742bd95ba9
This adds the back-end for the PMU on the POWER5 processor. This knows how to use the fixed-function PMC5 and PMC6 (instructions completed and run cycles). Unlike POWER6, PMC5/6 obey the freeze conditions and can generate interrupts, so their use doesn't impose any extra restrictions. POWER5+ is different and is not supported by this patch. Signed-off-by: Paul Mackerras <paulus@samba.org>
864 lines
20 KiB
C
864 lines
20 KiB
C
/*
|
|
* Performance counter support - powerpc architecture code
|
|
*
|
|
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_counter.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
|
|
struct cpu_hw_counters {
|
|
int n_counters;
|
|
int n_percpu;
|
|
int disabled;
|
|
int n_added;
|
|
struct perf_counter *counter[MAX_HWCOUNTERS];
|
|
unsigned int events[MAX_HWCOUNTERS];
|
|
u64 mmcr[3];
|
|
u8 pmcs_enabled;
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
|
|
|
|
struct power_pmu *ppmu;
|
|
|
|
/*
|
|
* Normally, to ignore kernel events we set the FCS (freeze counters
|
|
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
|
|
* hypervisor bit set in the MSR, or if we are running on a processor
|
|
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
|
|
* then we need to use the FCHV bit to ignore kernel events.
|
|
*/
|
|
static unsigned int freeze_counters_kernel = MMCR0_FCS;
|
|
|
|
void perf_counter_print_debug(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Read one performance monitor counter (PMC).
|
|
*/
|
|
static unsigned long read_pmc(int idx)
|
|
{
|
|
unsigned long val;
|
|
|
|
switch (idx) {
|
|
case 1:
|
|
val = mfspr(SPRN_PMC1);
|
|
break;
|
|
case 2:
|
|
val = mfspr(SPRN_PMC2);
|
|
break;
|
|
case 3:
|
|
val = mfspr(SPRN_PMC3);
|
|
break;
|
|
case 4:
|
|
val = mfspr(SPRN_PMC4);
|
|
break;
|
|
case 5:
|
|
val = mfspr(SPRN_PMC5);
|
|
break;
|
|
case 6:
|
|
val = mfspr(SPRN_PMC6);
|
|
break;
|
|
case 7:
|
|
val = mfspr(SPRN_PMC7);
|
|
break;
|
|
case 8:
|
|
val = mfspr(SPRN_PMC8);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write one PMC.
|
|
*/
|
|
static void write_pmc(int idx, unsigned long val)
|
|
{
|
|
switch (idx) {
|
|
case 1:
|
|
mtspr(SPRN_PMC1, val);
|
|
break;
|
|
case 2:
|
|
mtspr(SPRN_PMC2, val);
|
|
break;
|
|
case 3:
|
|
mtspr(SPRN_PMC3, val);
|
|
break;
|
|
case 4:
|
|
mtspr(SPRN_PMC4, val);
|
|
break;
|
|
case 5:
|
|
mtspr(SPRN_PMC5, val);
|
|
break;
|
|
case 6:
|
|
mtspr(SPRN_PMC6, val);
|
|
break;
|
|
case 7:
|
|
mtspr(SPRN_PMC7, val);
|
|
break;
|
|
case 8:
|
|
mtspr(SPRN_PMC8, val);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if a set of events can all go on the PMU at once.
|
|
* If they can't, this will look at alternative codes for the events
|
|
* and see if any combination of alternative codes is feasible.
|
|
* The feasible set is returned in event[].
