kernel-fxtec-pro1x/arch/sparc64/kernel/sbus.c
David S. Miller ee29074d3b [SPARC64]: Fix new context version SMP handling.
Don't piggy back the SMP receive signal code to do the
context version change handling.

Instead allocate another fixed PIL number for this
asynchronous cross-call.  We can't use smp_call_function()
because this thing is invoked with interrupts disabled
and a few spinlocks held.

Also, fix smp_call_function_mask() to count "cpus" correctly.
There is no guarentee that the local cpu is in the mask
yet that is exactly what this code was assuming.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:14:21 -08:00

1266 lines
35 KiB
C

/* $Id: sbus.c,v 1.19 2002/01/23 11:27:32 davem Exp $
* sbus.c: UltraSparc SBUS controller support.
*
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <asm/page.h>
#include <asm/sbus.h>
#include <asm/io.h>
#include <asm/upa.h>
#include <asm/cache.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/starfire.h>
#include "iommu_common.h"
/* These should be allocated on an SMP_CACHE_BYTES
* aligned boundary for optimal performance.
*
* On SYSIO, using an 8K page size we have 1GB of SBUS
* DMA space mapped. We divide this space into equally
* sized clusters. We allocate a DMA mapping from the
* cluster that matches the order of the allocation, or
* if the order is greater than the number of clusters,
* we try to allocate from the last cluster.
*/
#define NCLUSTERS 8UL
#define ONE_GIG (1UL * 1024UL * 1024UL * 1024UL)
#define CLUSTER_SIZE (ONE_GIG / NCLUSTERS)
#define CLUSTER_MASK (CLUSTER_SIZE - 1)
#define CLUSTER_NPAGES (CLUSTER_SIZE >> IO_PAGE_SHIFT)
#define MAP_BASE ((u32)0xc0000000)
struct sbus_iommu {
/*0x00*/spinlock_t lock;
/*0x08*/iopte_t *page_table;
/*0x10*/unsigned long strbuf_regs;
/*0x18*/unsigned long iommu_regs;
/*0x20*/unsigned long sbus_control_reg;
/*0x28*/volatile unsigned long strbuf_flushflag;
/* If NCLUSTERS is ever decresed to 4 or lower,
* you must increase the size of the type of
* these counters. You have been duly warned. -DaveM
*/
/*0x30*/struct {
u16 next;
u16 flush;
} alloc_info[NCLUSTERS];
/* The lowest used consistent mapping entry. Since
* we allocate consistent maps out of cluster 0 this
* is relative to the beginning of closter 0.
*/
/*0x50*/u32 lowest_consistent_map;
};
/* Offsets from iommu_regs */
#define SYSIO_IOMMUREG_BASE 0x2400UL
#define IOMMU_CONTROL (0x2400UL - 0x2400UL) /* IOMMU control register */
#define IOMMU_TSBBASE (0x2408UL - 0x2400UL) /* TSB base address register */
#define IOMMU_FLUSH (0x2410UL - 0x2400UL) /* IOMMU flush register */
#define IOMMU_VADIAG (0x4400UL - 0x2400UL) /* SBUS virtual address diagnostic */
#define IOMMU_TAGCMP (0x4408UL - 0x2400UL) /* TLB tag compare diagnostics */
#define IOMMU_LRUDIAG (0x4500UL - 0x2400UL) /* IOMMU LRU queue diagnostics */
#define IOMMU_TAGDIAG (0x4580UL - 0x2400UL) /* TLB tag diagnostics */
#define IOMMU_DRAMDIAG (0x4600UL - 0x2400UL) /* TLB data RAM diagnostics */
#define IOMMU_DRAM_VALID (1UL << 30UL)
static void __iommu_flushall(struct sbus_iommu *iommu)
{
unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG;
int entry;
for (entry = 0; entry < 16; entry++) {
upa_writeq(0, tag);
tag += 8UL;
}
upa_readq(iommu->sbus_control_reg);
for (entry = 0; entry < NCLUSTERS; entry++) {
iommu->alloc_info[entry].flush =
iommu->alloc_info[entry].next;
}
}
static void iommu_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
while (npages--)
upa_writeq(base + (npages << IO_PAGE_SHIFT),
iommu->iommu_regs + IOMMU_FLUSH);
upa_readq(iommu->sbus_control_reg);
}
/* Offsets from strbuf_regs */
#define SYSIO_STRBUFREG_BASE 0x2800UL
#define STRBUF_CONTROL (0x2800UL - 0x2800UL) /* Control */
#define STRBUF_PFLUSH (0x2808UL - 0x2800UL) /* Page flush/invalidate */
#define STRBUF_FSYNC (0x2810UL - 0x2800UL) /* Flush synchronization */
#define STRBUF_DRAMDIAG (0x5000UL - 0x2800UL) /* data RAM diagnostic */
#define STRBUF_ERRDIAG (0x5400UL - 0x2800UL) /* error status diagnostics */
#define STRBUF_PTAGDIAG (0x5800UL - 0x2800UL) /* Page tag diagnostics */
#define STRBUF_LTAGDIAG (0x5900UL - 0x2800UL) /* Line tag diagnostics */
#define STRBUF_TAG_VALID 0x02UL
static void sbus_strbuf_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages, int direction)
{
unsigned long n;
int limit;
n = npages;
while (n--)
upa_writeq(base + (n << IO_PAGE_SHIFT),
iommu->strbuf_regs + STRBUF_PFLUSH);
/* If the device could not have possibly put dirty data into
* the streaming cache, no flush-flag synchronization needs
* to be performed.
