kernel-fxtec-pro1x/kernel/time.c
Thomas Gleixner 1001d0a9ee timekeeping: update xtime_cache when time(zone) changes
xtime_cache needs to be updated whenever xtime and or wall_to_monotic
are changed. Otherwise users of xtime_cache might see a stale (and in
the case of timezone changes utterly wrong) value until the next
update happens.

Fixup the obvious places, which miss this update.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 17:45:13 +01:00

653 lines
17 KiB
C

/*
* linux/kernel/time.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* This file contains the interface functions for the various
* time related system calls: time, stime, gettimeofday, settimeofday,
* adjtime
*/
/*
* Modification history kernel/time.c
*
* 1993-09-02 Philip Gladstone
* Created file with time related functions from sched.c and adjtimex()
* 1993-10-08 Torsten Duwe
* adjtime interface update and CMOS clock write code
* 1995-08-13 Torsten Duwe
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
* 1999-01-16 Ulrich Windl
* Introduced error checking for many cases in adjtimex().
* Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
* (Even though the technical memorandum forbids it)
* 2004-07-14 Christoph Lameter
* Added getnstimeofday to allow the posix timer functions to return
* with nanosecond accuracy
*/
#include <linux/module.h>
#include <linux/timex.h>
#include <linux/capability.h>
#include <linux/clocksource.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
/*
* The timezone where the local system is located. Used as a default by some
* programs who obtain this value by using gettimeofday.
*/
struct timezone sys_tz;
EXPORT_SYMBOL(sys_tz);
#ifdef __ARCH_WANT_SYS_TIME
/*
* sys_time() can be implemented in user-level using
* sys_gettimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
asmlinkage long sys_time(time_t __user * tloc)
{
time_t i = get_seconds();
if (tloc) {
if (put_user(i,tloc))
i = -EFAULT;
}
return i;
}
/*
* sys_stime() can be implemented in user-level using
* sys_settimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
asmlinkage long sys_stime(time_t __user *tptr)
{
struct timespec tv;
int err;
if (get_user(tv.tv_sec, tptr))
return -EFAULT;
tv.tv_nsec = 0;
err = security_settime(&tv, NULL);
if (err)
return err;
do_settimeofday(&tv);
return 0;
}
#endif /* __ARCH_WANT_SYS_TIME */
asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
{
if (likely(tv != NULL)) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (copy_to_user(tv, &ktv, sizeof(ktv)))
return -EFAULT;
}
if (unlikely(tz != NULL)) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
/*
* Adjust the time obtained from the CMOS to be UTC time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* - TYT, 1992-01-01
*
* The best thing to do is to keep the CMOS clock in universal time (UTC)
* as real UNIX machines always do it. This avoids all headaches about
* daylight saving times and warping kernel clocks.
*/
static inline void warp_clock(void)
{
write_seqlock_irq(&xtime_lock);
wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
xtime.tv_sec += sys_tz.tz_minuteswest * 60;
update_xtime_cache(0);
write_sequnlock_irq(&xtime_lock);
clock_was_set();
}
/*
* In case for some reason the CMOS clock has not already been running
* in UTC, but in some local time: The first time we set the timezone,
* we will warp the clock so that it is ticking UTC time instead of
* local time. Presumably, if someone is setting the timezone then we
* are running in an environment where the programs understand about
* timezones. This should be done at boot time in the /etc/rc script,
* as soon as possible, so that the clock can be set right. Otherwise,
* various programs will get confused when the clock gets warped.
*/
int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
{
static int firsttime = 1;
int error = 0;
if (tv && !timespec_valid(tv))
return -EINVAL;
error = security_settime(tv, tz);
if (error)
return error;
if (tz) {
/* SMP safe, global irq locking makes it work. */
sys_tz = *tz;
update_vsyscall_tz();
if (firsttime) {
firsttime = 0;
if (!tv)
warp_clock();
}
}
if (tv)
{
/* SMP safe, again the code in arch/foo/time.c should
* globally block out interrupts when it runs.