|
|
*/
|
|
static int power_check_constraints(unsigned int event[], int n_ev)
|
|
{
|
|
u64 mask, value, nv;
|
|
unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
|
|
int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
|
|
int i, j;
|
|
u64 addf = ppmu->add_fields;
|
|
u64 tadd = ppmu->test_adder;
|
|
|
|
if (n_ev > ppmu->n_counter)
|
|
return -1;
|
|
|
|
/* First see if the events will go on as-is */
|
|
for (i = 0; i < n_ev; ++i) {
|
|
alternatives[i][0] = event[i];
|
|
if (ppmu->get_constraint(event[i], &amasks[i][0],
|
|
&avalues[i][0]))
|
|
return -1;
|
|
choice[i] = 0;
|
|
}
|
|
value = mask = 0;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) != 0 ||
|
|
(((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
|
|
break;
|
|
value = nv;
|
|
mask |= amasks[i][0];
|
|
}
|
|
if (i == n_ev)
|
|
return 0; /* all OK */
|
|
|
|
/* doesn't work, gather alternatives... */
|
|
if (!ppmu->get_alternatives)
|
|
return -1;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
|
|
for (j = 1; j < n_alt[i]; ++j)
|
|
ppmu->get_constraint(alternatives[i][j],
|
|
&amasks[i][j], &avalues[i][j]);
|
|
}
|
|
|
|
/* enumerate all possibilities and see if any will work */
|
|
i = 0;
|
|
j = -1;
|
|
value = mask = nv = 0;
|
|
while (i < n_ev) {
|
|
if (j >= 0) {
|
|
/* we're backtracking, restore context */
|
|
value = svalues[i];
|
|
mask = smasks[i];
|
|
j = choice[i];
|
|
}
|
|
/*
|
|
* See if any alternative k for event i,
|
|
* where k > j, will satisfy the constraints.
|
|
*/
|
|
while (++j < n_alt[i]) {
|
|
nv = (value | avalues[i][j]) +
|
|
(value & avalues[i][j] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) == 0 &&
|
|
(((nv + tadd) ^ avalues[i][j])
|
|
& amasks[i][j]) == 0)
|
|
break;
|
|
}
|
|
if (j >= n_alt[i]) {
|
|
/*
|
|
* No feasible alternative, backtrack
|
|
* to event i-1 and continue enumerating its
|
|
* alternatives from where we got up to.
|
|
*/
|
|
if (--i < 0)
|
|
return -1;
|
|
} else {
|
|
/*
|
|
* Found a feasible alternative for event i,
|
|
* remember where we got up to with this event,
|
|
* go on to the next event, and start with
|
|
* the first alternative for it.
|
|
*/
|
|
choice[i] = j;
|
|
svalues[i] = value;
|
|
smasks[i] = mask;
|
|
value = nv;
|
|
mask |= amasks[i][j];
|
|
++i;
|
|
j = -1;
|
|
}
|
|
}
|
|
|
|
/* OK, we have a feasible combination, tell the caller the solution */
|
|
for (i = 0; i < n_ev; ++i)
|
|
event[i] = alternatives[i][choice[i]];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if newly-added counters have consistent settings for
|
|
* exclude_{user,kernel,hv} with each other and any previously
|
|
* added counters.
|
|
*/
|
|
static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
|
|
{
|
|
int eu, ek, eh;
|
|
int i, n;
|
|
struct perf_counter *counter;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
eu = ctrs[0]->hw_event.exclude_user;
|
|
ek = ctrs[0]->hw_event.exclude_kernel;
|
|
eh = ctrs[0]->hw_event.exclude_hv;
|
|
if (n_prev == 0)
|
|
n_prev = 1;
|
|
for (i = n_prev; i < n; ++i) {
|
|
counter = ctrs[i];
|
|
if (counter->hw_event.exclude_user != eu ||
|
|
counter->hw_event.exclude_kernel != ek ||
|
|
counter->hw_event.exclude_hv != eh)
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void power_perf_read(struct perf_counter *counter)
|
|
{
|
|
long val, delta, prev;
|
|
|
|
if (!counter->hw.idx)
|
|
return;
|
|
/*
|
|
* Performance monitor interrupts come even when interrupts
|
|
* are soft-disabled, as long as interrupts are hard-enabled.
|
|
* Therefore we treat them like NMIs.
|
|
*/
|
|
do {
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
barrier();
|
|
val = read_pmc(counter->hw.idx);
|
|
} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
|
|
|
|
/* The counters are only 32 bits wide */
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
atomic64_sub(delta, &counter->hw.period_left);
|
|
}
|
|
|
|
/*
|
|
* Disable all counters to prevent PMU interrupts and to allow
|
|
* counters to be added or removed.