*/
if (direction == SBUS_DMA_TODEVICE)
return;
iommu->strbuf_flushflag = 0UL;
/* Whoopee cushion! */
upa_writeq(__pa(&iommu->strbuf_flushflag),
iommu->strbuf_regs + STRBUF_FSYNC);
upa_readq(iommu->sbus_control_reg);
limit = 100000;
while (iommu->strbuf_flushflag == 0UL) {
limit--;
if (!limit)
break;
udelay(1);
rmb();
}
if (!limit)
printk(KERN_WARNING "sbus_strbuf_flush: flushflag timeout "
"vaddr[%08x] npages[%ld]\n",
base, npages);
}
static iopte_t *alloc_streaming_cluster(struct sbus_iommu *iommu, unsigned long npages)
{
iopte_t *iopte, *limit, *first, *cluster;
unsigned long cnum, ent, nent, flush_point, found;
cnum = 0;
nent = 1;
while ((1UL << cnum) < npages)
cnum++;
if(cnum >= NCLUSTERS) {
nent = 1UL << (cnum - NCLUSTERS);
cnum = NCLUSTERS - 1;
}
iopte = iommu->page_table + (cnum * CLUSTER_NPAGES);
if (cnum == 0)
limit = (iommu->page_table +
iommu->lowest_consistent_map);
else
limit = (iopte + CLUSTER_NPAGES);
iopte += ((ent = iommu->alloc_info[cnum].next) << cnum);
flush_point = iommu->alloc_info[cnum].flush;
first = iopte;
cluster = NULL;
found = 0;
for (;;) {
if (iopte_val(*iopte) == 0UL) {
found++;
if (!cluster)
cluster = iopte;
} else {
/* Used cluster in the way */
cluster = NULL;
found = 0;
}
if (found == nent)
break;
iopte += (1 << cnum);
ent++;
if (iopte >= limit) {
iopte = (iommu->page_table + (cnum * CLUSTER_NPAGES));
ent = 0;
/* Multiple cluster allocations must not wrap */
cluster = NULL;
found = 0;
}
if (ent == flush_point)
__iommu_flushall(iommu);
if (iopte == first)
goto bad;
}
/* ent/iopte points to the last cluster entry we're going to use,
* so save our place for the next allocation.
*/
if ((iopte + (1 << cnum)) >= limit)
ent = 0;
else
ent = ent + 1;
iommu->alloc_info[cnum].next = ent;
if (ent == flush_point)
__iommu_flushall(iommu);
/* I've got your streaming cluster right here buddy boy... */
return cluster;
bad:
printk(KERN_EMERG "sbus: alloc_streaming_cluster of npages(%ld) failed!\n",
npages);
return NULL;
}
static void free_streaming_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
unsigned long cnum, ent, nent;
iopte_t *iopte;
cnum = 0;
nent = 1;
while ((1UL << cnum) < npages)
cnum++;
if(cnum >= NCLUSTERS) {
nent = 1UL << (cnum - NCLUSTERS);
cnum = NCLUSTERS - 1;
}
ent = (base & CLUSTER_MASK) >> (IO_PAGE_SHIFT + cnum);
iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT);
do {
iopte_val(*iopte) = 0UL;
iopte += 1 << cnum;
} while(--nent);
/* If the global flush might not have caught this entry,
* adjust the flush point such that we will flush before
* ever trying to reuse it.
