90264576e2
* refs/heads/tmp-a483478: UPSTREAM: arm64: vdso: Build vDSO with -ffixed-x18 Revert "drm/dsi: Fix byte order of DCS set/get brightness" Reverting below patches from android-4.19-stable.125 Linux 4.19.125 rxrpc: Fix ack discard rxrpc: Trace discarded ACKs iio: adc: stm32-dfsdm: fix device used to request dma iio: adc: stm32-dfsdm: Use dma_request_chan() instead dma_request_slave_channel() iio: adc: stm32-adc: fix device used to request dma iio: adc: stm32-adc: Use dma_request_chan() instead dma_request_slave_channel() x86/unwind/orc: Fix unwind_get_return_address_ptr() for inactive tasks rxrpc: Fix a memory leak in rxkad_verify_response() rapidio: fix an error in get_user_pages_fast() error handling ipack: tpci200: fix error return code in tpci200_register() mei: release me_cl object reference misc: rtsx: Add short delay after exit from ASPM iio: dac: vf610: Fix an error handling path in 'vf610_dac_probe()' iio: sca3000: Remove an erroneous 'get_device()' staging: greybus: Fix uninitialized scalar variable staging: iio: ad2s1210: Fix SPI reading Revert "gfs2: Don't demote a glock until its revokes are written" brcmfmac: abort and release host after error tty: serial: qcom_geni_serial: Fix wrap around of TX buffer cxgb4/cxgb4vf: Fix mac_hlist initialization and free cxgb4: free mac_hlist properly net: bcmgenet: abort suspend on error net: bcmgenet: code movement Revert "net/ibmvnic: Fix EOI when running in XIVE mode" media: fdp1: Fix R-Car M3-N naming in debug message thunderbolt: Drop duplicated get_switch_at_route() staging: most: core: replace strcpy() by strscpy() libnvdimm/btt: Fix LBA masking during 'free list' population libnvdimm/btt: Remove unnecessary code in btt_freelist_init nfit: Add Hyper-V NVDIMM DSM command set to white list powerpc/64s: Disable STRICT_KERNEL_RWX powerpc: Remove STRICT_KERNEL_RWX incompatibility with RELOCATABLE drm/i915/gvt: Init DPLL/DDI vreg for virtual display instead of inheritance. dmaengine: owl: Use correct lock in owl_dma_get_pchan() dmaengine: tegra210-adma: Fix an error handling path in 'tegra_adma_probe()' apparmor: Fix aa_label refcnt leak in policy_update apparmor: fix potential label refcnt leak in aa_change_profile apparmor: Fix use-after-free in aa_audit_rule_init drm/etnaviv: fix perfmon domain interation ALSA: hda/realtek - Add more fixup entries for Clevo machines ALSA: hda/realtek - Fix silent output on Gigabyte X570 Aorus Xtreme ALSA: pcm: fix incorrect hw_base increase ALSA: iec1712: Initialize STDSP24 properly when using the model=staudio option padata: purge get_cpu and reorder_via_wq from padata_do_serial padata: initialize pd->cpu with effective cpumask padata: Replace delayed timer with immediate workqueue in padata_reorder ARM: futex: Address build warning platform/x86: asus-nb-wmi: Do not load on Asus T100TA and T200TA USB: core: Fix misleading driver bug report stmmac: fix pointer check after utilization in stmmac_interrupt ceph: fix double unlock in handle_cap_export() HID: quirks: Add HID_QUIRK_NO_INIT_REPORTS quirk for Dell K12A keyboard-dock gtp: set NLM_F_MULTI flag in gtp_genl_dump_pdp() x86/apic: Move TSC deadline timer debug printk HID: i2c-hid: reset Synaptics SYNA2393 on resume scsi: ibmvscsi: Fix WARN_ON during event pool release component: Silence bind error on -EPROBE_DEFER aquantia: Fix the media type of AQC100 ethernet controller in the driver vhost/vsock: fix packet delivery order to monitoring devices configfs: fix config_item refcnt leak in configfs_rmdir() scsi: qla2xxx: Delete all sessions before unregister local nvme port scsi: qla2xxx: Fix hang when issuing nvme disconnect-all in NPIV HID: alps: ALPS_1657 is too specific; use U1_UNICORN_LEGACY instead HID: alps: Add AUI1657 device ID HID: multitouch: add eGalaxTouch P80H84 support gcc-common.h: Update for GCC 10 ubi: Fix seq_file usage in detailed_erase_block_info debugfs file i2c: mux: demux-pinctrl: Fix an error handling path in 'i2c_demux_pinctrl_probe()' iommu/amd: Fix over-read of ACPI UID from IVRS table ubifs: remove broken lazytime support fix multiplication overflow in copy_fdtable() mtd: spinand: Propagate ECC information to the MTD structure ima: Fix return value of ima_write_policy() evm: Check also if *tfm is an error pointer in init_desc() ima: Set file->f_mode instead of file->f_flags in ima_calc_file_hash() riscv: set max_pfn to the PFN of the last page KVM: SVM: Fix potential memory leak in svm_cpu_init() i2c: dev: Fix the race between the release of i2c_dev and cdev ubsan: build ubsan.c more conservatively x86/uaccess, ubsan: Fix UBSAN vs. SMAP ANDROID: scsi: ufs: Handle clocks when lrbp fails ANDROID: fscrypt: handle direct I/O with IV_INO_LBLK_32 BACKPORT: FROMLIST: fscrypt: add support for IV_INO_LBLK_32 policies ANDROID: Update the ABI xml and qcom whitelist ANDROID: Fix build.config.gki-debug Linux 4.19.124 Makefile: disallow data races on gcc-10 as well KVM: x86: Fix off-by-one error in kvm_vcpu_ioctl_x86_setup_mce ARM: dts: r8a7740: Add missing extal2 to CPG node arm64: dts: renesas: r8a77980: Fix IPMMU VIP[01] nodes ARM: dts: r8a73a4: Add missing CMT1 interrupts arm64: dts: rockchip: Rename dwc3 device nodes on rk3399 to make dtc happy arm64: dts: rockchip: Replace RK805 PMIC node name with "pmic" on rk3328 boards clk: Unlink clock if failed to prepare or enable Revert "ALSA: hda/realtek: Fix pop noise on ALC225" usb: gadget: legacy: fix error return code in cdc_bind() usb: gadget: legacy: fix error return code in gncm_bind() usb: gadget: audio: Fix a missing error return value in audio_bind() usb: gadget: net2272: Fix a memory leak in an error handling path in 'net2272_plat_probe()' dwc3: Remove check for HWO flag in dwc3_gadget_ep_reclaim_trb_sg() clk: rockchip: fix incorrect configuration of rk3228 aclk_gpu* clocks exec: Move would_dump into flush_old_exec x86/unwind/orc: Fix error handling in __unwind_start() x86: Fix early boot crash on gcc-10, third try cifs: fix leaked reference on requeued write ARM: dts: imx27-phytec-phycard-s-rdk: Fix the I2C1 pinctrl entries ARM: dts: dra7: Fix bus_dma_limit for PCIe usb: xhci: Fix NULL pointer dereference when enqueuing trbs from urb sg list USB: gadget: fix illegal array access in binding with UDC usb: host: xhci-plat: keep runtime active when removing host usb: core: hub: limit HUB_QUIRK_DISABLE_AUTOSUSPEND to USB5534B ALSA: usb-audio: Add control message quirk delay for Kingston HyperX headset ALSA: rawmidi: Fix racy buffer resize under concurrent accesses ALSA: hda/realtek - Limit int mic boost for Thinkpad T530 gcc-10: avoid shadowing standard library 'free()' in crypto gcc-10: disable 'restrict' warning for now gcc-10: disable 'stringop-overflow' warning for now gcc-10: disable 'array-bounds' warning for now gcc-10: disable 'zero-length-bounds' warning for now Stop the ad-hoc games with -Wno-maybe-initialized kbuild: compute false-positive -Wmaybe-uninitialized cases in Kconfig gcc-10 warnings: fix low-hanging fruit pnp: Use list_for_each_entry() instead of open coding hwmon: (da9052) Synchronize access with mfd IB/mlx4: Test return value of calls to