|
|
*/
|
|
u64 hw_perf_save_disable(void)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long ret;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
|
|
ret = cpuhw->disabled;
|
|
if (!ret) {
|
|
cpuhw->disabled = 1;
|
|
cpuhw->n_added = 0;
|
|
|
|
/*
|
|
* Check if we ever enabled the PMU on this cpu.
|
|
*/
|
|
if (!cpuhw->pmcs_enabled) {
|
|
if (ppc_md.enable_pmcs)
|
|
ppc_md.enable_pmcs();
|
|
cpuhw->pmcs_enabled = 1;
|
|
}
|
|
|
|
/*
|
|
* Set the 'freeze counters' bit.
|
|
* The barrier is to make sure the mtspr has been
|
|
* executed and the PMU has frozen the counters
|
|
* before we return.
|
|
*/
|
|
mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
|
|
mb();
|
|
}
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Re-enable all counters if disable == 0.
|
|
* If we were previously disabled and counters were added, then
|
|
* put the new config on the PMU.
|
|
*/
|
|
void hw_perf_restore(u64 disable)
|
|
{
|
|
struct perf_counter *counter;
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
long i;
|
|
unsigned long val;
|
|
s64 left;
|
|
unsigned int hwc_index[MAX_HWCOUNTERS];
|
|
|
|
if (disable)
|
|
return;
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
cpuhw->disabled = 0;
|
|
|
|
/*
|
|
* If we didn't change anything, or only removed counters,
|
|
* no need to recalculate MMCR* settings and reset the PMCs.
|
|
* Just reenable the PMU with the current MMCR* settings
|
|
* (possibly updated for removal of counters).
|
|
*/
|
|
if (!cpuhw->n_added) {
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
|
if (cpuhw->n_counters == 0)
|
|
get_lppaca()->pmcregs_in_use = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Compute MMCR* values for the new set of counters
|
|
*/
|
|
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
|
|
cpuhw->mmcr)) {
|
|
/* shouldn't ever get here */
|
|
printk(KERN_ERR "oops compute_mmcr failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Add in MMCR0 freeze bits corresponding to the
|
|
* hw_event.exclude_* bits for the first counter.
|
|
* We have already checked that all counters have the
|
|
* same values for these bits as the first counter.
|
|
*/
|
|
counter = cpuhw->counter[0];
|
|
if (counter->hw_event.exclude_user)
|
|
cpuhw->mmcr[0] |= MMCR0_FCP;
|
|
if (counter->hw_event.exclude_kernel)
|
|
cpuhw->mmcr[0] |= freeze_counters_kernel;
|
|
if (counter->hw_event.exclude_hv)
|
|
cpuhw->mmcr[0] |= MMCR0_FCHV;
|
|
|
|
/*
|
|
* Write the new configuration to MMCR* with the freeze
|
|
* bit set and set the hardware counters to their initial values.
|
|
* Then unfreeze the counters.
|
|
*/
|
|
get_lppaca()->pmcregs_in_use = 1;
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
| MMCR0_FC);
|
|
|
|
/*
|
|
* Read off any pre-existing counters that need to move
|
|
* to another PMC.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
|
|
power_perf_read(counter);
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the PMCs for all the new and moved counters.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx)
|
|
continue;
|
|
val = 0;
|
|
if (counter->hw_event.irq_period) {
|
|
left = atomic64_read(&counter->hw.period_left);
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
counter->hw.idx = hwc_index[i] + 1;
|
|
write_pmc(counter->hw.idx, val);
|
|
}
|
|
mb();
|
|
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
|
|
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
|
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int collect_events(struct perf_counter *group, int max_count,
|
|
struct perf_counter *ctrs[], unsigned int *events)
|
|
{
|
|
int n = 0;
|
|
struct perf_counter *counter;
|
|
|
|
if (!is_software_counter(group)) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = group;
|
|
events[n++] = group->hw.config;
|
|
}
|
|
list_for_each_entry(counter, &group->sibling_list, list_entry) {
|
|
if (!is_software_counter(counter) &&
|
|
counter->state != PERF_COUNTER_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = counter;
|
|
events[n++] = counter->hw.config;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void counter_sched_in(struct perf_counter *counter, int cpu)
|
|
{
|
|
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
|
counter->oncpu = cpu;
|
|
if (is_software_counter(counter))
|
|
counter->hw_ops->enable(counter);
|
|
}
|
|
|
|
/*
|
|
* Called to enable a whole group of counters.
