kernel-fxtec-pro1x/include/linux/pagemap.h
Mel Gorman 2457aec637 mm: non-atomically mark page accessed during page cache allocation where possible
aops->write_begin may allocate a new page and make it visible only to have
mark_page_accessed called almost immediately after.  Once the page is
visible the atomic operations are necessary which is noticable overhead
when writing to an in-memory filesystem like tmpfs but should also be
noticable with fast storage.  The objective of the patch is to initialse
the accessed information with non-atomic operations before the page is
visible.

The bulk of filesystems directly or indirectly use
grab_cache_page_write_begin or find_or_create_page for the initial
allocation of a page cache page.  This patch adds an init_page_accessed()
helper which behaves like the first call to mark_page_accessed() but may
called before the page is visible and can be done non-atomically.

The primary APIs of concern in this care are the following and are used
by most filesystems.

	find_get_page
	find_lock_page
	find_or_create_page
	grab_cache_page_nowait
	grab_cache_page_write_begin

All of them are very similar in detail to the patch creates a core helper
pagecache_get_page() which takes a flags parameter that affects its
behavior such as whether the page should be marked accessed or not.  Then
old API is preserved but is basically a thin wrapper around this core
function.

Each of the filesystems are then updated to avoid calling
mark_page_accessed when it is known that the VM interfaces have already
done the job.  There is a slight snag in that the timing of the
mark_page_accessed() has now changed so in rare cases it's possible a page
gets to the end of the LRU as PageReferenced where as previously it might
have been repromoted.  This is expected to be rare but it's worth the
filesystem people thinking about it in case they see a problem with the
timing change.  It is also the case that some filesystems may be marking
pages accessed that previously did not but it makes sense that filesystems
have consistent behaviour in this regard.

The test case used to evaulate this is a simple dd of a large file done
multiple times with the file deleted on each iterations.  The size of the
file is 1/10th physical memory to avoid dirty page balancing.  In the
async case it will be possible that the workload completes without even
hitting the disk and will have variable results but highlight the impact
of mark_page_accessed for async IO.  The sync results are expected to be
more stable.  The exception is tmpfs where the normal case is for the "IO"
to not hit the disk.

The test machine was single socket and UMA to avoid any scheduling or NUMA
artifacts.  Throughput and wall times are presented for sync IO, only wall
times are shown for async as the granularity reported by dd and the
variability is unsuitable for comparison.  As async results were variable
do to writback timings, I'm only reporting the maximum figures.  The sync
results were stable enough to make the mean and stddev uninteresting.

The performance results are reported based on a run with no profiling.
Profile data is based on a separate run with oprofile running.

async dd
                                    3.15.0-rc3            3.15.0-rc3
                                       vanilla           accessed-v2
ext3    Max      elapsed     13.9900 (  0.00%)     11.5900 ( 17.16%)
tmpfs	Max      elapsed      0.5100 (  0.00%)      0.4900 (  3.92%)
btrfs   Max      elapsed     12.8100 (  0.00%)     12.7800 (  0.23%)
ext4	Max      elapsed     18.6000 (  0.00%)     13.3400 ( 28.28%)
xfs	Max      elapsed     12.5600 (  0.00%)      2.0900 ( 83.36%)

The XFS figure is a bit strange as it managed to avoid a worst case by
sheer luck but the average figures looked reasonable.

        samples percentage
ext3       86107    0.9783  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
ext3       23833    0.2710  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext3        5036    0.0573  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
ext4       64566    0.8961  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
ext4        5322    0.0713  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext4        2869    0.0384  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs        62126    1.7675  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
xfs         1904    0.0554  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs          103    0.0030  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
btrfs      10655    0.1338  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
btrfs       2020    0.0273  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
btrfs        587    0.0079  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
tmpfs      59562    3.2628  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
tmpfs       1210    0.0696  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
tmpfs         94    0.0054  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed

[akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:10 -07:00

667 lines
19 KiB
C

#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H
/*
* Copyright 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>
/*
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
* allocation mode flags.
*/
enum mapping_flags {
AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
AS_EXITING = __GFP_BITS_SHIFT + 5, /* final truncate in progress */
};
static inline void mapping_set_error(struct address_space *mapping, int error)
{
if (unlikely(error)) {
if (error == -ENOSPC)
set_bit(AS_ENOSPC, &mapping->flags);
else
set_bit(AS_EIO, &mapping->flags);
}
}
static inline void mapping_set_unevictable(struct address_space *mapping)
{
set_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_clear_unevictable(struct address_space *mapping)
{
clear_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline int mapping_unevictable(struct address_space *mapping)
{
if (mapping)
return test_bit(AS_UNEVICTABLE, &mapping->flags);
return !!mapping;
}
static inline void mapping_set_balloon(struct address_space *mapping)
{
set_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline void mapping_clear_balloon(struct address_space *mapping)
{
clear_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline int mapping_balloon(struct address_space *mapping)
{
return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline void mapping_set_exiting(struct address_space *mapping)
{
set_bit(AS_EXITING, &mapping->flags);
}
static inline int mapping_exiting(struct address_space *mapping)
{
return test_bit(AS_EXITING, &mapping->flags);
}
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
{
return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
}
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
*/
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
{
m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
(__force unsigned long)mask;
}
/*
* The page cache can done in larger chunks than
* one page, because it allows for more efficient
* throughput (it can then be mapped into user
* space in smaller chunks for same flexibility).
*
* Or rather, it _will_ be done in larger chunks.
*/
#define PAGE_CACHE_SHIFT PAGE_SHIFT
#define PAGE_CACHE_SIZE PAGE_SIZE
#define PAGE_CACHE_MASK PAGE_MASK
#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
#define page_cache_get(page) get_page(page)
#define page_cache_release(page) put_page(page)
void release_pages(struct page **pages, int nr, bool cold);
/*
* speculatively take a reference to a page.
* If the page is free (_count == 0), then _count is untouched, and 0
* is returned. Otherwise, _count is incremented by 1 and 1 is returned.
*
* This function must be called inside the same rcu_read_lock() section as has
* been used to lookup the page in the pagecache radix-tree (or page table):
* this allows allocators to use a synchronize_rcu() to stabilize _count.
*
* Unless an RCU grace period has passed, the count of all pages coming out
* of the allocator must be considered unstable. page_count may return higher
* than expected, and put_page must be able to do the right thing when the
* page has been finished with, no matter what it is subsequently allocated
* for (because put_page is what is used here to drop an invalid speculative
* reference).
*
* This is the interesting part of the lockless pagecache (and lockless
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
* has the following pattern:
* 1. find page in radix tree
* 2. conditionally increment refcount
* 3. check the page is still in pagecache (if no, goto 1)
*
* Remove-side that cares about stability of _count (eg. reclaim) has the
* following (with tree_lock held for write):
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
* B. remove page from pagecache
* C. free the page
*
* There are 2 critical interleavings that matter:
* - 2 runs before A: in this case, A sees elevated refcount and bails out
* - A runs before 2: in this case, 2 sees zero refcount and retries;
* subsequently, B will complete and 1 will find no page, causing the
* lookup to return NULL.
*
* It is possible that between 1 and 2, the page is removed then the exact same
* page is inserted into the same position in pagecache. That's OK: the
* old find_get_page using tree_lock could equally have run before or after
* such a re-insertion, depending on order that locks are granted.
*
* Lookups racing against pagecache insertion isn't a big problem: either 1
* will find the page or it will not. Likewise, the old find_get_page could run
* either before the insertion or afterwards, depending on timing.
*/
static inline int page_cache_get_speculative(struct page *page)
{
VM_BUG_ON(in_interrupt());
#ifdef CONFIG_TINY_RCU
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic());
# endif
/*
* Preempt must be disabled here - we rely on rcu_read_lock doing
* this for us.
*
* Pagecache won't be truncated from interrupt context, so if we have
* found a page in the radix tree here, we have pinned its refcount by
* disabling preempt, and hence no need for the "speculative get" that
* SMP requires.
*/