*/
#define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y)))
if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush))
iommu->alloc_info[cnum].flush = ent;
#undef between
}
/* We allocate consistent mappings from the end of cluster zero. */
static iopte_t *alloc_consistent_cluster(struct sbus_iommu *iommu, unsigned long npages)
{
iopte_t *iopte;
iopte = iommu->page_table + (1 * CLUSTER_NPAGES);
while (iopte > iommu->page_table) {
iopte--;
if (!(iopte_val(*iopte) & IOPTE_VALID)) {
unsigned long tmp = npages;
while (--tmp) {
iopte--;
if (iopte_val(*iopte) & IOPTE_VALID)
break;
}
if (tmp == 0) {
u32 entry = (iopte - iommu->page_table);
if (entry < iommu->lowest_consistent_map)
iommu->lowest_consistent_map = entry;
return iopte;
}
}
}
return NULL;
}
static void free_consistent_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
iopte_t *iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT);
if ((iopte - iommu->page_table) == iommu->lowest_consistent_map) {
iopte_t *walk = iopte + npages;
iopte_t *limit;
limit = iommu->page_table + CLUSTER_NPAGES;
while (walk < limit) {
if (iopte_val(*walk) != 0UL)
break;
walk++;
}
iommu->lowest_consistent_map =
(walk - iommu->page_table);
}
while (npages--)
*iopte++ = __iopte(0UL);
}
void *sbus_alloc_consistent(struct sbus_dev *sdev, size_t size, dma_addr_t *dvma_addr)
{
unsigned long order, first_page, flags;
struct sbus_iommu *iommu;
iopte_t *iopte;
void *ret;
int npages;
if (size <= 0 || sdev == NULL || dvma_addr == NULL)
return NULL;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= 10)
return NULL;
first_page = __get_free_pages(GFP_KERNEL|__GFP_COMP, order);
if (first_page == 0UL)
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = sdev->bus->iommu;
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT);
if (iopte == NULL) {
spin_unlock_irqrestore(&iommu->lock, flags);
free_pages(first_page, order);
return NULL;
}
/* Ok, we're committed at this point. */
*dvma_addr = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
ret = (void *) first_page;
npages = size >> IO_PAGE_SHIFT;
while (npages--) {
*iopte++ = __iopte(IOPTE_VALID | IOPTE_CACHE | IOPTE_WRITE |
(__pa(first_page) & IOPTE_PAGE));
first_page += IO_PAGE_SIZE;
}
iommu_flush(iommu, *dvma_addr, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
void sbus_free_consistent(struct sbus_dev *sdev, size_t size, void *cpu, dma_addr_t dvma)
{
unsigned long order, npages;
struct sbus_iommu *iommu;
if (size <= 0 || sdev == NULL || cpu == NULL)
return;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = sdev->bus->iommu;
spin_lock_irq(&iommu->lock);
free_consistent_cluster(iommu, dvma, npages);
iommu_flush(iommu, dvma, npages);
spin_unlock_irq(&iommu->lock);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *ptr, size_t size, int dir)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long npages, pbase, flags;
iopte_t *iopte;
u32 dma_base, offset;
unsigned long iopte_bits;
if (dir == SBUS_DMA_NONE)
BUG();
pbase = (unsigned long) ptr;
offset = (u32) (pbase & ~IO_PAGE_MASK);
size = (IO_PAGE_ALIGN(pbase + size) - (pbase & IO_PAGE_MASK));
pbase = (unsigned long) __pa(pbase & IO_PAGE_MASK);
spin_lock_irqsave(&iommu->lock, flags);
npages = size >> IO_PAGE_SHIFT;
iopte = alloc_streaming_cluster(iommu, npages);
if (iopte == NULL)
goto bad;
dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
npages = size >> IO_PAGE_SHIFT;
iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE;
if (dir != SBUS_DMA_TODEVICE)
iopte_bits |= IOPTE_WRITE;
while (npages--) {
*iopte++ = __iopte(iopte_bits | (pbase & IOPTE_PAGE));
pbase += IO_PAGE_SIZE;
}
npages = size >> IO_PAGE_SHIFT;
spin_unlock_irqrestore(&iommu->lock, flags);
return (dma_base | offset);
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
BUG();
return 0;
}
void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t dma_addr, size_t size, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
u32 dma_base = dma_addr & IO_PAGE_MASK;
unsigned long flags;
size = (IO_PAGE_ALIGN(dma_addr + size) - dma_base);
spin_lock_irqsave(&iommu->lock, flags);
free_streaming_cluster(iommu, dma_base, size >> IO_PAGE_SHIFT);
sbus_strbuf_flush(iommu, dma_base, size >> IO_PAGE_SHIFT, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nused, int nelems, unsigned long iopte_bits)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg + nelems;
int i;
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = (unsigned long) SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg++;
}
pteval = ((pteval & IOPTE_PAGE) | iopte_bits);
while (len > 0) {
