11801e9de2
Most notable here is probably the addition of basic support for the BCM2835, an SoC used in some of the Roku 2 players as well as the much-hyped Raspberry Pi, cleaned up and contributed by Stephen Warren. It's still early days on mainline support, with just the basics working. But it has to start somewhere! Beyond that there's some conversions of clock infrastructure on tegra to common clock, misc updates for several other platforms, and OMAP now has its own bus (under drivers/bus) to manage its devices through. This branch adds two new directories outside of arch/arm: drivers/irqchip for new irq controllers, and drivers/bus for the above OMAP bus. It's expected that some of the other platforms will migrate parts of their platforms to those directories over time as well. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQIcBAABAgAGBQJQaO2SAAoJEIwa5zzehBx3TBIQAJYc+vpAqiv8MLQ1XV3cLiIP X57fxM9u1A+uXpXsiCTGR+ga8W4a5tlfGMXDBnl/K2bnFs2x11b9NkFLDJ7mdkih J4c/iOWT/mT5suLnnybyg6ZGaxGkAKou2AumiSmkazmq5hGG67hkpAOqFEfDK0J2 Au7/6VN6GZXgiwt8nYaAB/qR5NVcww4m/6GQ2looaWgRLT/wgC3W2ZKvw6zEdl2J OxOpwf2ujG/75zLQaxTeZ5rKnGtAXH4v0KhY9CWQacQPi4L2MVCrvUrDB4j0as4H Wmsu7g6fZA9Vlf1aW/mlDY1ftozfbDaKORoYVS+CsWhm1oiQI5t+sAWRTkbbS85t pobgKfFdvNsl9kS1zRdEddK2tyotwtXh2jz+P/s1l95hfqZ8IdVBJNMlcrHRINOI 2iQXFfGRhCCqMcfFiGXJ43tYja/aCsaIc4M5TrEma57czZT5jK8HSLh0ZUmFYDoe /TfUegVhFASmkNTk7dVZgZ2UoQVkv4lWs+xuf8YgX3UalWgl/YIRRFl4NnylGlEc jjrX3MjXATqXzLPEZaf8dRZHIpB6FYmZq1QqaoefcUQ46gBOueThElZP3sNWR8a2 MOtknauLfLwQbrcH5CmqKpIpXTB4LKgbf/omH2jQlxBhQ5t7PXHVD1NFsbZbwM8J RVCZb4PwqEwOt/wibTrk =BCp4 -----END PGP SIGNATURE----- Merge tag 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc Pull ARM soc-specific updates from Olof Johansson: "Most notable here is probably the addition of basic support for the BCM2835, an SoC used in some of the Roku 2 players as well as the much-hyped Raspberry Pi, cleaned up and contributed by Stephen Warren. It's still early days on mainline support, with just the basics working. But it has to start somewhere! Beyond that there's some conversions of clock infrastructure on tegra to common clock, misc updates for several other platforms, and OMAP now has its own bus (under drivers/bus) to manage its devices through. This branch adds two new directories outside of arch/arm: drivers/irqchip for new irq controllers, and drivers/bus for the above OMAP bus. It's expected that some of the other platforms will migrate parts of their platforms to those directories over time as well." Fix up trivial conflicts with the clk infrastructure changes. * tag 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (62 commits) ARM: shmobile: add new __iomem annotation for new code ARM: LPC32xx: Support GPI 28 ARM: LPC32xx: Platform update for devicetree completion of spi-pl022 ARM: LPC32xx: Board cleanup irqchip: fill in empty Kconfig ARM: SAMSUNG: Add check for NULL in clock interface ARM: EXYNOS: Put PCM, Slimbus, Spdif clocks to off state ARM: EXYNOS: Add bus clock for FIMD ARM: SAMSUNG: Fix HDMI related warnings ARM: S3C24XX: Add .get_rate callback for "camif-upll" clock ARM: EXYNOS: Fix incorrect help text ARM: EXYNOS: Turn off clocks for NAND, OneNAND and TSI controllers ARM: OMAP: AM33xx hwmod: fixup SPI after platform_data move MAINTAINERS: add an entry for the BCM2835 ARM sub-architecture ARM: bcm2835: instantiate console UART ARM: bcm2835: add stub clock driver ARM: bcm2835: add system timer ARM: bcm2835: add interrupt controller driver ARM: add infra-structure for BCM2835 and Raspberry Pi ARM: tegra20: add CPU hotplug support ...