VM_BUG_ON_PAGE(page_count(page) == 0, page);
atomic_inc(&page->_count);
#else
if (unlikely(!get_page_unless_zero(page))) {
/*
* Either the page has been freed, or will be freed.
* In either case, retry here and the caller should
* do the right thing (see comments above).
*/
return 0;
}
#endif
VM_BUG_ON_PAGE(PageTail(page), page);
return 1;
}
/*
* Same as above, but add instead of inc (could just be merged)
*/
static inline int page_cache_add_speculative(struct page *page, int count)
{
VM_BUG_ON(in_interrupt());
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic());
# endif
VM_BUG_ON_PAGE(page_count(page) == 0, page);
atomic_add(count, &page->_count);
#else
if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
return 0;
#endif
VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
return 1;
}
static inline int page_freeze_refs(struct page *page, int count)
{
return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
}
static inline void page_unfreeze_refs(struct page *page, int count)
{
VM_BUG_ON_PAGE(page_count(page) != 0, page);
VM_BUG_ON(count == 0);
atomic_set(&page->_count, count);
}
#ifdef CONFIG_NUMA
extern struct page *__page_cache_alloc(gfp_t gfp);
#else
static inline struct page *__page_cache_alloc(gfp_t gfp)
{
return alloc_pages(gfp, 0);
}
#endif
static inline struct page *page_cache_alloc(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x));
}
static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
}
static inline struct page *page_cache_alloc_readahead(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x) |
__GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
}
typedef int filler_t(void *, struct page *);
pgoff_t page_cache_next_hole(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
pgoff_t page_cache_prev_hole(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
#define FGP_ACCESSED 0x00000001
#define FGP_LOCK 0x00000002
#define FGP_CREAT 0x00000004
#define FGP_WRITE 0x00000008
#define FGP_NOFS 0x00000010
#define FGP_NOWAIT 0x00000020
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask);
/**
* find_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned with an increased refcount.
*
* Otherwise, %NULL is returned.
*/
static inline struct page *find_get_page(struct address_space *mapping,
pgoff_t offset)
{
return pagecache_get_page(mapping, offset, 0, 0, 0);
}
static inline struct page *find_get_page_flags(struct address_space *mapping,
pgoff_t offset, int fgp_flags)
{
return pagecache_get_page(mapping, offset, fgp_flags, 0, 0);
}
/**
* find_lock_page - locate, pin and lock a pagecache page
* pagecache_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* Otherwise, %NULL is returned.
*
* find_lock_page() may sleep.
*/
static inline struct page *find_lock_page(struct address_space *mapping,
pgoff_t offset)
{
return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0);
}
/**
* find_or_create_page - locate or add a pagecache page
* @mapping: the page's address_space
* @index: the page's index into the mapping
* @gfp_mask: page allocation mode
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* If the page is not present, a new page is allocated using @gfp_mask
* and added to the page cache and the VM's LRU list. The page is
* returned locked and with an increased refcount.
*
* On memory exhaustion, %NULL is returned.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an
* atomic allocation!
*/
static inline struct page *find_or_create_page(struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
return pagecache_get_page(mapping, offset,
FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
gfp_mask, gfp_mask & GFP_RECLAIM_MASK);
}
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
* @mapping: target address_space
* @index: the page index
*
* Same as grab_cache_page(), but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
* and deadlock against the caller's locked page.
*/
static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
pgoff_t index)
{
return pagecache_get_page(mapping, index,
FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
mapping_gfp_mask(mapping),
GFP_NOFS);
}
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
unsigned int nr_entries, struct page **entries,
pgoff_t *indices);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages);
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags);
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
static inline struct page *grab_cache_page(struct address_space *mapping,
pgoff_t index)
{
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}
extern struct page * read_cache_page(struct address_space *mapping,
pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern int read_cache_pages(struct address_space *mapping,
struct list_head *pages, filler_t *filler, void *data);
static inline struct page *read_mapping_page(struct address_space *mapping,
pgoff_t index, void *data)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
return read_cache_page(mapping, index, filler, data);
}
/*
* Return byte-offset into filesystem object for page.
*/
static inline loff_t page_offset(struct page *page)
{
