->s_sbbase + tmp,
uspi->s_sbbase + result, locked_page);
*err = 0;
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_cpu_to_data_ptr(sb, p, result);
UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag,
fragment + count);
write_sequnlock(&UFS_I(inode)->meta_lock);
if (newcount < request)
ufs_free_fragments (inode, result + newcount, request - newcount);
ufs_free_fragments (inode, tmp, oldcount);
UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result;
}
mutex_unlock(&UFS_SB(sb)->s_lock);
UFSD("EXIT (FAILED)\n");
return 0;
}
static bool try_add_frags(struct inode *inode, unsigned frags)
{
unsigned size = frags * i_blocksize(inode);
spin_lock(&inode->i_lock);
__inode_add_bytes(inode, size);
if (unlikely((u32)inode->i_blocks != inode->i_blocks)) {
__inode_sub_bytes(inode, size);
spin_unlock(&inode->i_lock);
return false;
}
spin_unlock(&inode->i_lock);
return true;
}
static u64 ufs_add_fragments(struct inode *inode, u64 fragment,
unsigned oldcount, unsigned newcount)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_cg_private_info * ucpi;
struct ufs_cylinder_group * ucg;
unsigned cgno, fragno, fragoff, count, fragsize, i;
UFSD("ENTER, fragment %llu, oldcount %u, newcount %u\n",
(unsigned long long)fragment, oldcount, newcount);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
count = newcount - oldcount;
cgno = ufs_dtog(uspi, fragment);
if (fs32_to_cpu(sb, UFS_SB(sb)->fs_cs(cgno).cs_nffree) < count)
return 0;
if ((ufs_fragnum (fragment) + newcount) > uspi->s_fpb)
return 0;
ucpi = ufs_load_cylinder (sb, cgno);
if (!ucpi)
return 0;
ucg = ubh_get_ucg (UCPI_UBH(ucpi));
if (!ufs_cg_chkmagic(sb, ucg)) {
ufs_panic (sb, "ufs_add_fragments",
"internal error, bad magic number on cg %u", cgno);
return 0;
}
fragno = ufs_dtogd(uspi, fragment);
fragoff = ufs_fragnum (fragno);
for (i = oldcount; i < newcount; i++)
if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i))
return 0;
if (!try_add_frags(inode, count))
return 0;
/*
* Block can be extended
*/
ucg->cg_time = cpu_to_fs32(sb, get_seconds());
for (i = newcount; i < (uspi->s_fpb - fragoff); i++)
if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i))
break;
fragsize = i - oldcount;
if (!fs32_to_cpu(sb, ucg->cg_frsum[fragsize]))
ufs_panic (sb, "ufs_add_fragments",
"internal error or corrupted bitmap on cg %u", cgno);
fs32_sub(sb, &ucg->cg_frsum[fragsize], 1);
if (fragsize != count)
fs32_add(sb, &ucg->cg_frsum[fragsize - count], 1);
for (i = oldcount; i < newcount; i++)
ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i);
fs32_sub(sb, &ucg->cg_cs.cs_nffree, count);
fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count);
uspi->cs_total.cs_nffree -= count;
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
ufs_mark_sb_dirty(sb);
UFSD("EXIT, fragment %llu\n", (unsigned long long)fragment);
return fragment;
}
#define UFS_TEST_FREE_SPACE_CG \
ucg = (struct ufs_cylinder_group *) UFS_SB(sb)->s_ucg[cgno]->b_data; \
if (fs32_to_cpu(sb, ucg->cg_cs.cs_nbfree)) \
goto cg_found; \
for (k = count; k < uspi->s_fpb; k++) \
if (fs32_to_cpu(sb, ucg->cg_frsum[k])) \
goto cg_found;