*iopte++ = __iopte(pteval);
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg++;
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg < sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg++;
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg++;
}
}
int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int dir)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags, npages;
iopte_t *iopte;
u32 dma_base;
struct scatterlist *sgtmp;
int used;
unsigned long iopte_bits;
if (dir == SBUS_DMA_NONE)
BUG();
/* Fast path single entry scatterlists. */
if (nents == 1) {
sg->dma_address =
sbus_map_single(sdev,
(page_address(sg->page) + sg->offset),
sg->length, dir);
sg->dma_length = sg->length;
return 1;
}
npages = prepare_sg(sg, nents);
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_streaming_cluster(iommu, npages);
if (iopte == NULL)
goto bad;
dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
/* Normalize DVMA addresses. */
sgtmp = sg;
used = nents;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp++;
used--;
}
used = nents - used;
iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE;
if (dir != SBUS_DMA_TODEVICE)
iopte_bits |= IOPTE_WRITE;
fill_sg(iopte, sg, used, nents, iopte_bits);
#ifdef VERIFY_SG
verify_sglist(sg, nents, iopte, npages);
#endif
spin_unlock_irqrestore(&iommu->lock, flags);
return used;
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
BUG();
return 0;
}
void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
unsigned long size, flags;
struct sbus_iommu *iommu;
u32 dvma_base;
int i;
/* Fast path single entry scatterlists. */
if (nents == 1) {
sbus_unmap_single(sdev, sg->dma_address, sg->dma_length, direction);
return;
}
dvma_base = sg[0].dma_address & IO_PAGE_MASK;
for (i = 0; i < nents; i++) {
if (sg[i].dma_length == 0)
break;
}
i--;
size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - dvma_base;
iommu = sdev->bus->iommu;
spin_lock_irqsave(&iommu->lock, flags);
free_streaming_cluster(iommu, dvma_base, size >> IO_PAGE_SHIFT);
sbus_strbuf_flush(iommu, dvma_base, size >> IO_PAGE_SHIFT, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags;
size = (IO_PAGE_ALIGN(base + size) - (base & IO_PAGE_MASK));
spin_lock_irqsave(&iommu->lock, flags);
sbus_strbuf_flush(iommu, base & IO_PAGE_MASK, size >> IO_PAGE_SHIFT, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction)
{
}
void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags, size;
u32 base;
int i;
base = sg[0].dma_address & IO_PAGE_MASK;
for (i = 0; i < nents; i++) {
if (sg[i].dma_length == 0)
break;
}
i--;
size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - base;
spin_lock_irqsave(&iommu->lock, flags);
sbus_strbuf_flush(iommu, base, size >> IO_PAGE_SHIFT, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
}
/* Enable 64-bit DVMA mode for the given device. */
void sbus_set_sbus64(struct sbus_dev *sdev, int bursts)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
int slot = sdev->slot;
unsigned long cfg_reg;
u64 val;
cfg_reg = iommu->sbus_control_reg;
switch (slot) {
case 0:
cfg_reg += 0x20UL;
break;
case 1:
cfg_reg += 0x28UL;
break;
case 2:
cfg_reg += 0x30UL;
break;
case 3:
cfg_reg += 0x38UL;
break;
case 13:
cfg_reg += 0x40UL;
break;
case 14:
cfg_reg += 0x48UL;
break;
case 15:
cfg_reg += 0x50UL;
break;
default:
return;
};
val = upa_readq(cfg_reg);
if (val & (1UL << 14UL)) {
/* Extended transfer mode already enabled. */
return;
}
val |= (1UL << 14UL);
if (bursts & DMA_BURST8)
val |= (1UL << 1UL);
if (bursts & DMA_BURST16)
val |= (1UL << 2UL);
if (bursts & DMA_BURST32)
val |= (1UL << 3UL);
if (bursts & DMA_BURST64)
val |= (1UL << 4UL);
upa_writeq(val, cfg_reg);
}
/* SBUS SYSIO INO number to Sparc PIL level. */
static unsigned char sysio_ino_to_pil[] = {
0, 5, 5, 7, 5, 7, 8, 9, /* SBUS slot 0 */
0, 5, 5, 7, 5, 7, 8, 9, /* SBUS slot 1 */
0, 5, 5, 7, 5, 7, 8, 9, /* SBUS slot 2 */
0, 5, 5, 7, 5, 7, 8, 9, /* SBUS slot 3 */
5, /* Onboard SCSI */
5, /* Onboard Ethernet */
/*XXX*/ 8, /* Onboard BPP */
0, /* Bogon */
13, /* Audio */
/*XXX*/15, /* PowerFail */
0, /* Bogon */
0, /* Bogon */
12, /* Zilog Serial Channels (incl. Keyboard/Mouse lines) */
11, /* Floppy */
0, /* Spare Hardware (bogon for now) */
0, /* Keyboard (bogon for now) */
0, /* Mouse (bogon for now) */
0, /* Serial (bogon for now) */
0, 0, /* Bogon, Bogon */
10, /* Timer 0 */
11, /* Timer 1 */
0, 0, /* Bogon, Bogon */
15, /* Uncorrectable SBUS Error */
15, /* Correctable SBUS Error */
15, /* SBUS Error */
/*XXX*/ 0, /* Power Management (bogon for now) */
};
/* INO number to IMAP register offset for SYSIO external IRQ's.
