kernel-fxtec-pro1x/arch/i386/kernel/cpu/amd.c
Andi Kleen 18bd057b14 [PATCH] i386/x86-64: Fix x87 information leak between processes
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE
when an exception is pending.  This means the value leak through
context switches and allow processes to observe some x87 instruction
state of other processes.

This was actually documented by AMD, but nobody recognized it as
being different from Intel before.

The fix first adds an optimization: instead of unconditionally
calling FNCLEX after each FXSAVE test if ES is pending and skip
it when not needed. Then do a x87 load from a kernel variable to
clear FOP/FIP/FDP.

This means other processes always will only see a constant value
defined by the kernel in their FP state.

I took some pain to make sure to chose a variable that's already
in L1 during context switch to make the overhead of this low.

Also alternative() is used to patch away the new code on CPUs
who don't need it.

Patch for both i386/x86-64.

The problem was discovered originally by Jan Beulich. Richard
Brunner provided the basic code for the workarounds, with contribution
from Jan.

This is CVE-2006-1056

Cc: richard.brunner@amd.com
Cc: jbeulich@novell.com

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-20 07:58:11 -07:00

292 lines
7.4 KiB
C

#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/processor.h>
#include "cpu.h"
/*
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
* misexecution of code under Linux. Owners of such processors should
* contact AMD for precise details and a CPU swap.
*
* See http://www.multimania.com/poulot/k6bug.html
* http://www.amd.com/K6/k6docs/revgd.html
*
* The following test is erm.. interesting. AMD neglected to up
* the chip setting when fixing the bug but they also tweaked some
* performance at the same time..
*/
extern void vide(void);
__asm__(".align 4\nvide: ret");
static void __init init_amd(struct cpuinfo_x86 *c)
{
u32 l, h;
int mbytes = num_physpages >> (20-PAGE_SHIFT);
int r;
#ifdef CONFIG_SMP
unsigned long long value;
/* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
if (c->x86 == 15) {
rdmsrl(MSR_K7_HWCR, value);
value |= 1 << 6;
wrmsrl(MSR_K7_HWCR, value);
}
#endif
/*
* FIXME: We should handle the K5 here. Set up the write
* range and also turn on MSR 83 bits 4 and 31 (write alloc,
* no bus pipeline)
*/
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
r = get_model_name(c);
switch(c->x86)
{
case 4:
/*
* General Systems BIOSen alias the cpu frequency registers
* of the Elan at 0x000df000. Unfortuantly, one of the Linux
* drivers subsequently pokes it, and changes the CPU speed.
* Workaround : Remove the unneeded alias.
*/
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
#define CBAR_ENB (0x80000000)
#define CBAR_KEY (0X000000CB)
if (c->x86_model==9 || c->x86_model == 10) {
if (inl (CBAR) & CBAR_ENB)
outl (0 | CBAR_KEY, CBAR);
}
break;
case 5:
if( c->x86_model < 6 )
{
/* Based on AMD doc 20734R - June 2000 */
if ( c->x86_model == 0 ) {
clear_bit(X86_FEATURE_APIC, c->x86_capability);
set_bit(X86_FEATURE_PGE, c->x86_capability);
}
break;
}
if ( c->x86_model == 6 && c->x86_mask == 1 ) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
unsigned long d, d2;
printk(KERN_INFO "AMD K6 stepping B detected - ");
/*
* It looks like AMD fixed the 2.6.2 bug and improved indirect
* calls at the same time.
*/
n = K6_BUG_LOOP;
f_vide = vide;
rdtscl(d);
while (n--)
f_vide();
rdtscl(d2);
d = d2-d;
/* Knock these two lines out if it debugs out ok */
printk(KERN_INFO "AMD K6 stepping B detected - ");
/* -- cut here -- */
if (d > 20*K6_BUG_LOOP)
printk("system stability may be impaired when more than 32 MB are used.\n");
else
printk("probably OK (after B9730xxxx).\n");