static u64 ufs_alloc_fragments(struct inode *inode, unsigned cgno,
u64 goal, unsigned count, int *err)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_cg_private_info * ucpi;
struct ufs_cylinder_group * ucg;
unsigned oldcg, i, j, k, allocsize;
u64 result;
UFSD("ENTER, ino %lu, cgno %u, goal %llu, count %u\n",
inode->i_ino, cgno, (unsigned long long)goal, count);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
oldcg = cgno;
/*
* 1. searching on preferred cylinder group
*/
UFS_TEST_FREE_SPACE_CG
/*
* 2. quadratic rehash
*/
for (j = 1; j < uspi->s_ncg; j *= 2) {
cgno += j;
if (cgno >= uspi->s_ncg)
cgno -= uspi->s_ncg;
UFS_TEST_FREE_SPACE_CG
}
/*
* 3. brute force search
* We start at i = 2 ( 0 is checked at 1.step, 1 at 2.step )
*/
cgno = (oldcg + 1) % uspi->s_ncg;
for (j = 2; j < uspi->s_ncg; j++) {
cgno++;
if (cgno >= uspi->s_ncg)
cgno = 0;
UFS_TEST_FREE_SPACE_CG
}
UFSD("EXIT (FAILED)\n");
return 0;
cg_found:
ucpi = ufs_load_cylinder (sb, cgno);
if (!ucpi)
return 0;
ucg = ubh_get_ucg (UCPI_UBH(ucpi));
if (!ufs_cg_chkmagic(sb, ucg))
ufs_panic (sb, "ufs_alloc_fragments",
"internal error, bad magic number on cg %u", cgno);
ucg->cg_time = cpu_to_fs32(sb, get_seconds());
if (count == uspi->s_fpb) {
result = ufs_alloccg_block (inode, ucpi, goal, err);
if (result == INVBLOCK)
return 0;
goto succed;
}
for (allocsize = count; allocsize < uspi->s_fpb; allocsize++)
if (fs32_to_cpu(sb, ucg->cg_frsum[allocsize]) != 0)
break;
if (allocsize == uspi->s_fpb) {
result = ufs_alloccg_block (inode, ucpi, goal, err);
if (result == INVBLOCK)
return 0;
goal = ufs_dtogd(uspi, result);
for (i = count; i < uspi->s_fpb; i++)
ubh_setbit (UCPI_UBH(ucpi), ucpi->c_freeoff, goal + i);
i = uspi->s_fpb - count;
inode_sub_bytes(inode, i << uspi->s_fshift);
fs32_add(sb, &ucg->cg_cs.cs_nffree, i);
uspi->cs_total.cs_nffree += i;
fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, i);
fs32_add(sb, &ucg->cg_frsum[i], 1);
goto succed;
}
result = ufs_bitmap_search (sb, ucpi, goal, allocsize);
if (result == INVBLOCK)
return 0;
if (!try_add_frags(inode, count))
return 0;
for (i = 0; i < count; i++)
ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, result + i);
fs32_sub(sb, &ucg->cg_cs.cs_nffree, count);
uspi->cs_total.cs_nffree -= count;
fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count);
fs32_sub(sb, &ucg->cg_frsum[allocsize], 1);
if (count != allocsize)
fs32_add(sb, &ucg->cg_frsum[allocsize - count], 1);
succed:
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
ufs_mark_sb_dirty(sb);
result += cgno * uspi->s_fpg;
UFSD("EXIT3, result %llu\n", (unsigned long long)result);
return result;
}
static u64 ufs_alloccg_block(struct inode *inode,
struct ufs_cg_private_info *ucpi,
u64 goal, int *err)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_cylinder_group * ucg;
u64 result, blkno;
UFSD("ENTER, goal %llu\n", (unsigned long long)goal);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
ucg = ubh_get_ucg(UCPI_UBH(ucpi));
if (goal == 0) {
goal = ucpi->c_rotor;
goto norot;
}
goal = ufs_blknum (goal);
goal = ufs_dtogd(uspi, goal);
/*
* If the requested block is available, use it.