* This should conform to both Sunfire/Wildfire server and Fusion
* desktop designs.
*/
#define SYSIO_IMAP_SLOT0 0x2c04UL
#define SYSIO_IMAP_SLOT1 0x2c0cUL
#define SYSIO_IMAP_SLOT2 0x2c14UL
#define SYSIO_IMAP_SLOT3 0x2c1cUL
#define SYSIO_IMAP_SCSI 0x3004UL
#define SYSIO_IMAP_ETH 0x300cUL
#define SYSIO_IMAP_BPP 0x3014UL
#define SYSIO_IMAP_AUDIO 0x301cUL
#define SYSIO_IMAP_PFAIL 0x3024UL
#define SYSIO_IMAP_KMS 0x302cUL
#define SYSIO_IMAP_FLPY 0x3034UL
#define SYSIO_IMAP_SHW 0x303cUL
#define SYSIO_IMAP_KBD 0x3044UL
#define SYSIO_IMAP_MS 0x304cUL
#define SYSIO_IMAP_SER 0x3054UL
#define SYSIO_IMAP_TIM0 0x3064UL
#define SYSIO_IMAP_TIM1 0x306cUL
#define SYSIO_IMAP_UE 0x3074UL
#define SYSIO_IMAP_CE 0x307cUL
#define SYSIO_IMAP_SBERR 0x3084UL
#define SYSIO_IMAP_PMGMT 0x308cUL
#define SYSIO_IMAP_GFX 0x3094UL
#define SYSIO_IMAP_EUPA 0x309cUL
#define bogon ((unsigned long) -1)
static unsigned long sysio_irq_offsets[] = {
/* SBUS Slot 0 --> 3, level 1 --> 7 */
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
/* Onboard devices (not relevant/used on SunFire). */
SYSIO_IMAP_SCSI,
SYSIO_IMAP_ETH,
SYSIO_IMAP_BPP,
bogon,
SYSIO_IMAP_AUDIO,
SYSIO_IMAP_PFAIL,
bogon,
bogon,
SYSIO_IMAP_KMS,
SYSIO_IMAP_FLPY,
SYSIO_IMAP_SHW,
SYSIO_IMAP_KBD,
SYSIO_IMAP_MS,
SYSIO_IMAP_SER,
bogon,
bogon,
SYSIO_IMAP_TIM0,
SYSIO_IMAP_TIM1,
bogon,
bogon,
SYSIO_IMAP_UE,
SYSIO_IMAP_CE,
SYSIO_IMAP_SBERR,
SYSIO_IMAP_PMGMT,
};
#undef bogon
#define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
/* Convert Interrupt Mapping register pointer to associated
* Interrupt Clear register pointer, SYSIO specific version.
*/
#define SYSIO_ICLR_UNUSED0 0x3400UL
#define SYSIO_ICLR_SLOT0 0x340cUL
#define SYSIO_ICLR_SLOT1 0x344cUL
#define SYSIO_ICLR_SLOT2 0x348cUL
#define SYSIO_ICLR_SLOT3 0x34ccUL
static unsigned long sysio_imap_to_iclr(unsigned long imap)
{
unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
return imap + diff;
}
unsigned int sbus_build_irq(void *buscookie, unsigned int ino)
{
struct sbus_bus *sbus = (struct sbus_bus *)buscookie;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long imap, iclr;
int pil, sbus_level = 0;
pil = sysio_ino_to_pil[ino];
if (!pil) {
printk("sbus_irq_build: Bad SYSIO INO[%x]\n", ino);
panic("Bad SYSIO IRQ translations...");
}
if (PIL_RESERVED(pil))
BUG();
imap = sysio_irq_offsets[ino];
if (imap == ((unsigned long)-1)) {
prom_printf("get_irq_translations: Bad SYSIO INO[%x] cpu[%d]\n",
ino, pil);
prom_halt();
}
imap += reg_base;
/* SYSIO inconsistency. For external SLOTS, we have to select
* the right ICLR register based upon the lower SBUS irq level
* bits.