*/
return do_settimeofday(tv);
}
return 0;
}
asmlinkage long sys_settimeofday(struct timeval __user *tv,
struct timezone __user *tz)
{
struct timeval user_tv;
struct timespec new_ts;
struct timezone new_tz;
if (tv) {
if (copy_from_user(&user_tv, tv, sizeof(*tv)))
return -EFAULT;
new_ts.tv_sec = user_tv.tv_sec;
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
}
if (tz) {
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
asmlinkage long sys_adjtimex(struct timex __user *txc_p)
{
struct timex txc; /* Local copy of parameter */
int ret;
/* Copy the user data space into the kernel copy
* structure. But bear in mind that the structures
* may change
*/
if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
return -EFAULT;
ret = do_adjtimex(&txc);
return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}
/**
* current_fs_time - Return FS time
* @sb: Superblock.
*
* Return the current time truncated to the time granularity supported by
* the fs.
*/
struct timespec current_fs_time(struct super_block *sb)
{
struct timespec now = current_kernel_time();
return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);
/*
* Convert jiffies to milliseconds and back.
*
* Avoid unnecessary multiplications/divisions in the
* two most common HZ cases:
*/
unsigned int inline jiffies_to_msecs(const unsigned long j)
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
return (j * MSEC_PER_SEC) / HZ;
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);
unsigned int inline jiffies_to_usecs(const unsigned long j)
{
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
return (USEC_PER_SEC / HZ) * j;
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
#else
return (j * USEC_PER_SEC) / HZ;
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);
/**
* timespec_trunc - Truncate timespec to a granularity
* @t: Timespec
* @gran: Granularity in ns.
*
* Truncate a timespec to a granularity. gran must be smaller than a second.
* Always rounds down.
*
* This function should be only used for timestamps returned by
* current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
* it doesn't handle the better resolution of the later.
*/
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
/*
* Division is pretty slow so avoid it for common cases.
* Currently current_kernel_time() never returns better than
* jiffies resolution. Exploit that.
*/
if (gran <= jiffies_to_usecs(1) * 1000) {
/* nothing */
} else if (gran == 1000000000) {
t.tv_nsec = 0;
} else {
t.tv_nsec -= t.tv_nsec % gran;
}
return t;
}
EXPORT_SYMBOL(timespec_trunc);
#ifndef CONFIG_GENERIC_TIME
/*
* Simulate gettimeofday using do_gettimeofday which only allows a timeval
* and therefore only yields usec accuracy
*/
void getnstimeofday(struct timespec *tv)
{
struct timeval x;
do_gettimeofday(&x);
tv->tv_sec = x.tv_sec;
tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
}
EXPORT_SYMBOL_GPL(getnstimeofday);
#endif
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
unsigned long
mktime(const unsigned int year0, const unsigned int mon0,
const unsigned int day, const unsigned int hour,
const unsigned int min, const unsigned int sec)
{
unsigned int mon = mon0, year = year0;
/* 1..12 -> 11,12,1..10 */
if (0 >= (int) (mon -= 2)) {
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return ((((unsigned long)
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
EXPORT_SYMBOL(mktime);
/**
* set_normalized_timespec - set timespec sec and nsec parts and normalize
*
* @ts: pointer to timespec variable to be set
* @sec: seconds to set
* @nsec: nanoseconds to set
*
* Set seconds and nanoseconds field of a timespec variable and
* normalize to the timespec storage format
*
* Note: The tv_nsec part is always in the range of
* 0 <= tv_nsec < NSEC_PER_SEC
* For negative values only the tv_sec field is negative !
*/
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
{
while (nsec >= NSEC_PER_SEC) {
nsec -= NSEC_PER_SEC;
++sec;
}
while (nsec < 0) {
nsec += NSEC_PER_SEC;
--sec;
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
/**
* ns_to_timespec - Convert nanoseconds to timespec
* @nsec: the nanoseconds value to be converted
*
* Returns the timespec representation of the nsec parameter.
*/
struct timespec ns_to_timespec(const s64 nsec)
{
struct timespec ts;
if (!nsec)
return (struct timespec) {0, 0};
ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
if (unlikely(nsec < 0))
set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
return ts;
}
EXPORT_SYMBOL(ns_to_timespec);
/**
* ns_to_timeval - Convert nanoseconds to timeval
* @nsec: the nanoseconds value to be converted
*
* Returns the timeval representation of the nsec parameter.
*/
struct timeval ns_to_timeval(const s64 nsec)
{
struct timespec ts = ns_to_timespec(nsec);
struct timeval tv;
tv.tv_sec = ts.tv_sec;
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
return tv;
}
EXPORT_SYMBOL(ns_to_timeval);
/*
* When we convert to jiffies then we interpret incoming values
* the following way:
*
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
*
* - 'too large' values [that would result in larger than
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
*
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor
*
* We must also be careful about 32-bit overflows.