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}
static inline loff_t page_file_offset(struct page *page)
{
return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
}
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address);
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
pgoff_t pgoff;
if (unlikely(is_vm_hugetlb_page(vma)))
return linear_hugepage_index(vma, address);
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}
extern void __lock_page(struct page *page);
extern int __lock_page_killable(struct page *page);
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags);
extern void unlock_page(struct page *page);
static inline void __set_page_locked(struct page *page)
{
__set_bit(PG_locked, &page->flags);
}
static inline void __clear_page_locked(struct page *page)
{
__clear_bit(PG_locked, &page->flags);
}
static inline int trylock_page(struct page *page)
{
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
}
/*
* lock_page may only be called if we have the page's inode pinned.
*/
static inline void lock_page(struct page *page)
{
might_sleep();
if (!trylock_page(page))
__lock_page(page);
}
/*
* lock_page_killable is like lock_page but can be interrupted by fatal
* signals. It returns 0 if it locked the page and -EINTR if it was
* killed while waiting.
*/
static inline int lock_page_killable(struct page *page)
{
might_sleep();
if (!trylock_page(page))
return __lock_page_killable(page);
return 0;
}
/*
* lock_page_or_retry - Lock the page, unless this would block and the
* caller indicated that it can handle a retry.
*/
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
might_sleep();
return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
}
/*
* This is exported only for wait_on_page_locked/wait_on_page_writeback.
* Never use this directly!
*/
extern void wait_on_page_bit(struct page *page, int bit_nr);
extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
static inline int wait_on_page_locked_killable(struct page *page)
{
if (PageLocked(page))
return wait_on_page_bit_killable(page, PG_locked);
return 0;
}
/*
* Wait for a page to be unlocked.
*
* This must be called with the caller "holding" the page,
* ie with increased "page->count" so that the page won't
* go away during the wait..
*/
static inline void wait_on_page_locked(struct page *page)
{
if (PageLocked(page))
wait_on_page_bit(page, PG_locked);
}
/*
* Wait for a page to complete writeback
*/
static inline void wait_on_page_writeback(struct page *page)
{
if (PageWriteback(page))
wait_on_page_bit(page, PG_writeback);
}
extern void end_page_writeback(struct page *page);
void wait_for_stable_page(struct page *page);
void page_endio(struct page *page, int rw, int err);
/*
* Add an arbitrary waiter to a page's wait queue
*/
extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
/*
* Fault a userspace page into pagetables. Return non-zero on a fault.
*
* This assumes that two userspace pages are always sufficient. That's
* not true if PAGE_CACHE_SIZE > PAGE_SIZE.
*/
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
int ret;
if (unlikely(size == 0))
return 0;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
ret = __put_user(0, uaddr);
if (ret == 0) {
char __user *end = uaddr + size - 1;
/*
* If the page was already mapped, this will get a cache miss
* for sure, so try to avoid doing it.
*/
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
}
return ret;
}
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
{
volatile char c;
int ret;
if (unlikely(size == 0))
return 0;
ret = __get_user(c, uaddr);
if (ret == 0) {
const char __user *end = uaddr + size - 1;
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
}
return ret;
}
/*
* Multipage variants of the above prefault helpers, useful if more than
* PAGE_SIZE of data needs to be prefaulted. These are separate from the above
* functions (which only handle up to PAGE_SIZE) to avoid clobbering the
* filemap.c hotpaths.
*/
static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
{
int ret = 0;
char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
while (uaddr <= end) {
ret = __put_user(0, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
return ret;
}
static inline int fault_in_multipages_readable(const char __user *uaddr,
int size)
{
volatile char c;
int ret = 0;
const char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
while (uaddr <= end) {
ret = __get_user(c, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
return ret;
}
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern void delete_from_page_cache(struct page *page);
extern void __delete_from_page_cache(struct page *page, void *shadow);
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
/*
* Like add_to_page_cache_locked, but used to add newly allocated pages:
* the page is new, so we can just run __set_page_locked() against it.
*/
static inline int add_to_page_cache(struct page *page,
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
{
int error;
__set_page_locked(page);
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
if (unlikely(error))
__clear_page_locked(page);
return error;
}
#endif /* _LINUX_PAGEMAP_H */