*/
if (ino >= 0x20) {
iclr = sysio_imap_to_iclr(imap);
} else {
int sbus_slot = (ino & 0x18)>>3;
sbus_level = ino & 0x7;
switch(sbus_slot) {
case 0:
iclr = reg_base + SYSIO_ICLR_SLOT0;
break;
case 1:
iclr = reg_base + SYSIO_ICLR_SLOT1;
break;
case 2:
iclr = reg_base + SYSIO_ICLR_SLOT2;
break;
default:
case 3:
iclr = reg_base + SYSIO_ICLR_SLOT3;
break;
};
iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
}
return build_irq(pil, sbus_level, iclr, imap);
}
/* Error interrupt handling. */
#define SYSIO_UE_AFSR 0x0030UL
#define SYSIO_UE_AFAR 0x0038UL
#define SYSIO_UEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */
#define SYSIO_UEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */
#define SYSIO_UEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */
#define SYSIO_UEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO is cause */
#define SYSIO_UEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */
#define SYSIO_UEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/
#define SYSIO_UEAFSR_RESV1 0x03ff000000000000UL /* Reserved */
#define SYSIO_UEAFSR_DOFF 0x0000e00000000000UL /* Doubleword Offset */
#define SYSIO_UEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */
#define SYSIO_UEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */
#define SYSIO_UEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_ue_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = reg_base + SYSIO_UE_AFSR;
afar_reg = reg_base + SYSIO_UE_AFAR;
/* Latch error status. */
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_UEAFSR_PPIO | SYSIO_UEAFSR_PDRD | SYSIO_UEAFSR_PDWR |
SYSIO_UEAFSR_SPIO | SYSIO_UEAFSR_SDRD | SYSIO_UEAFSR_SDWR);
upa_writeq(error_bits, afsr_reg);
/* Log the error. */
printk("SYSIO[%x]: Uncorrectable ECC Error, primary error type[%s]\n",
sbus->portid,
(((error_bits & SYSIO_UEAFSR_PPIO) ?
"PIO" :
((error_bits & SYSIO_UEAFSR_PDRD) ?
"DVMA Read" :
((error_bits & SYSIO_UEAFSR_PDWR) ?
"DVMA Write" : "???")))));
printk("SYSIO[%x]: DOFF[%lx] SIZE[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_UEAFSR_DOFF) >> 45UL,
(afsr & SYSIO_UEAFSR_SIZE) >> 42UL,
(afsr & SYSIO_UEAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary UE errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_UEAFSR_SPIO) {
reported++;
printk("(PIO)");
}
if (afsr & SYSIO_UEAFSR_SDRD) {
reported++;
printk("(DVMA Read)");
}
if (afsr & SYSIO_UEAFSR_SDWR) {
reported++;
printk("(DVMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
#define SYSIO_CE_AFSR 0x0040UL
#define SYSIO_CE_AFAR 0x0048UL
#define SYSIO_CEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */
#define SYSIO_CEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */
#define SYSIO_CEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */
#define SYSIO_CEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO cause */
#define SYSIO_CEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */
#define SYSIO_CEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/
#define SYSIO_CEAFSR_RESV1 0x0300000000000000UL /* Reserved */
#define SYSIO_CEAFSR_ESYND 0x00ff000000000000UL /* Syndrome Bits */
#define SYSIO_CEAFSR_DOFF 0x0000e00000000000UL /* Double Offset */
#define SYSIO_CEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */
#define SYSIO_CEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */
#define SYSIO_CEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_ce_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = reg_base + SYSIO_CE_AFSR;
afar_reg = reg_base + SYSIO_CE_AFAR;
/* Latch error status. */
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_CEAFSR_PPIO | SYSIO_CEAFSR_PDRD | SYSIO_CEAFSR_PDWR |
SYSIO_CEAFSR_SPIO | SYSIO_CEAFSR_SDRD | SYSIO_CEAFSR_SDWR);
upa_writeq(error_bits, afsr_reg);
printk("SYSIO[%x]: Correctable ECC Error, primary error type[%s]\n",
sbus->portid,
(((error_bits & SYSIO_CEAFSR_PPIO) ?
"PIO" :
((error_bits & SYSIO_CEAFSR_PDRD) ?
"DVMA Read" :
((error_bits & SYSIO_CEAFSR_PDWR) ?