|
|
* Returns 1 if the group was enabled, or -EAGAIN if it could not be.
|
|
* Assumes the caller has disabled interrupts and has
|
|
* frozen the PMU with hw_perf_save_disable.
|
|
*/
|
|
int hw_perf_group_sched_in(struct perf_counter *group_leader,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx, int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i, n, n0;
|
|
struct perf_counter *sub;
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
n = collect_events(group_leader, ppmu->n_counter - n0,
|
|
&cpuhw->counter[n0], &cpuhw->events[n0]);
|
|
if (n < 0)
|
|
return -EAGAIN;
|
|
if (check_excludes(cpuhw->counter, n0, n))
|
|
return -EAGAIN;
|
|
if (power_check_constraints(cpuhw->events, n + n0))
|
|
return -EAGAIN;
|
|
cpuhw->n_counters = n0 + n;
|
|
cpuhw->n_added += n;
|
|
|
|
/*
|
|
* OK, this group can go on; update counter states etc.,
|
|
* and enable any software counters
|
|
*/
|
|
for (i = n0; i < n0 + n; ++i)
|
|
cpuhw->counter[i]->hw.config = cpuhw->events[i];
|
|
cpuctx->active_oncpu += n;
|
|
n = 1;
|
|
counter_sched_in(group_leader, cpu);
|
|
list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
|
|
if (sub->state != PERF_COUNTER_STATE_OFF) {
|
|
counter_sched_in(sub, cpu);
|
|
++n;
|
|
}
|
|
}
|
|
ctx->nr_active += n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add a counter to the PMU.
|
|
* If all counters are not already frozen, then we disable and
|
|
* re-enable the PMU in order to get hw_perf_restore to do the
|
|
* actual work of reconfiguring the PMU.
|
|
*/
|
|
static int power_perf_enable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
u64 pmudis;
|
|
int n0;
|
|
int ret = -EAGAIN;
|
|
|
|
local_irq_save(flags);
|
|
pmudis = hw_perf_save_disable();
|
|
|
|
/*
|
|
* Add the counter to the list (if there is room)
|
|
* and check whether the total set is still feasible.
|
|
*/
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
if (n0 >= ppmu->n_counter)
|
|
goto out;
|
|
cpuhw->counter[n0] = counter;
|
|
cpuhw->events[n0] = counter->hw.config;
|
|
if (check_excludes(cpuhw->counter, n0, 1))
|
|
goto out;
|
|
if (power_check_constraints(cpuhw->events, n0 + 1))
|
|
goto out;
|
|
|
|
counter->hw.config = cpuhw->events[n0];
|
|
++cpuhw->n_counters;
|
|
++cpuhw->n_added;
|
|
|
|
ret = 0;
|
|
out:
|
|
hw_perf_restore(pmudis);
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a counter from the PMU.