*/
unsigned long msecs_to_jiffies(const unsigned int m)
{
/*
* Negative value, means infinite timeout:
*/
if ((int)m < 0)
return MAX_JIFFY_OFFSET;
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
/*
* HZ is equal to or smaller than 1000, and 1000 is a nice
* round multiple of HZ, divide with the factor between them,
* but round upwards:
*/
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
/*
* HZ is larger than 1000, and HZ is a nice round multiple of
* 1000 - simply multiply with the factor between them.
*
* But first make sure the multiplication result cannot
* overflow:
*/
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return m * (HZ / MSEC_PER_SEC);
#else
/*
* Generic case - multiply, round and divide. But first
* check that if we are doing a net multiplication, that
* we wouldnt overflow:
*/
if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
#endif
}
EXPORT_SYMBOL(msecs_to_jiffies);
unsigned long usecs_to_jiffies(const unsigned int u)
{
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
return u * (HZ / USEC_PER_SEC);
#else
return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
#endif
}
EXPORT_SYMBOL(usecs_to_jiffies);
/*
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
* that a remainder subtract here would not do the right thing as the
* resolution values don't fall on second boundries. I.e. the line:
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
*
* Rather, we just shift the bits off the right.
*
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
* value to a scaled second value.
*/
unsigned long
timespec_to_jiffies(const struct timespec *value)
{
unsigned long sec = value->tv_sec;
long nsec = value->tv_nsec + TICK_NSEC - 1;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
nsec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)nsec * NSEC_CONVERSION) >>
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
EXPORT_SYMBOL(timespec_to_jiffies);
void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
}
EXPORT_SYMBOL(jiffies_to_timespec);
/* Same for "timeval"
*
* Well, almost. The problem here is that the real system resolution is
* in nanoseconds and the value being converted is in micro seconds.
* Also for some machines (those that use HZ = 1024, in-particular),
* there is a LARGE error in the tick size in microseconds.
* The solution we use is to do the rounding AFTER we convert the
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
* Instruction wise, this should cost only an additional add with carry
* instruction above the way it was done above.
*/
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
unsigned long sec = value->tv_sec;
long usec = value->tv_usec;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
usec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
EXPORT_SYMBOL(timeval_to_jiffies);
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
long tv_usec;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
tv_usec /= NSEC_PER_USEC;
value->tv_usec = tv_usec;
}
EXPORT_SYMBOL(jiffies_to_timeval);
/*
* Convert jiffies/jiffies_64 to clock_t and back.
*/
clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
return x / (HZ / USER_HZ);
#else
u64 tmp = (u64)x * TICK_NSEC;
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
return (long)tmp;
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);
unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
if (x >= ~0UL / (HZ / USER_HZ))
return ~0UL;
return x * (HZ / USER_HZ);
#else
u64 jif;
/* Don't worry about loss of precision here .. */
if (x >= ~0UL / HZ * USER_HZ)
return ~0UL;
/* .. but do try to contain it here */
jif = x * (u64) HZ;
do_div(jif, USER_HZ);
return jif;
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);
u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
do_div(x, HZ / USER_HZ);
#else
/*
* There are better ways that don't overflow early,
* but even this doesn't overflow in hundreds of years
* in 64 bits, so..
*/
x *= TICK_NSEC;
do_div(x, (NSEC_PER_SEC / USER_HZ));
#endif
return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);
u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
do_div(x, (NSEC_PER_SEC / USER_HZ));
#elif (USER_HZ % 512) == 0
x *= USER_HZ/512;
do_div(x, (NSEC_PER_SEC / 512));
#else
/*
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
* overflow after 64.99 years.
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
*/
x *= 9;
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
USER_HZ));
#endif
return x;
}
#if (BITS_PER_LONG < 64)
u64 get_jiffies_64(void)
{
unsigned long seq;
u64 ret;
do {
seq = read_seqbegin(&xtime_lock);
ret = jiffies_64;
} while (read_seqretry(&xtime_lock, seq));
return ret;
}
EXPORT_SYMBOL(get_jiffies_64);
#endif
EXPORT_SYMBOL(jiffies);