364 lines
10 KiB
C
364 lines
10 KiB
C
/*
|
|
* OMAP2/3/4 DPLL clock functions
|
|
*
|
|
* Copyright (C) 2005-2008 Texas Instruments, Inc.
|
|
* Copyright (C) 2004-2010 Nokia Corporation
|
|
*
|
|
* Contacts:
|
|
* Richard Woodruff <r-woodruff2@ti.com>
|
|
* Paul Walmsley
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
#include <plat/clock.h>
|
|
|
|
#include "soc.h"
|
|
#include "clock.h"
|
|
#include "cm-regbits-24xx.h"
|
|
#include "cm-regbits-34xx.h"
|
|
|
|
/* DPLL rate rounding: minimum DPLL multiplier, divider values */
|
|
#define DPLL_MIN_MULTIPLIER 2
|
|
#define DPLL_MIN_DIVIDER 1
|
|
|
|
/* Possible error results from _dpll_test_mult */
|
|
#define DPLL_MULT_UNDERFLOW -1
|
|
|
|
/*
|
|
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
|
|
* The higher the scale factor, the greater the risk of arithmetic overflow,
|
|
* but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR
|
|
* must be a power of DPLL_SCALE_BASE.
|
|
*/
|
|
#define DPLL_SCALE_FACTOR 64
|
|
#define DPLL_SCALE_BASE 2
|
|
#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \
|
|
(DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
|
|
|
|
/* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
|
|
#define OMAP3430_DPLL_FINT_BAND1_MIN 750000
|
|
#define OMAP3430_DPLL_FINT_BAND1_MAX 2100000
|
|
#define OMAP3430_DPLL_FINT_BAND2_MIN 7500000
|
|
#define OMAP3430_DPLL_FINT_BAND2_MAX 21000000
|
|
|
|
/*
|
|
* DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
|
|
* From device data manual section 4.3 "DPLL and DLL Specifications".
|
|
*/
|
|
#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000
|
|
#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000
|
|
#define OMAP3PLUS_DPLL_FINT_MIN 32000
|
|
#define OMAP3PLUS_DPLL_FINT_MAX 52000000
|
|
|
|
/* _dpll_test_fint() return codes */
|
|
#define DPLL_FINT_UNDERFLOW -1
|
|
#define DPLL_FINT_INVALID -2
|
|
|
|
/* Private functions */
|
|
|
|
/*
|
|
* _dpll_test_fint - test whether an Fint value is valid for the DPLL
|
|
* @clk: DPLL struct clk to test
|
|
* @n: divider value (N) to test
|
|
*
|
|
* Tests whether a particular divider @n will result in a valid DPLL
|
|
* internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
|
|
* Correction". Returns 0 if OK, -1 if the enclosing loop can terminate
|
|
* (assuming that it is counting N upwards), or -2 if the enclosing loop
|
|
* should skip to the next iteration (again assuming N is increasing).