ib_get_cached_pkey netfilter: nft_set_rbtree: Introduce and use nft_rbtree_interval_start() arm64: fix the flush_icache_range arguments in machine_kexec netfilter: conntrack: avoid gcc-10 zero-length-bounds warning NFSv4: Fix fscache cookie aux_data to ensure change_attr is included nfs: fscache: use timespec64 in inode auxdata NFS: Fix fscache super_cookie index_key from changing after umount mmc: block: Fix request completion in the CQE timeout path mmc: core: Check request type before completing the request i40iw: Fix error handling in i40iw_manage_arp_cache() pinctrl: cherryview: Add missing spinlock usage in chv_gpio_irq_handler pinctrl: baytrail: Enable pin configuration setting for GPIO chip gfs2: Another gfs2_walk_metadata fix ALSA: hda/realtek - Fix S3 pop noise on Dell Wyse ipc/util.c: sysvipc_find_ipc() incorrectly updates position index drm/qxl: lost qxl_bo_kunmap_atomic_page in qxl_image_init_helper() ALSA: hda/hdmi: fix race in monitor detection during probe cpufreq: intel_pstate: Only mention the BIOS disabling turbo mode once dmaengine: mmp_tdma: Reset channel error on release dmaengine: pch_dma.c: Avoid data race between probe and irq handler riscv: fix vdso build with lld tcp: fix SO_RCVLOWAT hangs with fat skbs net: tcp: fix rx timestamp behavior for tcp_recvmsg netprio_cgroup: Fix unlimited memory leak of v2 cgroups net: ipv4: really enforce backoff for redirects net: dsa: loop: Add module soft dependency hinic: fix a bug of ndo_stop virtio_net: fix lockdep warning on 32 bit tcp: fix error recovery in tcp_zerocopy_receive() Revert "ipv6: add mtu lock check in __ip6_rt_update_pmtu" pppoe: only process PADT targeted at local interfaces net: phy: fix aneg restart in phy_ethtool_set_eee netlabel: cope with NULL catmap net: fix a potential recursive NETDEV_FEAT_CHANGE mmc: sdhci-acpi: Add SDHCI_QUIRK2_BROKEN_64_BIT_DMA for AMDI0040 scsi: sg: add sg_remove_request in sg_write virtio-blk: handle block_device_operations callbacks after hot unplug drop_monitor: work around gcc-10 stringop-overflow warning net: moxa: Fix a potential double 'free_irq()' net/sonic: Fix a resource leak in an error handling path in 'jazz_sonic_probe()' shmem: fix possible deadlocks on shmlock_user_lock net: dsa: Do not make user port errors fatal ANDROID: rtc: class: call hctosys in resource managed registration ANDROID: GKI: Update the ABI xml and whitelist ANDROID: power_supply: Add RTX power-supply property f2fs: flush dirty meta pages when flushing them f2fs: fix checkpoint=disable:%u%% f2fs: rework filename handling f2fs: split f2fs_d_compare() from f2fs_match_name() f2fs: don't leak filename in f2fs_try_convert_inline_dir() ANDROID: clang: update to 11.0.1 FROMLIST: x86_64: fix jiffies ODR violation ANDROID: arm64: vdso: Fix removing SCS flags ANDROID: GKI: Update the ABI xml and whitelist ANDROID: Incremental fs: wake up log pollers less often ANDROID: Incremental fs: Fix scheduling while atomic error ANDROID: Incremental fs: Avoid continually recalculating hashes ANDROID: export: Disable symbol trimming on modules ANDROID: GKI: Update the ABI xml and whitelist ANDROID: fscrypt: set dun_bytes more precisely ANDROID: dm-default-key: set dun_bytes more precisely ANDROID: block: backport the ability to specify max_dun_bytes ANDROID: Revert "ANDROID: GKI: gki_defconfig: CONFIG_DM_DEFAULT_KEY=m" Linux 4.19.123 ipc/mqueue.c: change __do_notify() to bypass check_kill_permission() scripts/decodecode: fix trapping instruction formatting objtool: Fix stack offset tracking for indirect CFAs netfilter: nf_osf: avoid passing pointer to local var netfilter: nat: never update the UDP checksum when it's 0 x86/unwind/orc: Fix premature unwind stoppage due to IRET frames x86/unwind/orc: Fix error path for bad ORC entry type x86/unwind/orc: Prevent unwinding before ORC initialization x86/unwind/orc: Don't skip the first frame for inactive tasks x86/entry/64: Fix unwind hints in rewind_stack_do_exit() x86/entry/64: Fix unwind hints in kernel exit path x86/entry/64: Fix unwind hints in register clearing code batman-adv: Fix refcnt leak in batadv_v_ogm_process batman-adv: Fix refcnt leak in batadv_store_throughput_override batman-adv: Fix refcnt leak in batadv_show_throughput_override batman-adv: fix batadv_nc_random_weight_tq KVM: VMX: Mark RCX, RDX and RSI as clobbered in vmx_vcpu_run()'s asm blob KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs coredump: fix crash when umh is disabled staging: gasket: Check the return value of gasket_get_bar_index() mm/page_alloc: fix watchdog soft lockups during set_zone_contiguous() arm64: hugetlb: avoid potential NULL dereference KVM: arm64: Fix 32bit PC wrap-around KVM: arm: vgic: Fix limit condition when writing to GICD_I[CS]ACTIVER tracing: Add a vmalloc_sync_mappings() for safe measure USB: serial: garmin_gps: add sanity checking for data length USB: uas: add quirk for LaCie 2Big Quadra HID: usbhid: Fix race between usbhid_close() and usbhid_stop() sctp: Fix bundling of SHUTDOWN with COOKIE-ACK HID: wacom: Read HID_DG_CONTACTMAX directly for non-generic devices net: stricter validation of untrusted gso packets bnxt_en: Fix VF anti-spoof filter setup. bnxt_en: Improve AER slot reset. net/mlx5: Fix command entry leak in Internal Error State net/mlx5: Fix forced completion access non initialized command entry bnxt_en: Fix VLAN acceleration handling in bnxt_fix_features(). tipc: fix partial topology connection closure sch_sfq: validate silly quantum values sch_choke: avoid potential panic in choke_reset() net: usb: qmi_wwan: add support for DW5816e net_sched: sch_skbprio: add message validation to skbprio_change() net/mlx4_core: Fix use of ENOSPC around mlx4_counter_alloc() net: macsec: preserve ingress frame ordering fq_codel: fix TCA_FQ_CODEL_DROP_BATCH_SIZE sanity checks dp83640: reverse arguments to list_add_tail vt: fix unicode console freeing with a common interface tracing/kprobes: Fix a double initialization typo USB: serial: qcserial: Add DW5816e support ANDROID: usb: gadget: Add missing inline qualifier to stub functions ANDROID: Drop ABI monitoring from KASAN build config ANDROID: Rename build.config.gki.arch_kasan ANDROID: GKI: Enable CONFIG_STATIC_USERMODEHELPER ANDROID: dm-default-key: Update key size for wrapped keys ANDROID: gki_defconfig: enable CONFIG_MMC_CRYPTO ANDROID: mmc: MMC crypto API ANDROID: GKI: Update the ABI xml and whitelist ANDROID: GKI: add missing exports for cam_smmu_api.ko Linux 4.19.122 drm/atomic: Take the atomic toys away from X cgroup, netclassid: remove double cond_resched mac80211: add ieee80211_is_any_nullfunc() platform/x86: GPD pocket fan: Fix error message when temp-limits are out of range ALSA: hda: Match both PCI ID and SSID for driver blacklist hexagon: define ioremap_uc hexagon: clean up ioremap mfd: intel-lpss: Use devm_ioremap_uc for MMIO lib: devres: add a helper function for ioremap_uc drm/amdgpu: Fix oops when pp_funcs is unset in ACPI event sctp: Fix SHUTDOWN CTSN Ack in the peer restart case net: systemport: suppress warnings on failed Rx SKB allocations net: bcmgenet: suppress warnings on failed Rx SKB