"DVMA Write" : "???")))));
/* XXX Use syndrome and afar to print out module string just like
* XXX UDB CE trap handler does... -DaveM
*/
printk("SYSIO[%x]: DOFF[%lx] ECC Syndrome[%lx] Size[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_CEAFSR_DOFF) >> 45UL,
(afsr & SYSIO_CEAFSR_ESYND) >> 48UL,
(afsr & SYSIO_CEAFSR_SIZE) >> 42UL,
(afsr & SYSIO_CEAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary CE errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_CEAFSR_SPIO) {
reported++;
printk("(PIO)");
}
if (afsr & SYSIO_CEAFSR_SDRD) {
reported++;
printk("(DVMA Read)");
}
if (afsr & SYSIO_CEAFSR_SDWR) {
reported++;
printk("(DVMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
#define SYSIO_SBUS_AFSR 0x2010UL
#define SYSIO_SBUS_AFAR 0x2018UL
#define SYSIO_SBAFSR_PLE 0x8000000000000000UL /* Primary Late PIO Error */
#define SYSIO_SBAFSR_PTO 0x4000000000000000UL /* Primary SBUS Timeout */
#define SYSIO_SBAFSR_PBERR 0x2000000000000000UL /* Primary SBUS Error ACK */
#define SYSIO_SBAFSR_SLE 0x1000000000000000UL /* Secondary Late PIO Error */
#define SYSIO_SBAFSR_STO 0x0800000000000000UL /* Secondary SBUS Timeout */
#define SYSIO_SBAFSR_SBERR 0x0400000000000000UL /* Secondary SBUS Error ACK */
#define SYSIO_SBAFSR_RESV1 0x03ff000000000000UL /* Reserved */
#define SYSIO_SBAFSR_RD 0x0000800000000000UL /* Primary was late PIO read */
#define SYSIO_SBAFSR_RESV2 0x0000600000000000UL /* Reserved */
#define SYSIO_SBAFSR_SIZE 0x00001c0000000000UL /* Size of transfer */
#define SYSIO_SBAFSR_MID 0x000003e000000000UL /* MID causing the error */
#define SYSIO_SBAFSR_RESV3 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_sbus_error_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long afsr_reg, afar_reg, reg_base;
unsigned long afsr, afar, error_bits;
int reported;
reg_base = iommu->sbus_control_reg - 0x2000UL;
afsr_reg = reg_base + SYSIO_SBUS_AFSR;
afar_reg = reg_base + SYSIO_SBUS_AFAR;
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_SBAFSR_PLE | SYSIO_SBAFSR_PTO | SYSIO_SBAFSR_PBERR |
SYSIO_SBAFSR_SLE | SYSIO_SBAFSR_STO | SYSIO_SBAFSR_SBERR);
upa_writeq(error_bits, afsr_reg);
/* Log the error. */
printk("SYSIO[%x]: SBUS Error, primary error type[%s] read(%d)\n",
sbus->portid,
(((error_bits & SYSIO_SBAFSR_PLE) ?
"Late PIO Error" :
((error_bits & SYSIO_SBAFSR_PTO) ?
"Time Out" :
((error_bits & SYSIO_SBAFSR_PBERR) ?
"Error Ack" : "???")))),
(afsr & SYSIO_SBAFSR_RD) ? 1 : 0);
printk("SYSIO[%x]: size[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_SBAFSR_SIZE) >> 42UL,
(afsr & SYSIO_SBAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary SBUS errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_SBAFSR_SLE) {
reported++;
printk("(Late PIO Error)");
}
if (afsr & SYSIO_SBAFSR_STO) {
reported++;
printk("(Time Out)");
}
if (afsr & SYSIO_SBAFSR_SBERR) {
reported++;
printk("(Error Ack)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* XXX check iommu/strbuf for further error status XXX */
return IRQ_HANDLED;
}
#define ECC_CONTROL 0x0020UL
#define SYSIO_ECNTRL_ECCEN 0x8000000000000000UL /* Enable ECC Checking */
#define SYSIO_ECNTRL_UEEN 0x4000000000000000UL /* Enable UE Interrupts */
#define SYSIO_ECNTRL_CEEN 0x2000000000000000UL /* Enable CE Interrupts */
#define SYSIO_UE_INO 0x34
#define SYSIO_CE_INO 0x35
#define SYSIO_SBUSERR_INO 0x36
static void __init sysio_register_error_handlers(struct sbus_bus *sbus)
{
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned int irq;
u64 control;
irq = sbus_build_irq(sbus, SYSIO_UE_INO);
if (request_irq(irq, sysio_ue_handler,
SA_SHIRQ, "SYSIO UE", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register UE interrupt.\n",
sbus->portid);
prom_halt();
}
irq = sbus_build_irq(sbus, SYSIO_CE_INO);
if (request_irq(irq, sysio_ce_handler,
SA_SHIRQ, "SYSIO CE", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register CE interrupt.\n",
sbus->portid);
prom_halt();
}