printk(KERN_INFO "Please see http://membres.lycos.fr/poulot/k6bug.html\n");
}
/* K6 with old style WHCR */
if (c->x86_model < 8 ||
(c->x86_model== 8 && c->x86_mask < 8)) {
/* We can only write allocate on the low 508Mb */
if(mbytes>508)
mbytes=508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF)==0) {
unsigned long flags;
l=(1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
break;
}
if ((c->x86_model == 8 && c->x86_mask >7) ||
c->x86_model == 9 || c->x86_model == 13) {
/* The more serious chips .. */
if(mbytes>4092)
mbytes=4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000)==0) {
unsigned long flags;
l=((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
/* Set MTRR capability flag if appropriate */
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_mask >= 8))
set_bit(X86_FEATURE_K6_MTRR, c->x86_capability);
break;
}
if (c->x86_model == 10) {
/* AMD Geode LX is model 10 */
/* placeholder for any needed mods */
break;
}
break;
case 6: /* An Athlon/Duron */
/* Bit 15 of Athlon specific MSR 15, needs to be 0
* to enable SSE on Palomino/Morgan/Barton CPU's.
* If the BIOS didn't enable it already, enable it here.
*/
if (c->x86_model >= 6 && c->x86_model <= 10) {
if (!cpu_has(c, X86_FEATURE_XMM)) {
printk(KERN_INFO "Enabling disabled K7/SSE Support.\n");
rdmsr(MSR_K7_HWCR, l, h);
l &= ~0x00008000;
wrmsr(MSR_K7_HWCR, l, h);
set_bit(X86_FEATURE_XMM, c->x86_capability);
}
}
/* It's been determined by AMD that Athlons since model 8 stepping 1
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
* As per AMD technical note 27212 0.2
*/
if ((c->x86_model == 8 && c->x86_mask>=1) || (c->x86_model > 8)) {
rdmsr(MSR_K7_CLK_CTL, l, h);
if ((l & 0xfff00000) != 0x20000000) {
printk ("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", l,
((l & 0x000fffff)|0x20000000));
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
}
}
break;
}
switch (c->x86) {
case 15:
set_bit(X86_FEATURE_K8, c->x86_capability);
break;
case 6:
set_bit(X86_FEATURE_K7, c->x86_capability);
break;
}
if (c->x86 >= 6)
set_bit(X86_FEATURE_FXSAVE_LEAK, c->x86_capability);
display_cacheinfo(c);
if (cpuid_eax(0x80000000) >= 0x80000008) {
c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
}
if (cpuid_eax(0x80000000) >= 0x80000007) {
c->x86_power = cpuid_edx(0x80000007);
if (c->x86_power & (1<<8))
set_bit(X86_FEATURE_CONSTANT_TSC, c->x86_capability);
}
#ifdef CONFIG_X86_HT
/*
* On a AMD dual core setup the lower bits of the APIC id
* distingush the cores. Assumes number of cores is a power
* of two.
*/
if (c->x86_max_cores > 1) {
int cpu = smp_processor_id();
unsigned bits = 0;
while ((1 << bits) < c->x86_max_cores)
bits++;
cpu_core_id[cpu] = phys_proc_id[cpu] & ((1<<bits)-1);
phys_proc_id[cpu] >>= bits;
printk(KERN_INFO "CPU %d(%d) -> Core %d\n",
cpu, c->x86_max_cores, cpu_core_id[cpu]);
}
#endif
}
static unsigned int amd_size_cache(struct cpuinfo_x86 * c, unsigned int size)
{
/* AMD errata T13 (order #21922) */
if ((c->x86 == 6)) {
if (c->x86_model == 3 && c->x86_mask == 0) /* Duron Rev A0 */
size = 64;
if (c->x86_model == 4 &&
(c->x86_mask==0 || c->x86_mask==1)) /* Tbird rev A1/A2 */
size = 256;
}
return size;
}
static struct cpu_dev amd_cpu_dev __initdata = {
.c_vendor = "AMD",
.c_ident = { "AuthenticAMD" },
.c_models = {
{ .vendor = X86_VENDOR_AMD, .family = 4, .model_names =
{
[3] = "486 DX/2",
[7] = "486 DX/2-WB",
[8] = "486 DX/4",
[9] = "486 DX/4-WB",
[14] = "Am5x86-WT",
[15] = "Am5x86-WB"
}
},
},
.c_init = init_amd,
.c_identify = generic_identify,
.c_size_cache = amd_size_cache,
};
int __init amd_init_cpu(void)
{
cpu_devs[X86_VENDOR_AMD] = &amd_cpu_dev;
return 0;
}
//early_arch_initcall(amd_init_cpu);
static int __init amd_exit_cpu(void)
{
cpu_devs[X86_VENDOR_AMD] = NULL;
return 0;
}
late_initcall(amd_exit_cpu);