allocations lib/mpi: Fix building for powerpc with clang scripts/config: allow colons in option strings for sed s390/ftrace: fix potential crashes when switching tracers cifs: protect updating server->dstaddr with a spinlock ASoC: rsnd: Fix "status check failed" spam for multi-SSI ASoC: rsnd: Don't treat master SSI in multi SSI setup as parent net: stmmac: Fix sub-second increment net: stmmac: fix enabling socfpga's ptp_ref_clock wimax/i2400m: Fix potential urb refcnt leak drm/amdgpu: Correctly initialize thermal controller for GPUs with Powerplay table v0 (e.g Hawaii) ASoC: codecs: hdac_hdmi: Fix incorrect use of list_for_each_entry ASoC: rsnd: Fix HDMI channel mapping for multi-SSI mode ASoC: rsnd: Fix parent SSI start/stop in multi-SSI mode usb: dwc3: gadget: Properly set maxpacket limit ASoC: sgtl5000: Fix VAG power-on handling selftests/ipc: Fix test failure seen after initial test run ASoC: topology: Check return value of pcm_new_ver powerpc/pci/of: Parse unassigned resources vhost: vsock: kick send_pkt worker once device is started ANDROID: GKI: fix build warning on 32bits due to ASoC msm change ANDROID: GKI: fix build error on 32bits due to ASoC msm change ANDROID: GKI: update abi definition due to FAIR_GROUP_SCHED removal ANDROID: GKI: Remove FAIR_GROUP_SCHED ANDROID: GKI: BULK update ABI XML representation and qcom whitelist ANDROID: build.config.gki.aarch64: Enable WHITELIST_STRICT_MODE ANDROID: GKI: Update the ABI xml and qcom whitelist ANDROID: remove unused variable ANDROID: Drop ABI monitoring from KASAN build config Linux 4.19.121 mmc: meson-mx-sdio: remove the broken ->card_busy() op mmc: meson-mx-sdio: Set MMC_CAP_WAIT_WHILE_BUSY mmc: sdhci-msm: Enable host capabilities pertains to R1b response mmc: sdhci-pci: Fix eMMC driver strength for BYT-based controllers mmc: sdhci-xenon: fix annoying 1.8V regulator warning mmc: cqhci: Avoid false "cqhci: CQE stuck on" by not open-coding timeout loop btrfs: transaction: Avoid deadlock due to bad initialization timing of fs_info::journal_info btrfs: fix partial loss of prealloc extent past i_size after fsync selinux: properly handle multiple messages in selinux_netlink_send() dmaengine: dmatest: Fix iteration non-stop logic nfs: Fix potential posix_acl refcnt leak in nfs3_set_acl ALSA: opti9xx: shut up gcc-10 range warning iommu/amd: Fix legacy interrupt remapping for x2APIC-enabled system scsi: target/iblock: fix WRITE SAME zeroing iommu/qcom: Fix local_base status check vfio/type1: Fix VA->PA translation for PFNMAP VMAs in vaddr_get_pfn() vfio: avoid possible overflow in vfio_iommu_type1_pin_pages RDMA/core: Fix race between destroy and release FD object RDMA/core: Prevent mixed use of FDs between shared ufiles RDMA/mlx4: Initialize ib_spec on the stack RDMA/mlx5: Set GRH fields in query QP on RoCE scsi: qla2xxx: check UNLOADING before posting async work scsi: qla2xxx: set UNLOADING before waiting for session deletion dm multipath: use updated MPATHF_QUEUE_IO on mapping for bio-based mpath dm writecache: fix data corruption when reloading the target dm verity fec: fix hash block number in verity_fec_decode PM: hibernate: Freeze kernel threads in software_resume() PM: ACPI: Output correct message on target power state ALSA: pcm: oss: Place the plugin buffer overflow checks correctly ALSA: hda/hdmi: fix without unlocked before return ALSA: usb-audio: Correct a typo of NuPrime DAC-10 USB ID ALSA: hda/realtek - Two front mics on a Lenovo ThinkCenter btrfs: fix block group leak when removing fails drm/qxl: qxl_release use after free drm/qxl: qxl_release leak in qxl_hw_surface_alloc() drm/qxl: qxl_release leak in qxl_draw_dirty_fb() drm/edid: Fix off-by-one in DispID DTD pixel clock ANDROID: GKI: Bulk update ABI XML representation ANDROID: GKI: Enable net testing options ANDROID: gki_defconfig: Enable CONFIG_REMOTEPROC ANDROID: Rename build.config.gki.arch_kasan ANDROID: GKI: Update ABI for IOMMU ANDROID: Incremental fs: Fix issues with very large files ANDROID: Correct build.config branch name ANDROID: GKI: Bulk update ABI XML representation and whitelist. UPSTREAM: vdso: Fix clocksource.h macro detection ANDROID: GKI: update abi definition due to added padding ANDROID: GKI: networking: add Android ABI padding to a lot of networking structures ANDROID: GKI: dma-mapping.h: add Android ABI padding to a structure ANDROID: GKI: ioport.h: add Android ABI padding to a structure ANDROID: GKI: iomap.h: add Android ABI padding to a structure ANDROID: GKI: genhd.h: add Android ABI padding to some structures ANDROID: GKI: hrtimer.h: add Android ABI padding to a structure ANDROID: GKI: ethtool.h: add Android ABI padding to a structure ANDROID: GKI: sched: add Android ABI padding to some structures ANDROID: GKI: kernfs.h: add Android ABI padding to some structures ANDROID: GKI: kobject.h: add Android ABI padding to some structures ANDROID: GKI: mm.h: add Android ABI padding to a structure ANDROID: GKI: mmu_notifier.h: add Android ABI padding to some structures ANDROID: GKI: pci: add Android ABI padding to some structures ANDROID: GKI: irqdomain.h: add Android ABI padding to a structure ANDROID: GKI: blk_types.h: add Android ABI padding to a structure ANDROID: GKI: scsi.h: add Android ABI padding to a structure ANDROID: GKI: quota.h: add Android ABI padding to some structures ANDROID: GKI: timer.h: add Android ABI padding to a structure ANDROID: GKI: user_namespace.h: add Android ABI padding to a structure FROMGIT: f2fs: fix missing check for f2fs_unlock_op Linux 4.19.120 propagate_one(): mnt_set_mountpoint() needs mount_lock ext4: check for non-zero journal inum in ext4_calculate_overhead qed: Fix use after free in qed_chain_free bpf, x86_32: Fix clobbering of dst for BPF_JSET hwmon: (jc42) Fix name to have no illegal characters ext4: convert BUG_ON's to WARN_ON's in mballoc.c ext4: increase wait time needed before reuse of deleted inode numbers ext4: use matching invalidatepage in ext4_writepage arm64: Delete the space separator in __emit_inst ALSA: hda: call runtime_allow() for all hda controllers xen/xenbus: ensure xenbus_map_ring_valloc() returns proper grant status objtool: Support Clang non-section symbols in ORC dump objtool: Fix CONFIG_UBSAN_TRAP unreachable warnings scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN scsi: target: fix PR IN / READ FULL STATUS for FC ALSA: hda: Explicitly permit using autosuspend if runtime PM is supported ALSA: hda: Keep the controller initialization even if no codecs found xfs: fix partially uninitialized structure in xfs_reflink_remap_extent x86: hyperv: report value of misc_features net: fec: set GPR bit on suspend by DT configuration. bpf, x86: Fix encoding for lower 8-bit registers in BPF_STX BPF_B xfs: clear PF_MEMALLOC before exiting xfsaild thread mm: shmem: disable interrupt when acquiring info->lock in userfaultfd_copy path bpf, x86_32: Fix incorrect encoding in BPF_LDX zero-extension perf/core: fix parent pid/tid in task exit events net/mlx5: Fix failing fw tracer allocation on s390 cpumap: Avoid warning when CONFIG_DEBUG_PER_CPU_MAPS is enabled ARM: dts: bcm283x: Disable dsi0 