|
|
*/
|
|
static int _dpll_test_fint(struct clk *clk, u8 n)
|
|
{
|
|
struct dpll_data *dd;
|
|
long fint, fint_min, fint_max;
|
|
int ret = 0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
/* DPLL divider must result in a valid jitter correction val */
|
|
fint = __clk_get_rate(__clk_get_parent(clk)) / n;
|
|
|
|
if (cpu_is_omap24xx()) {
|
|
/* Should not be called for OMAP2, so warn if it is called */
|
|
WARN(1, "No fint limits available for OMAP2!\n");
|
|
return DPLL_FINT_INVALID;
|
|
} else if (cpu_is_omap3430()) {
|
|
fint_min = OMAP3430_DPLL_FINT_BAND1_MIN;
|
|
fint_max = OMAP3430_DPLL_FINT_BAND2_MAX;
|
|
} else if (dd->flags & DPLL_J_TYPE) {
|
|
fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
|
|
fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
|
|
} else {
|
|
fint_min = OMAP3PLUS_DPLL_FINT_MIN;
|
|
fint_max = OMAP3PLUS_DPLL_FINT_MAX;
|
|
}
|
|
|
|
if (fint < fint_min) {
|
|
pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
|
|
n);
|
|
dd->max_divider = n;
|
|
ret = DPLL_FINT_UNDERFLOW;
|
|
} else if (fint > fint_max) {
|
|
pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
|
|
n);
|
|
dd->min_divider = n;
|
|
ret = DPLL_FINT_INVALID;
|
|
} else if (cpu_is_omap3430() && fint > OMAP3430_DPLL_FINT_BAND1_MAX &&
|
|
fint < OMAP3430_DPLL_FINT_BAND2_MIN) {
|
|
pr_debug("rejecting n=%d due to Fint failure\n", n);
|
|
ret = DPLL_FINT_INVALID;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
|
|
unsigned int m, unsigned int n)
|
|
{
|
|
unsigned long long num;
|
|
|
|
num = (unsigned long long)parent_rate * m;
|
|
do_div(num, n);
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* _dpll_test_mult - test a DPLL multiplier value
|
|
* @m: pointer to the DPLL m (multiplier) value under test
|
|
* @n: current DPLL n (divider) value under test
|
|
* @new_rate: pointer to storage for the resulting rounded rate
|
|
* @target_rate: the desired DPLL rate
|
|
* @parent_rate: the DPLL's parent clock rate
|
|
*
|
|
* This code tests a DPLL multiplier value, ensuring that the
|
|
* resulting rate will not be higher than the target_rate, and that
|
|
* the multiplier value itself is valid for the DPLL. Initially, the
|
|
* integer pointed to by the m argument should be prescaled by
|
|
* multiplying by DPLL_SCALE_FACTOR. The code will replace this with
|
|
* a non-scaled m upon return. This non-scaled m will result in a
|
|
* new_rate as close as possible to target_rate (but not greater than
|
|
* target_rate) given the current (parent_rate, n, prescaled m)
|
|
* triple. Returns DPLL_MULT_UNDERFLOW in the event that the
|
|
* non-scaled m attempted to underflow, which can allow the calling
|
|
* function to bail out early; or 0 upon success.
|
|
*/
|
|
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
|
|
unsigned long target_rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
int r = 0, carry = 0;
|
|
|
|
/* Unscale m and round if necessary */
|
|
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
|
|
carry = 1;
|
|
*m = (*m / DPLL_SCALE_FACTOR) + carry;
|
|
|
|
/*
|
|
* The new rate must be <= the target rate to avoid programming
|
|
* a rate that is impossible for the hardware to handle
|
|
*/
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
if (*new_rate > target_rate) {
|
|
(*m)--;
|
|
*new_rate = 0;
|
|
}
|
|
|
|
/* Guard against m underflow */
|
|
if (*m < DPLL_MIN_MULTIPLIER) {
|
|
*m = DPLL_MIN_MULTIPLIER;
|
|
*new_rate = 0;
|
|
r = DPLL_MULT_UNDERFLOW;
|
|
}
|
|
|
|
if (*new_rate == 0)
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Public functions */
|
|
|
|
void omap2_init_dpll_parent(struct clk *clk)
|
|
{
|
|
u32 v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return;
|
|
|
|
v = __raw_readl(dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
/* Reparent the struct clk in case the dpll is in bypass */
|
|
if (cpu_is_omap24xx()) {
|
|
if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP2XXX_EN_DPLL_FRBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
} else if (cpu_is_omap34xx()) {
|
|
if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP3XXX_EN_DPLL_FRBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
} else if (soc_is_am33xx() || cpu_is_omap44xx()) {
|
|
if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_FRBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_MNBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
|
|
* @clk: struct clk * of a DPLL
|
|
*
|
|
* DPLLs can be locked or bypassed - basically, enabled or disabled.
|
|
* When locked, the DPLL output depends on the M and N values. When
|
|
* bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
|
|
* or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
|
|
* 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
|
|
* (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
|
|
* Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
|
|
* locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
|
|
* if the clock @clk is not a DPLL.