|
|
*/
|
|
static void power_perf_disable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i;
|
|
u64 pmudis;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
pmudis = hw_perf_save_disable();
|
|
|
|
power_perf_read(counter);
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
if (counter == cpuhw->counter[i]) {
|
|
while (++i < cpuhw->n_counters)
|
|
cpuhw->counter[i-1] = cpuhw->counter[i];
|
|
--cpuhw->n_counters;
|
|
ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (cpuhw->n_counters == 0) {
|
|
/* disable exceptions if no counters are running */
|
|
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
|
|
}
|
|
|
|
hw_perf_restore(pmudis);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
struct hw_perf_counter_ops power_perf_ops = {
|
|
.enable = power_perf_enable,
|
|
.disable = power_perf_disable,
|
|
.read = power_perf_read
|
|
};
|
|
|
|
const struct hw_perf_counter_ops *
|
|
hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
unsigned long ev;
|
|
struct perf_counter *ctrs[MAX_HWCOUNTERS];
|
|
unsigned int events[MAX_HWCOUNTERS];
|
|
int n;
|
|
|
|
if (!ppmu)
|
|
return NULL;
|
|
if ((s64)counter->hw_event.irq_period < 0)
|
|
return NULL;
|
|
ev = counter->hw_event.type;
|
|
if (!counter->hw_event.raw) {
|
|
if (ev >= ppmu->n_generic ||
|
|
ppmu->generic_events[ev] == 0)
|
|
return NULL;
|
|
ev = ppmu->generic_events[ev];
|
|
}
|
|
counter->hw.config_base = ev;
|
|
counter->hw.idx = 0;
|
|
|
|
/*
|
|
* If we are not running on a hypervisor, force the
|
|
* exclude_hv bit to 0 so that we don't care what
|
|
* the user set it to.
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR))
|
|
counter->hw_event.exclude_hv = 0;
|
|
|
|
/*
|
|
* If this is in a group, check if it can go on with all the
|
|
* other hardware counters in the group. We assume the counter
|
|
* hasn't been linked into its leader's sibling list at this point.
|
|
*/
|
|
n = 0;
|
|
if (counter->group_leader != counter) {
|
|
n = collect_events(counter->group_leader, ppmu->n_counter - 1,
|
|
ctrs, events);
|
|
if (n < 0)
|
|
return NULL;
|
|
}
|
|
events[n] = ev;
|
|
if (check_excludes(ctrs, n, 1))
|
|
return NULL;
|
|
if (power_check_constraints(events, n + 1))
|
|
return NULL;
|
|
|
|
counter->hw.config = events[n];
|
|
atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
|
|
return &power_perf_ops;
|
|
}
|
|
|
|
/*
|
|
* Handle wakeups.
|
|
*/
|
|
void perf_counter_do_pending(void)
|
|
{
|
|
int i;
|
|
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
struct perf_counter *counter;
|
|
|
|
set_perf_counter_pending(0);
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter && counter->wakeup_pending) {
|
|
counter->wakeup_pending = 0;
|
|
wake_up(&counter->waitq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record data for an irq counter.
|
|
* This function was lifted from the x86 code; maybe it should
|
|
* go in the core?
|
|
*/
|
|
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
|
|
{
|
|
struct perf_data *irqdata = counter->irqdata;
|
|
|
|
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
|
|
irqdata->overrun++;
|
|
} else {
|
|
u64 *p = (u64 *) &irqdata->data[irqdata->len];
|
|
|
|
*p = data;
|
|
irqdata->len += sizeof(u64);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record all the values of the counters in a group
|
|
*/
|
|
static void perf_handle_group(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter *leader, *sub;
|
|
|
|
leader = counter->group_leader;
|
|
list_for_each_entry(sub, &leader->sibling_list, list_entry) {
|
|
if (sub != counter)
|
|
sub->hw_ops->read(sub);
|
|
perf_store_irq_data(counter, sub->hw_event.type);
|
|
perf_store_irq_data(counter, atomic64_read(&sub->count));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A counter has overflowed; update its count and record
|
|
* things if requested. Note that interrupts are hard-disabled
|
|
* here so there is no possibility of being interrupted.
|
|
*/
|
|
static void record_and_restart(struct perf_counter *counter, long val,
|
|
struct pt_regs *regs)
|
|
{
|
|
s64 prev, delta, left;
|
|
int record = 0;
|
|
|
|
/* we don't have to worry about interrupts here */
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
|
|
/*
|
|
* See if the total period for this counter has expired,
|
|
* and update for the next period.