node PCI: Move Apex Edge TPU class quirk to fix BAR assignment PCI: Avoid ASMedia XHCI USB PME# from D0 defect svcrdma: Fix leak of svc_rdma_recv_ctxt objects svcrdma: Fix trace point use-after-free race xfs: acquire superblock freeze protection on eofblocks scans net/cxgb4: Check the return from t4_query_params properly rxrpc: Fix DATA Tx to disable nofrag for UDP on AF_INET6 socket i2c: altera: use proper variable to hold errno nfsd: memory corruption in nfsd4_lock() ASoC: wm8960: Fix wrong clock after suspend & resume ASoC: tas571x: disable regulators on failed probe ASoC: q6dsp6: q6afe-dai: add missing channels to MI2S DAIs iio:ad7797: Use correct attribute_group usb: gadget: udc: bdc: Remove unnecessary NULL checks in bdc_req_complete usb: dwc3: gadget: Do link recovery for SS and SSP binder: take read mode of mmap_sem in binder_alloc_free_page() include/uapi/linux/swab.h: fix userspace breakage, use __BITS_PER_LONG for swap mtd: cfi: fix deadloop in cfi_cmdset_0002.c do_write_buffer remoteproc: Fix wrong rvring index computation FROMLIST: PM / devfreq: Restart previous governor if new governor fails to start ANDROID: GKI: arm64: Enable GZIP and LZ4 kernel compression modes ANDROID: GKI: arm64: gki_defconfig: Set arm_smmu configuration ANDROID: GKI: iommu/arm-smmu: Modularize ARM SMMU driver ANDROID: GKI: iommu: Snapshot of vendor changes ANDROID: GKI: Additions to ARM SMMU register definitions ANDROID: GKI: iommu/io-pgtable-arm: LPAE related updates by vendor ANDROID: GKI: common: dma-mapping: make dma_common_contiguous_remap more robust ANDROID: GKI: dma-coherent: Expose device base address and size ANDROID: GKI: arm64: add support for NO_KERNEL_MAPPING and STRONGLY_ORDERED ANDROID: GKI: dma-mapping: Add dma_remap functions ANDROID: GKI: arm64: Support early fixup for CMA ANDROID: GKI: iommu: dma-mapping-fast: Fast ARMv7/v8 Long Descriptor Format ANDROID: GKI: arm64: dma-mapping: add support for IOMMU mapper ANDROID: GKI: add ARCH_NR_GPIO for ABI match ANDROID: GKI: kernel: Export symbol of `cpu_do_idle` ANDROID: GKI: kernel: Export symbols needed by msm_minidump.ko and minidump_log.ko (again) ANDROID: GKI: add missing exports for __flush_dcache_area ANDROID: GKI: arm64: Export caching APIs ANDROID: GKI: arm64: provide dma cache routines with same API as 32 bit ANDROID: gki_defconfig: add FORTIFY_SOURCE, remove SPMI_MSM_PMIC_ARB Revert "ANDROID: GKI: spmi: pmic-arb: don't enable SPMI_MSM_PMIC_ARB by default" ANDROID: GKI: update abi definitions after adding padding ANDROID: GKI: elevator: add Android ABI padding to some structures ANDROID: GKI: dentry: add Android ABI padding to some structures ANDROID: GKI: bio: add Android ABI padding to some structures ANDROID: GKI: scsi: add Android ABI padding to some structures ANDROID: GKI: ufs: add Android ABI padding to some structures ANDROID: GKI: workqueue.h: add Android ABI padding to some structures ANDROID: GKI: fs.h: add Android ABI padding to some structures ANDROID: GKI: USB: add Android ABI padding to some structures ANDROID: GKI: mm: add Android ABI padding to some structures ANDROID: GKI: mount.h: add Android ABI padding to some structures ANDROID: GKI: sched.h: add Android ABI padding to some structures ANDROID: GKI: sock.h: add Android ABI padding to some structures ANDROID: GKI: module.h: add Android ABI padding to some structures ANDROID: GKI: device.h: add Android ABI padding to some structures ANDROID: GKI: phy: add Android ABI padding to some structures ANDROID: GKI: add android_kabi.h ANDROID: ABI: update due to previous changes in the tree BACKPORT: sched/core: Fix reset-on-fork from RT with uclamp ANDROID: GKI: Add support for missing V4L2 symbols ANDROID: GKI: Bulk update ABI XML representation ANDROID: GKI: arm64: psci: Support for OS initiated scheme ANDROID: GKI: net: add counter for number of frames coalesced in GRO ANDROID: GKI: cfg80211: Include length of kek in rekey data BACKPORT: loop: change queue block size to match when using DIO ANDROID: Incremental fs: Add setattr call ANDROID: GKI: enable CONFIG_RTC_SYSTOHC ANDROID: GKI: ipv4: add vendor padding to __IPV4_DEVCONF_* enums Revert "ANDROID: GKI: ipv4: increase __IPV4_DEVCONF_MAX to 64" ANDROID: driver: gpu: drm: fix export symbol types ANDROID: SoC: core: fix export symbol type ANDROID: ufshcd-crypto: fix export symbol type ANDROID: GKI: drivers: mailbox: fix race resulting in multiple message submission ANDROID: GKI: arm64: gki_defconfig: Enable a few thermal configs Revert "ANDROID: GKI: add base.h include to match MODULE_VERSIONS" FROMLIST: thermal: Make cooling device trip point writable from sysfs ANDROID: GKI: drivers: thermal: cpu_cooling: Use CPU ID as cooling device ID ANDROID: GKI: PM / devfreq: Allow min freq to be 0 ANDROID: GKI: arm64: gki_defconfig: Enable REGULATOR_PROXY_CONSUMER ANDROID: GKI: Bulk Update ABI XML representation ANDROID: KASAN support for GKI remove CONFIG_CC_WERROR ANDROID: KASAN support for GKI ANDROID: virt_wifi: fix export symbol types ANDROID: vfs: fix export symbol type ANDROID: vfs: fix export symbol types ANDROID: fscrypt: fix export symbol type ANDROID: cfi: fix export symbol types ANDROID: bpf: fix export symbol type Linux 4.19.119 s390/mm: fix page table upgrade vs 2ndary address mode accesses xfs: Fix deadlock between AGI and AGF with RENAME_WHITEOUT serial: sh-sci: Make sure status register SCxSR is read in correct sequence xhci: prevent bus suspend if a roothub port detected a over-current condition usb: f_fs: Clear OS Extended descriptor counts to zero in ffs_data_reset() usb: dwc3: gadget: Fix request completion check UAS: fix deadlock in error handling and PM flushing work UAS: no use logging any details in case of ENODEV cdc-acm: introduce a cool down cdc-acm: close race betrween suspend() and acm_softint staging: vt6656: Power save stop wake_up_count wrap around. staging: vt6656: Fix pairwise key entry save. staging: vt6656: Fix drivers TBTT timing counter. staging: vt6656: Fix calling conditions of vnt_set_bss_mode staging: vt6656: Don't set RCR_MULTICAST or RCR_BROADCAST by default. vt: don't use kmalloc() for the unicode screen buffer vt: don't hardcode the mem allocation upper bound staging: comedi: Fix comedi_device refcnt leak in comedi_open staging: comedi: dt2815: fix writing hi byte of analog output powerpc/setup_64: Set cache-line-size based on cache-block-size ARM: imx: provide v7_cpu_resume() only on ARM_CPU_SUSPEND=y iwlwifi: mvm: beacon statistics shouldn't go backwards iwlwifi: pcie: actually release queue memory in TVQM ASoC: dapm: fixup dapm kcontrol widget audit: check the length of userspace generated audit records usb-storage: Add unusual_devs entry for JMicron JMS566 tty: rocket, avoid OOB access tty: hvc: fix buffer overflow during hvc_alloc(). KVM: VMX: Enable machine check support for 32bit targets KVM: Check validity of resolved slot when searching memslots KVM: s390: Return last valid slot if approx index is out-of-bounds tpm: ibmvtpm: retry on H_CLOSED in tpm_ibmvtpm_send() tpm/tpm_tis: Free IRQ if probing fails ALSA: usb-audio: Filter out unsupported sample rates