irq = sbus_build_irq(sbus, SYSIO_SBUSERR_INO);
if (request_irq(irq, sysio_sbus_error_handler,
SA_SHIRQ, "SYSIO SBUS Error", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register SBUS Error interrupt.\n",
sbus->portid);
prom_halt();
}
/* Now turn the error interrupts on and also enable ECC checking. */
upa_writeq((SYSIO_ECNTRL_ECCEN |
SYSIO_ECNTRL_UEEN |
SYSIO_ECNTRL_CEEN),
reg_base + ECC_CONTROL);
control = upa_readq(iommu->sbus_control_reg);
control |= 0x100UL; /* SBUS Error Interrupt Enable */
upa_writeq(control, iommu->sbus_control_reg);
}
/* Boot time initialization. */
void __init sbus_iommu_init(int prom_node, struct sbus_bus *sbus)
{
struct linux_prom64_registers rprop;
struct sbus_iommu *iommu;
unsigned long regs, tsb_base;
u64 control;
int err, i;
sbus->portid = prom_getintdefault(sbus->prom_node,
"upa-portid", -1);
err = prom_getproperty(prom_node, "reg",
(char *)&rprop, sizeof(rprop));
if (err < 0) {
prom_printf("sbus_iommu_init: Cannot map SYSIO control registers.\n");
prom_halt();
}
regs = rprop.phys_addr;
iommu = kmalloc(sizeof(*iommu) + SMP_CACHE_BYTES, GFP_ATOMIC);
if (iommu == NULL) {
prom_printf("sbus_iommu_init: Fatal error, kmalloc(iommu) failed\n");
prom_halt();
}
/* Align on E$ line boundary. */
iommu = (struct sbus_iommu *)
(((unsigned long)iommu + (SMP_CACHE_BYTES - 1UL)) &
~(SMP_CACHE_BYTES - 1UL));
memset(iommu, 0, sizeof(*iommu));
/* We start with no consistent mappings. */
iommu->lowest_consistent_map = CLUSTER_NPAGES;
for (i = 0; i < NCLUSTERS; i++) {
iommu->alloc_info[i].flush = 0;
iommu->alloc_info[i].next = 0;
}
/* Setup spinlock. */
spin_lock_init(&iommu->lock);
/* Init register offsets. */
iommu->iommu_regs = regs + SYSIO_IOMMUREG_BASE;
iommu->strbuf_regs = regs + SYSIO_STRBUFREG_BASE;
/* The SYSIO SBUS control register is used for dummy reads
* in order to ensure write completion.
*/
iommu->sbus_control_reg = regs + 0x2000UL;
/* Link into SYSIO software state. */
sbus->iommu = iommu;
printk("SYSIO: UPA portID %x, at %016lx\n",
sbus->portid, regs);
/* Setup for TSB_SIZE=7, TBW_SIZE=0, MMU_DE=1, MMU_EN=1 */
control = upa_readq(iommu->iommu_regs + IOMMU_CONTROL);
control = ((7UL << 16UL) |
(0UL << 2UL) |
(1UL << 1UL) |
(1UL << 0UL));
/* Using the above configuration we need 1MB iommu page
* table (128K ioptes * 8 bytes per iopte). This is
* page order 7 on UltraSparc.
*/
tsb_base = __get_free_pages(GFP_ATOMIC, get_order(IO_TSB_SIZE));
if (tsb_base == 0UL) {
prom_printf("sbus_iommu_init: Fatal error, cannot alloc TSB table.\n");
prom_halt();
}
iommu->page_table = (iopte_t *) tsb_base;
memset(iommu->page_table, 0, IO_TSB_SIZE);
upa_writeq(control, iommu->iommu_regs + IOMMU_CONTROL);
/* Clean out any cruft in the IOMMU using
* diagnostic accesses.
*/
for (i = 0; i < 16; i++) {
unsigned long dram = iommu->iommu_regs + IOMMU_DRAMDIAG;
unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG;
dram += (unsigned long)i * 8UL;
tag += (unsigned long)i * 8UL;
upa_writeq(0, dram);
upa_writeq(0, tag);
}
upa_readq(iommu->sbus_control_reg);
/* Give the TSB to SYSIO. */
upa_writeq(__pa(tsb_base), iommu->iommu_regs + IOMMU_TSBBASE);
/* Setup streaming buffer, DE=1 SB_EN=1 */
control = (1UL << 1UL) | (1UL << 0UL);
upa_writeq(control, iommu->strbuf_regs + STRBUF_CONTROL);
/* Clear out the tags using diagnostics. */
for (i = 0; i < 16; i++) {
unsigned long ptag, ltag;
ptag = iommu->strbuf_regs + STRBUF_PTAGDIAG;
ltag = iommu->strbuf_regs + STRBUF_LTAGDIAG;
ptag += (unsigned long)i * 8UL;
ltag += (unsigned long)i * 8UL;
upa_writeq(0UL, ptag);
upa_writeq(0UL, ltag);
}
/* Enable DVMA arbitration for all devices/slots. */
control = upa_readq(iommu->sbus_control_reg);
control |= 0x3fUL;
upa_writeq(control, iommu->sbus_control_reg);
/* Now some Xfire specific grot... */
if (this_is_starfire)
sbus->starfire_cookie = starfire_hookup(sbus->portid);
else
sbus->starfire_cookie = NULL;
sysio_register_error_handlers(sbus);
}