|
|
*/
|
|
val = 0;
|
|
left = atomic64_read(&counter->hw.period_left) - delta;
|
|
if (counter->hw_event.irq_period) {
|
|
if (left <= 0) {
|
|
left += counter->hw_event.irq_period;
|
|
if (left <= 0)
|
|
left = counter->hw_event.irq_period;
|
|
record = 1;
|
|
}
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
write_pmc(counter->hw.idx, val);
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
atomic64_set(&counter->hw.period_left, left);
|
|
|
|
/*
|
|
* Finally record data if requested.
|
|
*/
|
|
if (record) {
|
|
switch (counter->hw_event.record_type) {
|
|
case PERF_RECORD_SIMPLE:
|
|
break;
|
|
case PERF_RECORD_IRQ:
|
|
perf_store_irq_data(counter, instruction_pointer(regs));
|
|
counter->wakeup_pending = 1;
|
|
break;
|
|
case PERF_RECORD_GROUP:
|
|
perf_handle_group(counter);
|
|
counter->wakeup_pending = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Performance monitor interrupt stuff
|
|
*/
|
|
static void perf_counter_interrupt(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
struct perf_counter *counter;
|
|
long val;
|
|
int need_wakeup = 0, found = 0;
|
|
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
val = read_pmc(counter->hw.idx);
|
|
if ((int)val < 0) {
|
|
/* counter has overflowed */
|
|
found = 1;
|
|
record_and_restart(counter, val, regs);
|
|
if (counter->wakeup_pending)
|
|
need_wakeup = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In case we didn't find and reset the counter that caused
|
|
* the interrupt, scan all counters and reset any that are
|
|
* negative, to avoid getting continual interrupts.
|
|
* Any that we processed in the previous loop will not be negative.
|
|
*/
|
|
if (!found) {
|
|
for (i = 0; i < ppmu->n_counter; ++i) {
|
|
val = read_pmc(i + 1);
|
|
if ((int)val < 0)
|
|
write_pmc(i + 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset MMCR0 to its normal value. This will set PMXE and
|
|
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
|
|
* and thus allow interrupts to occur again.
|
|
* XXX might want to use MSR.PM to keep the counters frozen until
|
|
* we get back out of this interrupt.
|
|
*/
|
|
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
|
|
|
/*
|
|
* If we need a wakeup, check whether interrupts were soft-enabled
|
|
* when we took the interrupt. If they were, we can wake stuff up
|
|
* immediately; otherwise we'll have to set a flag and do the
|
|
* wakeup when interrupts get soft-enabled.
|
|
*/
|
|
if (need_wakeup) {
|
|
if (regs->softe) {
|
|
irq_enter();
|
|
perf_counter_do_pending();
|
|
irq_exit();
|
|
} else {
|
|
set_perf_counter_pending(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void hw_perf_counter_setup(int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
|
|
|
|
memset(cpuhw, 0, sizeof(*cpuhw));
|
|
cpuhw->mmcr[0] = MMCR0_FC;
|
|
}
|
|
|
|
extern struct power_pmu ppc970_pmu;
|
|
extern struct power_pmu power5_pmu;
|
|
extern struct power_pmu power6_pmu;
|
|
|
|
static int init_perf_counters(void)
|
|
{
|
|
unsigned long pvr;
|
|
|
|
if (reserve_pmc_hardware(perf_counter_interrupt)) {
|
|
printk(KERN_ERR "Couldn't init performance monitor subsystem\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* XXX should get this from cputable */
|
|
pvr = mfspr(SPRN_PVR);
|
|
switch (PVR_VER(pvr)) {
|
|
case PV_970:
|
|
case PV_970FX:
|
|
case PV_970MP:
|
|
ppmu = &ppc970_pmu;
|
|
break;
|
|
case PV_POWER5:
|
|
ppmu = &power5_pmu;
|
|
break;
|
|
case 0x3e:
|
|
ppmu = &power6_pmu;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Use FCHV to ignore kernel events if MSR.HV is set.
|
|
*/
|
|
if (mfmsr() & MSR_HV)
|
|
freeze_counters_kernel = MMCR0_FCHV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(init_perf_counters);
|