on Focusrite devices ALSA: usb-audio: Fix usb audio refcnt leak when getting spdif ALSA: hda/realtek - Add new codec supported for ALC245 ALSA: hda/realtek - Fix unexpected init_amp override ALSA: usx2y: Fix potential NULL dereference tools/vm: fix cross-compile build mm/ksm: fix NULL pointer dereference when KSM zero page is enabled mm/hugetlb: fix a addressing exception caused by huge_pte_offset vmalloc: fix remap_vmalloc_range() bounds checks USB: hub: Fix handling of connect changes during sleep USB: core: Fix free-while-in-use bug in the USB S-Glibrary USB: early: Handle AMD's spec-compliant identifiers, too USB: Add USB_QUIRK_DELAY_CTRL_MSG and USB_QUIRK_DELAY_INIT for Corsair K70 RGB RAPIDFIRE USB: sisusbvga: Change port variable from signed to unsigned fs/namespace.c: fix mountpoint reference counter race iio: xilinx-xadc: Make sure not exceed maximum samplerate iio: xilinx-xadc: Fix sequencer configuration for aux channels in simultaneous mode iio: xilinx-xadc: Fix clearing interrupt when enabling trigger iio: xilinx-xadc: Fix ADC-B powerdown iio: adc: stm32-adc: fix sleep in atomic context iio: st_sensors: rely on odr mask to know if odr can be set iio: core: remove extra semi-colon from devm_iio_device_register() macro ALSA: usb-audio: Add connector notifier delegation ALSA: usb-audio: Add static mapping table for ALC1220-VB-based mobos ALSA: hda: Remove ASUS ROG Zenith from the blacklist KEYS: Avoid false positive ENOMEM error on key read mlxsw: Fix some IS_ERR() vs NULL bugs vrf: Check skb for XFRM_TRANSFORMED flag xfrm: Always set XFRM_TRANSFORMED in xfrm{4,6}_output_finish net: dsa: b53: b53_arl_rw_op() needs to select IVL or SVL net: dsa: b53: Rework ARL bin logic net: dsa: b53: Fix ARL register definitions net: dsa: b53: Lookup VID in ARL searches when VLAN is enabled vrf: Fix IPv6 with qdisc and xfrm team: fix hang in team_mode_get() tcp: cache line align MAX_TCP_HEADER sched: etf: do not assume all sockets are full blown net/x25: Fix x25_neigh refcnt leak when receiving frame net: stmmac: dwmac-meson8b: Add missing boundary to RGMII TX clock array net: netrom: Fix potential nr_neigh refcnt leak in nr_add_node net: bcmgenet: correct per TX/RX ring statistics macvlan: fix null dereference in macvlan_device_event() macsec: avoid to set wrong mtu ipv6: fix restrict IPV6_ADDRFORM operation cxgb4: fix large delays in PTP synchronization cxgb4: fix adapter crash due to wrong MC size x86/KVM: Clean up host's steal time structure x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed x86/kvm: Cache gfn to pfn translation x86/kvm: Introduce kvm_(un)map_gfn() KVM: Properly check if "page" is valid in kvm_vcpu_unmap kvm: fix compile on s390 part 2 kvm: fix compilation on s390 kvm: fix compilation on aarch64 KVM: Introduce a new guest mapping API KVM: nVMX: Always sync GUEST_BNDCFGS when it comes from vmcs01 KVM: VMX: Zero out *all* general purpose registers after VM-Exit f2fs: fix to avoid memory leakage in f2fs_listxattr blktrace: fix dereference after null check blktrace: Protect q->blk_trace with RCU net: ipv6_stub: use ip6_dst_lookup_flow instead of ip6_dst_lookup net: ipv6: add net argument to ip6_dst_lookup_flow PCI/ASPM: Allow re-enabling Clock PM scsi: smartpqi: fix call trace in device discovery virtio-blk: improve virtqueue error to BLK_STS tracing/selftests: Turn off timeout setting drm/amd/display: Not doing optimize bandwidth if flip pending. xhci: Ensure link state is U3 after setting USB_SS_PORT_LS_U3 ASoC: Intel: bytcr_rt5640: Add quirk for MPMAN MPWIN895CL tablet perf/core: Disable page faults when getting phys address pwm: bcm2835: Dynamically allocate base pwm: renesas-tpu: Fix late Runtime PM enablement Revert "powerpc/64: irq_work avoid interrupt when called with hardware irqs enabled" loop: Better discard support for block devices s390/cio: avoid duplicated 'ADD' uevents kconfig: qconf: Fix a few alignment issues ipc/util.c: sysvipc_find_ipc() should increase position index selftests: kmod: fix handling test numbers above 9 kernel/gcov/fs.c: gcov_seq_next() should increase position index nvme: fix deadlock caused by ANA update wrong locking ASoC: Intel: atom: Take the drv->lock mutex before calling sst_send_slot_map() scsi: iscsi: Report unbind session event when the target has been removed pwm: rcar: Fix late Runtime PM enablement ceph: don't skip updating wanted caps when cap is stale ceph: return ceph_mdsc_do_request() errors from __get_parent() scsi: lpfc: Fix crash in target side cable pulls hitting WAIT_FOR_UNREG scsi: lpfc: Fix kasan slab-out-of-bounds error in lpfc_unreg_login watchdog: reset last_hw_keepalive time at start arm64: Silence clang warning on mismatched value/register sizes arm64: compat: Workaround Neoverse-N1 #1542419 for compat user-space arm64: Fake the IminLine size on systems affected by Neoverse-N1 #1542419 arm64: errata: Hide CTR_EL0.DIC on systems affected by Neoverse-N1 #1542419 arm64: Add part number for Neoverse N1 vti4: removed duplicate log message. crypto: mxs-dcp - make symbols 'sha1_null_hash' and 'sha256_null_hash' static bpftool: Fix printing incorrect pointer in btf_dump_ptr drm/msm: Use the correct dma_sync calls harder ext4: fix extent_status fragmentation for plain files ANDROID: abi_gki_aarch64_cuttlefish_whitelist: remove stale symbols ANDROID: GKI: ipv4: increase __IPV4_DEVCONF_MAX to 64 ANDROID: GKI: power: add missing export for POWER_RESET_QCOM=m BACKPORT: cfg80211: Support key configuration for Beacon protection (BIGTK) BACKPORT: cfg80211: Enhance the AKM advertizement to support per interface. UPSTREAM: sysrq: Use panic() to force a crash ANDROID: GKI: kernel: sound: update codec options with block size ANDROID: add compat cross compiler ANDROID: x86/vdso: disable LTO only for VDSO BACKPORT: arm64: vdso32: Enable Clang Compilation UPSTREAM: arm64: compat: vdso: Expose BUILD_VDSO32 BACKPORT: lib/vdso: Enable common headers BACKPORT: arm: vdso: Enable arm to use common headers BACKPORT: x86/vdso: Enable x86 to use common headers BACKPORT: mips: vdso: Enable mips to use common headers UPSTREAM: arm64: vdso32: Include common headers in the vdso library UPSTREAM: arm64: vdso: Include common headers in the vdso library UPSTREAM: arm64: Introduce asm/vdso/processor.h BACKPORT: arm64: vdso32: Code clean up UPSTREAM: linux/elfnote.h: Replace elf.h with UAPI equivalent UPSTREAM: scripts: Fix the inclusion order in modpost UPSTREAM: common: Introduce processor.h UPSTREAM: linux/ktime.h: Extract common header for vDSO UPSTREAM: linux/jiffies.h: Extract common header for vDSO UPSTREAM: linux/time64.h: Extract common header for vDSO BACKPORT: linux/time32.h: Extract common header for vDSO BACKPORT: linux/time.h: Extract common header for vDSO UPSTREAM: linux/math64.h: Extract common header for vDSO BACKPORT: linux/clocksource.h: Extract common header for vDSO BACKPORT: mips: Introduce asm/vdso/clocksource.h BACKPORT: arm64: Introduce asm/vdso/clocksource.h BACKPORT: arm: Introduce asm/vdso/clocksource.h BACKPORT: x86: Introduce asm/vdso/clocksource.h UPSTREAM: linux/limits.h: Extract common header for vDSO