|
|
*/
|
|
u32 omap2_get_dpll_rate(struct clk *clk)
|
|
{
|
|
long long dpll_clk;
|
|
u32 dpll_mult, dpll_div, v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return 0;
|
|
|
|
/* Return bypass rate if DPLL is bypassed */
|
|
v = __raw_readl(dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
if (cpu_is_omap24xx()) {
|
|
if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP2XXX_EN_DPLL_FRBYPASS)
|
|
return __clk_get_rate(dd->clk_bypass);
|
|
} else if (cpu_is_omap34xx()) {
|
|
if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP3XXX_EN_DPLL_FRBYPASS)
|
|
return __clk_get_rate(dd->clk_bypass);
|
|
} else if (soc_is_am33xx() || cpu_is_omap44xx()) {
|
|
if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_FRBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_MNBYPASS)
|
|
return __clk_get_rate(dd->clk_bypass);
|
|
}
|
|
|
|
v = __raw_readl(dd->mult_div1_reg);
|
|
dpll_mult = v & dd->mult_mask;
|
|
dpll_mult >>= __ffs(dd->mult_mask);
|
|
dpll_div = v & dd->div1_mask;
|
|
dpll_div >>= __ffs(dd->div1_mask);
|
|
|
|
dpll_clk = (long long) __clk_get_rate(dd->clk_ref) * dpll_mult;
|
|
do_div(dpll_clk, dpll_div + 1);
|
|
|
|
return dpll_clk;
|
|
}
|
|
|
|
/* DPLL rate rounding code */
|
|
|
|
/**
|
|
* omap2_dpll_round_rate - round a target rate for an OMAP DPLL
|
|
* @clk: struct clk * for a DPLL
|
|
* @target_rate: desired DPLL clock rate
|
|
*
|
|
* Given a DPLL and a desired target rate, round the target rate to a
|
|
* possible, programmable rate for this DPLL. Attempts to select the
|
|
* minimum possible n. Stores the computed (m, n) in the DPLL's
|
|
* dpll_data structure so set_rate() will not need to call this
|
|
* (expensive) function again. Returns ~0 if the target rate cannot
|
|
* be rounded, or the rounded rate upon success.
|
|
*/
|
|
long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
|
|
{
|
|
int m, n, r, scaled_max_m;
|
|
unsigned long scaled_rt_rp;
|
|
unsigned long new_rate = 0;
|
|
struct dpll_data *dd;
|
|
unsigned long ref_rate;
|
|
const char *clk_name;
|
|
|
|
if (!clk || !clk->dpll_data)
|
|
return ~0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
ref_rate = __clk_get_rate(dd->clk_ref);
|
|
clk_name = __clk_get_name(clk);
|
|
pr_debug("clock: %s: starting DPLL round_rate, target rate %ld\n",
|
|
clk_name, target_rate);
|
|
|
|
scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
|
|
scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
|
|
|
|
dd->last_rounded_rate = 0;
|
|
|
|
for (n = dd->min_divider; n <= dd->max_divider; n++) {
|
|
|
|
/* Is the (input clk, divider) pair valid for the DPLL? */
|
|
r = _dpll_test_fint(clk, n);
|
|
if (r == DPLL_FINT_UNDERFLOW)
|
|
break;
|
|
else if (r == DPLL_FINT_INVALID)
|
|
continue;
|
|
|
|
/* Compute the scaled DPLL multiplier, based on the divider */
|
|
m = scaled_rt_rp * n;
|
|
|
|
/*
|
|
* Since we're counting n up, a m overflow means we
|
|
* can bail out completely (since as n increases in
|
|
* the next iteration, there's no way that m can
|
|
* increase beyond the current m)
|
|
*/
|
|
if (m > scaled_max_m)
|
|
break;
|
|
|
|
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
|
|
ref_rate);
|
|
|
|
/* m can't be set low enough for this n - try with a larger n */
|
|
if (r == DPLL_MULT_UNDERFLOW)
|
|
continue;
|
|
|
|
pr_debug("clock: %s: m = %d: n = %d: new_rate = %ld\n",
|
|
clk_name, m, n, new_rate);
|
|
|
|
if (target_rate == new_rate) {
|
|
dd->last_rounded_m = m;
|
|
dd->last_rounded_n = n;
|
|
dd->last_rounded_rate = target_rate;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (target_rate != new_rate) {
|
|
pr_debug("clock: %s: cannot round to rate %ld\n",
|
|
clk_name, target_rate);
|
|
return ~0;
|
|
}
|
|
|
|
return target_rate;
|
|
}
|
|
|