*/
if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, ufs_fragstoblks(goal))) {
result = goal;
goto gotit;
}
norot:
result = ufs_bitmap_search (sb, ucpi, goal, uspi->s_fpb);
if (result == INVBLOCK)
return INVBLOCK;
ucpi->c_rotor = result;
gotit:
if (!try_add_frags(inode, uspi->s_fpb))
return 0;
blkno = ufs_fragstoblks(result);
ubh_clrblock (UCPI_UBH(ucpi), ucpi->c_freeoff, blkno);
if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD)
ufs_clusteracct (sb, ucpi, blkno, -1);
fs32_sub(sb, &ucg->cg_cs.cs_nbfree, 1);
uspi->cs_total.cs_nbfree--;
fs32_sub(sb, &UFS_SB(sb)->fs_cs(ucpi->c_cgx).cs_nbfree, 1);
if (uspi->fs_magic != UFS2_MAGIC) {
unsigned cylno = ufs_cbtocylno((unsigned)result);
fs16_sub(sb, &ubh_cg_blks(ucpi, cylno,
ufs_cbtorpos((unsigned)result)), 1);
fs32_sub(sb, &ubh_cg_blktot(ucpi, cylno), 1);
}
UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result;
}
static unsigned ubh_scanc(struct ufs_sb_private_info *uspi,
struct ufs_buffer_head *ubh,
unsigned begin, unsigned size,
unsigned char *table, unsigned char mask)
{
unsigned rest, offset;
unsigned char *cp;
offset = begin & ~uspi->s_fmask;
begin >>= uspi->s_fshift;
for (;;) {
if ((offset + size) < uspi->s_fsize)
rest = size;
else
rest = uspi->s_fsize - offset;
size -= rest;
cp = ubh->bh[begin]->b_data + offset;
while ((table[*cp++] & mask) == 0 && --rest)
;
if (rest || !size)
break;
begin++;
offset = 0;
}
return (size + rest);
}
/*
* Find a block of the specified size in the specified cylinder group.
* @sp: pointer to super block
* @ucpi: pointer to cylinder group info
* @goal: near which block we want find new one
* @count: specified size
*/
static u64 ufs_bitmap_search(struct super_block *sb,
struct ufs_cg_private_info *ucpi,
u64 goal, unsigned count)
{
/*
* Bit patterns for identifying fragments in the block map
* used as ((map & mask_arr) == want_arr)
*/
static const int mask_arr[9] = {
0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff
};
static const int want_arr[9] = {
0x0, 0x2, 0x6, 0xe, 0x1e, 0x3e, 0x7e, 0xfe, 0x1fe
};
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned start, length, loc;
unsigned pos, want, blockmap, mask, end;
u64 result;
UFSD("ENTER, cg %u, goal %llu, count %u\n", ucpi->c_cgx,
(unsigned long long)goal, count);
if (goal)
start = ufs_dtogd(uspi, goal) >> 3;
else
start = ucpi->c_frotor >> 3;
length = ((uspi->s_fpg + 7) >> 3) - start;
loc = ubh_scanc(uspi, UCPI_UBH(ucpi), ucpi->c_freeoff + start, length,
(uspi->s_fpb == 8) ? ufs_fragtable_8fpb : ufs_fragtable_other,
1 << (count - 1 + (uspi->s_fpb & 7)));
if (loc == 0) {
length = start + 1;
loc = ubh_scanc(uspi, UCPI_UBH(ucpi), ucpi->c_freeoff, length,
(uspi->s_fpb == 8) ? ufs_fragtable_8fpb :
ufs_fragtable_other,
1 << (count - 1 + (uspi->s_fpb & 7)));
if (loc == 0) {
ufs_error(sb, "ufs_bitmap_search",
"bitmap corrupted on cg %u, start %u,"
" length %u, count %u, freeoff %u\n",
ucpi->c_cgx, start, length, count,
ucpi->c_freeoff);
return INVBLOCK;
}
start = 0;
}
result = (start + length - loc) << 3;
ucpi->c_frotor = result;
/*
* found the byte in the map
*/
for (end = result + 8; result < end; result += uspi->s_fpb) {
blockmap = ubh_blkmap(UCPI_UBH(ucpi), ucpi->c_freeoff, result);
blockmap <<= 1;
mask = mask_arr[count];
want = want_arr[count];
for (pos = 0; pos <= uspi->s_fpb - count; pos++) {
if ((blockmap & mask) == want) {
UFSD("EXIT, result %llu\n",
(unsigned long long)result);
return result + pos;
}
mask <<= 1;
want <<= 1;
}
}
ufs_error(sb, "ufs_bitmap_search", "block not in map on cg %u\n",
ucpi->c_cgx);