BACKPORT: linux/kernel.h: split *_MAX and *_MIN macros into <linux/limits.h> BACKPORT: linux/bits.h: Extract common header for vDSO UPSTREAM: linux/const.h: Extract common header for vDSO BACKPORT: arm64: vdso: fix flip/flop vdso build bug UPSTREAM: lib/vdso: Allow the high resolution parts to be compiled out UPSTREAM: lib/vdso: Only read hrtimer_res when needed in __cvdso_clock_getres() UPSTREAM: lib/vdso: Mark do_hres() and do_coarse() as __always_inline UPSTREAM: lib/vdso: Avoid duplication in __cvdso_clock_getres() UPSTREAM: lib/vdso: Let do_coarse() return 0 to simplify the callsite UPSTREAM: lib/vdso: Remove checks on return value for 32 bit vDSO UPSTREAM: lib/vdso: Build 32 bit specific functions in the right context UPSTREAM: lib/vdso: Make __cvdso_clock_getres() static UPSTREAM: lib/vdso: Make clock_getres() POSIX compliant again UPSTREAM: lib/vdso/32: Provide legacy syscall fallbacks UPSTREAM: lib/vdso: Move fallback invocation to the callers UPSTREAM: lib/vdso/32: Remove inconsistent NULL pointer checks UPSTREAM: lib/vdso: Make delta calculation work correctly UPSTREAM: arm64: compat: Fix syscall number of compat_clock_getres BACKPORT: arm64: lse: Fix LSE atomics with LLVM UPSTREAM: mips: Fix gettimeofday() in the vdso library UPSTREAM: mips: vdso: Fix __arch_get_hw_counter() BACKPORT: arm64: Kconfig: Make CONFIG_COMPAT_VDSO a proper Kconfig option UPSTREAM: arm64: vdso32: Rename COMPATCC to CC_COMPAT UPSTREAM: arm64: vdso32: Pass '--target' option to clang via VDSO_CAFLAGS UPSTREAM: arm64: vdso32: Don't use KBUILD_CPPFLAGS unconditionally UPSTREAM: arm64: vdso32: Move definition of COMPATCC into vdso32/Makefile UPSTREAM: arm64: Default to building compat vDSO with clang when CONFIG_CC_IS_CLANG UPSTREAM: lib: vdso: Remove CROSS_COMPILE_COMPAT_VDSO UPSTREAM: arm64: vdso32: Remove jump label config option in Makefile UPSTREAM: arm64: vdso32: Detect binutils support for dmb ishld BACKPORT: arm64: vdso: Remove stale files from old assembly implementation UPSTREAM: arm64: vdso32: Fix broken compat vDSO build warnings UPSTREAM: mips: compat: vdso: Use legacy syscalls as fallback BACKPORT: arm64: Relax Documentation/arm64/tagged-pointers.rst BACKPORT: arm64: Add tagged-address-abi.rst to index.rst UPSTREAM: arm64: vdso: Fix Makefile regression UPSTREAM: mips: vdso: Fix flip/flop vdso building bug UPSTREAM: mips: vdso: Fix source path UPSTREAM: mips: Add clock_gettime64 entry point UPSTREAM: mips: Add clock_getres entry point BACKPORT: mips: Add support for generic vDSO BACKPORT: arm64: vdso: Explicitly add build-id option BACKPORT: arm64: vdso: use $(LD) instead of $(CC) to link VDSO BACKPORT: arm64: vdso: Cleanup Makefiles UPSTREAM: arm64: vdso: Fix population of AT_SYSINFO_EHDR for compat vdso UPSTREAM: arm64: vdso: Fix compilation with clang older than 8 UPSTREAM: arm64: compat: Fix __arch_get_hw_counter() implementation UPSTREAM: arm64: Fix __arch_get_hw_counter() implementation UPSTREAM: x86/vdso/32: Use 32bit syscall fallback UPSTREAM: x86/vdso: Fix flip/flop vdso build bug UPSTREAM: x86/vdso: Give the [ph]vclock_page declarations real types UPSTREAM: x86/vdso: Add clock_gettime64() entry point BACKPORT: x86/vdso: Add clock_getres() entry point BACKPORT: x86/vdso: Switch to generic vDSO implementation UPSTREAM: x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick UPSTREAM: x86/vdso: Initialize the CPU/node NR segment descriptor earlier UPSTREAM: x86/vdso: Introduce helper functions for CPU and node number UPSTREAM: x86/segments/64: Rename the GDT PER_CPU entry to CPU_NUMBER BACKPORT: arm64: vdso: Enable vDSO compat support UPSTREAM: arm64: compat: Get sigreturn trampolines from vDSO UPSTREAM: arm64: elf: VDSO code page discovery UPSTREAM: arm64: compat: VDSO setup for compat layer UPSTREAM: arm64: vdso: Refactor vDSO code BACKPORT: arm64: compat: Add vDSO UPSTREAM: arm64: compat: Generate asm offsets for signals UPSTREAM: arm64: compat: Expose signal related structures UPSTREAM: arm64: compat: Add missing syscall numbers BACKPORT: arm64: vdso: Substitute gettimeofday() with C implementation UPSTREAM: timekeeping: Provide a generic update_vsyscall() implementation UPSTREAM: lib/vdso: Add compat support UPSTREAM: lib/vdso: Provide generic VDSO implementation UPSTREAM: vdso: Define standardized vdso_datapage UPSTREAM: hrtimer: Split out hrtimer defines into separate header UPSTREAM: nds32: Fix vDSO clock_getres() UPSTREAM: arm64: compat: Reduce address limit for 64K pages BACKPORT: arm64: compat: Add KUSER_HELPERS config option UPSTREAM: arm64: compat: Refactor aarch32_alloc_vdso_pages() BACKPORT: arm64: compat: Split kuser32 UPSTREAM: arm64: compat: Alloc separate pages for vectors and sigpage ANDROID: GKI: Update ABI XML representation ANDROID: GKI: Enable GENERIC_IRQ_CHIP ANDROID: GKI: power_supply: Add FG_TYPE power-supply property ANDROID: GKI: mm: export mm_trace_rss_stat for modules to report RSS changes ANDROID: GKI: gki_defconfig: Enable CONFIG_LEDS_TRIGGER_TRANSIENT ANDROID: GKI: gki_defconfig: Enable CONFIG_CPU_FREQ_STAT ANDROID: GKI: arm64: gki_defconfig: Disable HW tracing features ANDROID: GKI: gki_defconfig: Enable CONFIG_I2C_CHARDEV ANDROID: Incremental fs: Use simple compression in log buffer ANDROID: GKI: usb: core: Add support to parse config summary capability descriptors ANDROID: GKI: Update ABI XML representation ANDROID: dm-bow: Fix not to skip trim at framented range ANDROID: Remove VLA from uid_sys_stats.c f2fs: fix missing check for f2fs_unlock_op ANDROID: fix wakeup reason findings UPSTREAM: cfg80211: fix and clean up cfg80211_gen_new_bssid() UPSTREAM: cfg80211: save multi-bssid properties UPSTREAM: cfg80211: make BSSID generation function inline UPSTREAM: cfg80211: parse multi-bssid only if HW supports it UPSTREAM: cfg80211: Move Multiple BSS info to struct cfg80211_bss to be visible UPSTREAM: cfg80211: Properly track transmitting and non-transmitting BSS UPSTREAM: cfg80211: use for_each_element() for multi-bssid parsing UPSTREAM: cfg80211: Parsing of Multiple BSSID information in scanning UPSTREAM: cfg80211/nl80211: Offload OWE processing to user space in AP mode ANDROID: GKI: cfg80211: Sync nl80211 commands/feature with upstream ANDROID: GKI: gki_defconfig: Enable FW_LOADER_USER_HELPER* ANDROID: GKI: arm64: gki_defconfig: Disable CONFIG_ARM64_TAGGED_ADDR_ABI ANDROID: GKI: gki_defconfig: CONFIG_CHR_DEV_SG=y ANDROID: GKI: gki_defconfig: CONFIG_DM_DEFAULT_KEY=m ANDROID: update the ABI xml representation ANDROID: init: GKI: enable hidden configs for GPU Linux 4.19.118 bpf: fix buggy r0 retval refinement for tracing helpers KEYS: Don't write out to userspace while holding key semaphore mtd: phram: fix a double free issue in error path mtd: lpddr: Fix a double free in probe() mtd: spinand: Explicitly use MTD_OPS_RAW to write the bad block marker to OOB locktorture: Print ratio of acquisitions, not failures tty: evh_bytechan: Fix out of bounds accesses iio: si1133: read 24-bit signed integer for measurement fbdev: potential information leak in do_fb_ioctl() net: dsa: bcm_sf2: Fix overflow checks f2fs: fix to wait all node page writeback iommu/amd: Fix the configuration of GCR3 table root pointer libnvdimm: Out of bounds read in __nd_ioctl() power: supply: axp288_fuel_gauge: Broaden vendor check for Intel Compute Sticks. ext2: fix debug reference to ext2_xattr_cache ext2: fix empty body warnings when -Wextra is used iommu/vt-d: Fix mm reference leak drm/vc4: Fix HDMI mode validation f2fs: fix NULL pointer dereference in f2fs_write_begin() NFS: Fix memory leaks in nfs_pageio_stop_mirroring() drm/amdkfd: kfree the wrong pointer x86: ACPI: fix CPU hotplug deadlock KVM: s390: vsie: Fix possible race when shadowing region 3 tables compiler.h: fix error in BUILD_BUG_ON() reporting percpu_counter: fix a data race at vm_committed_as include/linux/swapops.h: correct guards for non_swap_entry() cifs: Allocate encryption header through kmalloc um: ubd: Prevent buffer overrun on command completion ext4: do not commit super on read-only bdev s390/cpum_sf: Fix wrong page count in error message powerpc/maple: Fix declaration made after definition s390/cpuinfo: fix wrong output when CPU0 is offline NFS: direct.c: Fix memory leak of dreq when nfs_get_lock_context fails NFSv4/pnfs: Return valid stateids in nfs_layout_find_inode_by_stateid() rtc: 88pm860x: fix possible race condition soc: imx: gpc: fix power up sequencing clk: tegra: Fix Tegra PMC clock out parents power: supply: bq27xxx_battery: Silence deferred-probe error clk: at91: usb: continue if clk_hw_round_rate() return zero x86/Hyper-V: Report crash data in die() when panic_on_oops is set x86/Hyper-V: Report crash register data when sysctl_record_panic_msg is not set x86/Hyper-V: Trigger crash enlightenment only once during system crash. x86/Hyper-V: Free hv_panic_page when fail to register kmsg dump x86/Hyper-V: Unload vmbus channel in hv panic callback xsk: Add missing check on user supplied headroom size rbd: call rbd_dev_unprobe() after unwatching and flushing notifies rbd: avoid a deadlock on header_rwsem when flushing notifies video: fbdev: sis: Remove unnecessary parentheses and commented code lib/raid6: use vdupq_n_u8 to avoid endianness warnings x86/Hyper-V: Report crash register data or kmsg before running crash kernel of: overlay: kmemleak in dup_and_fixup_symbol_prop() of: unittest: kmemleak in of_unittest_overlay_high_level() of: unittest: kmemleak in of_unittest_platform_populate() of: unittest: kmemleak on changeset destroy ALSA: hda: Don't release card at firmware loading error irqchip/mbigen: Free msi_desc on device teardown netfilter: nf_tables: report EOPNOTSUPP on unsupported flags/object type ARM: dts: imx6: Use gpc for FEC interrupt controller to fix wake on LAN. arm, bpf: Fix bugs with ALU64 {RSH, ARSH} BPF_K shift by 0 watchdog: sp805: fix restart handler ext4: use non-movable memory for superblock readahead scsi: sg: add sg_remove_request in sg_common_write objtool: Fix switch table detection in .text.unlikely arm, bpf: Fix offset overflow for BPF_MEM BPF_DW ANDROID: GKI: Bulk update ABI report. ANDROID: GKI: qos: Register irq notify after adding the qos request ANDROID: GKI: Add dual role mode to usb_dr_modes array UPSTREAM: virtio-gpu api: comment feature flags ANDROID: arch:arm64: Increase kernel command line size ANDROID: GKI: Add special linux_banner_ptr for modules Revert "ANDROID: GKI: Make linux_banner a C pointer" ANDROID: GKI: PM / devfreq: Add new flag to do simple clock scaling ANDROID: GKI: Resolve ABI diff for struct snd_usb_audio ANDROID: GKI: Bulk update ABI ANDROID: GKI: Update the whitelist for qcom SoCs ANDROID: GKI: arm64: gki_defconfig: Set CONFIG_SCSI_UFSHCD=m ANDROID: GKI: scsi: add option to override the command timeout ANDROID: GKI: scsi: Adjust DBD setting in mode sense for caching mode page per LLD ANDROID: add ion_stat tracepoint to common kernel UPSTREAM: gpu/trace: add a gpu total memory usage tracepoint Linux 4.19.117 mm/vmalloc.c: move 'area->pages' after if statement wil6210: remove reset file from debugfs wil6210: make sure Rx ring sizes are correlated wil6210: add general initialization/size checks wil6210: ignore HALP ICR if already handled wil6210: check rx_buff_mgmt before accessing it x86/resctrl: Fix invalid attempt at removing the default resource group x86/resctrl: Preserve CDP enable over CPU hotplug x86/microcode/AMD: Increase microcode PATCH_MAX_SIZE scsi: target: fix hang when multiple threads try to destroy the same iscsi session scsi: target: remove boilerplate code kvm: x86: Host feature SSBD doesn't imply guest feature SPEC_CTRL_SSBD ext4: do not zeroout extents beyond i_disksize drm/amd/powerplay: force the trim of the mclk dpm_levels if OD is enabled usb: dwc3: gadget: Don't clear flags before transfer ended usb: dwc3: gadget: don't enable interrupt when disabling endpoint mac80211_hwsim: Use kstrndup() in place of kasprintf() btrfs: check commit root generation in should_ignore_root tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation keys: Fix proc_keys_next to increase position index ALSA: usb-audio: Check mapping at creating connector controls, too ALSA: usb-audio: Don't create jack controls for PCM terminals ALSA: usb-audio: Don't override ignore_ctl_error value from the map ALSA: usb-audio: Filter error from connector kctl ops, too ASoC: Intel: mrfld: return error codes when an error occurs ASoC: Intel: mrfld: fix incorrect check on p->sink ext4: fix incorrect inodes per group in error message ext4: fix incorrect group count in ext4_fill_super error message pwm: pca9685: Fix PWM/GPIO inter-operation jbd2: improve comments about freeing data buffers whose page mapping is NULL scsi: ufs: Fix ufshcd_hold() caused scheduling while atomic ovl: fix value of i_ino for lower hardlink corner case net: dsa: mt7530: fix tagged frames pass-through in VLAN-unaware mode net: stmmac: dwmac-sunxi: Provide TX and RX fifo sizes net: revert default NAPI poll timeout to 2 jiffies net: qrtr: send msgs from local of same id as broadcast net: ipv6: do not consider routes via gateways for anycast address check net: ipv4: devinet: Fix crash when add/del multicast IP with autojoin hsr: check protocol version in hsr_newlink() amd-xgbe: Use __napi_schedule() in BH context ANDROID: GKI: drivers: of-thermal: Relate thermal zones using same sensor ANDROID: GKI: Bulk ABI update ANDROID: GKI: dma: Add set_dma_mask hook to struct dma_map_ops ANDROID: GKI: ABI update due to recent patches FROMLIST: drm/prime: add support for virtio exported objects FROMLIST: dma-buf: add support for virtio exported objects UPSTREAM: drm/virtio: module_param_named() requires linux/moduleparam.h UPSTREAM: drm/virtio: fix resource id creation race UPSTREAM: drm/virtio: make resource id workaround runtime switchable. BACKPORT: drm/virtio: Drop deprecated load/unload initialization ANDROID: GKI: Add DRM_TTM config to GKI ANDROID: Bulk update the ABI xml representation ANDROID: GKI: spmi: pmic-arb: don't enable SPMI_MSM_PMIC_ARB by default ANDROID: GKI: attribute page lock and waitqueue functions as sched ANDROID: GKI: extcon: Fix Add usage of blocking notifier chain ANDROID: GKI: USB: pd: Extcon fix for C current ANDROID: drm/dsi: Fix byte