UFSD("EXIT (FAILED)\n");
return INVBLOCK;
}
static void ufs_clusteracct(struct super_block * sb,
struct ufs_cg_private_info * ucpi, unsigned blkno, int cnt)
{
struct ufs_sb_private_info * uspi;
int i, start, end, forw, back;
uspi = UFS_SB(sb)->s_uspi;
if (uspi->s_contigsumsize <= 0)
return;
if (cnt > 0)
ubh_setbit(UCPI_UBH(ucpi), ucpi->c_clusteroff, blkno);
else
ubh_clrbit(UCPI_UBH(ucpi), ucpi->c_clusteroff, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + uspi->s_contigsumsize;
if ( end >= ucpi->c_nclusterblks)
end = ucpi->c_nclusterblks;
i = ubh_find_next_zero_bit (UCPI_UBH(ucpi), ucpi->c_clusteroff, end, start);
if (i > end)
i = end;
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - uspi->s_contigsumsize;
if (end < 0 )
end = -1;
i = ubh_find_last_zero_bit (UCPI_UBH(ucpi), ucpi->c_clusteroff, start, end);
if ( i < end)
i = end;
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > uspi->s_contigsumsize)
i = uspi->s_contigsumsize;
fs32_add(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (i << 2)), cnt);
if (back > 0)
fs32_sub(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (back << 2)), cnt);
if (forw > 0)
fs32_sub(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (forw << 2)), cnt);
}
static unsigned char ufs_fragtable_8fpb[] = {
0x00, 0x01, 0x01, 0x02, 0x01, 0x01, 0x02, 0x04, 0x01, 0x01, 0x01, 0x03, 0x02, 0x03, 0x04, 0x08,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x02, 0x03, 0x03, 0x02, 0x04, 0x05, 0x08, 0x10,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09,
0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x04, 0x05, 0x05, 0x06, 0x08, 0x09, 0x10, 0x20,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x03, 0x03, 0x03, 0x03, 0x05, 0x05, 0x09, 0x11,
0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x03, 0x03, 0x03, 0x03, 0x02, 0x03, 0x06, 0x0A,
0x04, 0x05, 0x05, 0x06, 0x05, 0x05, 0x06, 0x04, 0x08, 0x09, 0x09, 0x0A, 0x10, 0x11, 0x20, 0x40,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x03, 0x03, 0x03, 0x03, 0x05, 0x05, 0x09, 0x11,
0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x07, 0x05, 0x05, 0x05, 0x07, 0x09, 0x09, 0x11, 0x21,
0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x03, 0x03, 0x03, 0x03, 0x02, 0x03, 0x06, 0x0A,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x07, 0x02, 0x03, 0x03, 0x02, 0x06, 0x07, 0x0A, 0x12,
0x04, 0x05, 0x05, 0x06, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x05, 0x07, 0x06, 0x07, 0x04, 0x0C,
0x08, 0x09, 0x09, 0x0A, 0x09, 0x09, 0x0A, 0x0C, 0x10, 0x11, 0x11, 0x12, 0x20, 0x21, 0x40, 0x80,
};
static unsigned char ufs_fragtable_other[] = {
0x00, 0x16, 0x16, 0x2A, 0x16, 0x16, 0x26, 0x4E, 0x16, 0x16, 0x16, 0x3E, 0x2A, 0x3E, 0x4E, 0x8A,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x2A, 0x3E, 0x3E, 0x2A, 0x3E, 0x3E, 0x2E, 0x6E, 0x3E, 0x3E, 0x3E, 0x3E, 0x2A, 0x3E, 0x6E, 0xAA,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x26, 0x36, 0x36, 0x2E, 0x36, 0x36, 0x26, 0x6E, 0x36, 0x36, 0x36, 0x3E, 0x2E, 0x3E, 0x6E, 0xAE,
0x4E, 0x5E, 0x5E, 0x6E, 0x5E, 0x5E, 0x6E, 0x4E, 0x5E, 0x5E, 0x5E, 0x7E, 0x6E, 0x7E, 0x4E, 0xCE,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E,
0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0xBE,
0x2A, 0x3E, 0x3E, 0x2A, 0x3E, 0x3E, 0x2E, 0x6E, 0x3E, 0x3E, 0x3E, 0x3E, 0x2A, 0x3E, 0x6E, 0xAA,
0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0xBE,
0x4E, 0x5E, 0x5E, 0x6E, 0x5E, 0x5E, 0x6E, 0x4E, 0x5E, 0x5E, 0x5E, 0x7E, 0x6E, 0x7E, 0x4E, 0xCE,
0x8A, 0x9E, 0x9E, 0xAA, 0x9E, 0x9E, 0xAE, 0xCE, 0x9E, 0x9E, 0x9E, 0xBE, 0xAA, 0xBE, 0xCE, 0x8A,
};