order of DCS set/get brightness ANDROID: GKI: mm: Export symbols to modularize CONFIG_MSM_DRM ANDROID: GKI: ALSA: compress: Add support to send codec specific data ANDROID: GKI: ALSA: Compress - dont use lock for all ioctls ANDROID: GKI: ASoC: msm: qdsp6v2: add support for AMR_WB_PLUS offload ANDROID: GKI: msm: dolby: MAT and THD audiocodec name modification ANDROID: GKI: asoc: msm: Add support for compressed perf mode ANDROID: GKI: msm: audio: support for gapless_pcm ANDROID: GKI: uapi: msm: dolby: Support for TrueHD and MAT decoders ANDROID: GKI: ASoC: msm: qdsp6v2: Add TrueHD HDMI compress pass-though ANDROID: GKI: ALSA: compress: Add APTX format support in ALSA ANDROID: GKI: msm: qdsp6v2: Add timestamp support for compress capture ANDROID: GKI: SoC: msm: Add support for meta data in compressed TX ANDROID: GKI: ALSA: compress: Add DSD format support for ALSA ANDROID: GKI: ASoC: msm: qdsp6v2: add support for ALAC and APE offload ANDROID: GKI: SoC: msm: Add compressed TX and passthrough support ANDROID: GKI: ASoC: msm: qdsp6v2: Add FLAC in compress offload path ANDROID: GKI: ASoC: msm: add support for different compressed formats ANDROID: GKI: ASoC: msm: Update the encode option and sample rate ANDROID: GKI: Enable CONFIG_SND_VERBOSE_PROCFS in gki_defconfig ANDROID: GKI: Add hidden CONFIG_SND_SOC_COMPRESS to gki_defconfig ANDROID: GKI: ALSA: pcm: add locks for accessing runtime resource ANDROID: GKI: Update ABI for DRM changes ANDROID: GKI: Add drm_dp_send_dpcd_{read,write} accessor functions ANDROID: GKI: drm: Add drm_dp_mst_get_max_sdp_streams_supported accessor function ANDROID: GKI: drm: Add drm_dp_mst_has_fec accessor function ANDROID: GKI: Add 'dsc_info' to struct drm_dp_mst_port ANDROID: GKI: usb: Add support to handle USB SMMU S1 address ANDROID: GKI: usb: Add helper APIs to return xhci phys addresses ANDROID: Add C protos for dma_buf/drm_prime get_uuid ANDROID: GKI: Make linux_banner a C pointer ANDROID: GKI: Add 'refresh_rate', 'id' to struct drm_panel_notifier ANDROID: GKI: Add 'i2c_mutex' to struct drm_dp_aux ANDROID: GKI: Add 'checksum' to struct drm_connector Revert "BACKPORT: drm: Add HDR source metadata property" Revert "BACKPORT: drm: Parse HDR metadata info from EDID" ANDROID: drm: Add DP colorspace property ANDROID: GKI: drm: Initialize display->hdmi when parsing vsdb ANDROID: drivers: gpu: drm: add support to batch commands ANDROID: ABI: update the qcom whitelist ANDROID: GKI: ARM64: smp: add vendor field pending_ipi ANDROID: gki_defconfig: enable msm serial early console ANDROID: serial: msm_geni_serial_console : Add Earlycon support ANDROID: GKI: serial: core: export uart_console_device f2fs: fix quota_sync failure due to f2fs_lock_op f2fs: support read iostat f2fs: Fix the accounting of dcc->undiscard_blks f2fs: fix to handle error path of f2fs_ra_meta_pages() f2fs: report the discard cmd errors properly f2fs: fix long latency due to discard during umount f2fs: add tracepoint for f2fs iostat f2fs: introduce sysfs/data_io_flag to attach REQ_META/FUA ANDROID: GKI: update abi definition due to previous changes in the tree Linux 4.19.116 efi/x86: Fix the deletion of variables in mixed mode mfd: dln2: Fix sanity checking for endpoints etnaviv: perfmon: fix total and idle HI cyleces readout misc: echo: Remove unnecessary parentheses and simplify check for zero powerpc/fsl_booke: Avoid creating duplicate tlb1 entry ftrace/kprobe: Show the maxactive number on kprobe_events drm: Remove PageReserved manipulation from drm_pci_alloc drm/dp_mst: Fix clearing payload state on topology disable Revert "drm/dp_mst: Remove VCPI while disabling topology mgr" crypto: ccree - only try to map auth tag if needed crypto: ccree - dec auth tag size from cryptlen map crypto: ccree - don't mangle the request assoclen crypto: ccree - zero out internal struct before use crypto: ccree - improve error handling crypto: caam - update xts sector size for large input length dm zoned: remove duplicate nr_rnd_zones increase in dmz_init_zone() btrfs: use nofs allocations for running delayed items powerpc: Make setjmp/longjmp signature standard powerpc: Add attributes for setjmp/longjmp scsi: mpt3sas: Fix kernel panic observed on soft HBA unplug powerpc/kprobes: Ignore traps that happened in real mode powerpc/xive: Use XIVE_BAD_IRQ instead of zero to catch non configured IPIs powerpc/hash64/devmap: Use H_PAGE_THP_HUGE when setting up huge devmap PTE entries powerpc/64/tm: Don't let userspace set regs->trap via sigreturn powerpc/powernv/idle: Restore AMR/UAMOR/AMOR after idle xen/blkfront: fix memory allocation flags in blkfront_setup_indirect() ipmi: fix hung processes in __get_guid() libata: Return correct status in sata_pmp_eh_recover_pm() when ATA_DFLAG_DETACH is set hfsplus: fix crash and filesystem corruption when deleting files cpufreq: powernv: Fix use-after-free kmod: make request_module() return an error when autoloading is disabled clk: ingenic/jz4770: Exit with error if CGU init failed Input: i8042 - add Acer Aspire 5738z to nomux list s390/diag: fix display of diagnose call statistics perf tools: Support Python 3.8+ in Makefile ocfs2: no need try to truncate file beyond i_size fs/filesystems.c: downgrade user-reachable WARN_ONCE() to pr_warn_once() ext4: fix a data race at inode->i_blocks NFS: Fix a page leak in nfs_destroy_unlinked_subrequests() powerpc/pseries: Avoid NULL pointer dereference when drmem is unavailable drm/etnaviv: rework perfmon query infrastructure rtc: omap: Use define directive for PIN_CONFIG_ACTIVE_HIGH selftests: vm: drop dependencies on page flags from mlock2 tests arm64: armv8_deprecated: Fix undef_hook mask for thumb setend scsi: zfcp: fix missing erp_lock in port recovery trigger for point-to-point dm verity fec: fix memory leak in verity_fec_dtr dm writecache: add cond_resched to avoid CPU hangs arm64: dts: allwinner: h6: Fix PMU compatible net: qualcomm: rmnet: Allow configuration updates to existing devices mm: Use fixed constant in page_frag_alloc instead of size + 1 tools: gpio: Fix out-of-tree build regression x86/speculation: Remove redundant arch_smt_update() invocation powerpc/pseries: Drop pointless static qualifier in vpa_debugfs_init() erofs: correct the remaining shrink objects crypto: mxs-dcp - fix scatterlist linearization for hash btrfs: fix missing semaphore unlock in btrfs_sync_file btrfs: fix missing file extent item for hole after ranged fsync btrfs: drop block from cache on error in relocation btrfs: set update the uuid generation as soon as possible Btrfs: fix crash during unmount due to race with delayed inode workers mtd: spinand: Do not erase the block before writing a bad block marker mtd: spinand: Stop using spinand->oobbuf for buffering bad block markers CIFS: Fix bug which the return value by asynchronous read is error KVM: VMX: fix crash cleanup when KVM wasn't used KVM: x86: Gracefully handle __vmalloc() failure during VM allocation KVM: VMX: Always VMCLEAR in-use VMCSes during crash with kexec support KVM: x86: Allocate new rmap and large page tracking when moving memslot KVM: s390: vsie: Fix delivery of addressing exceptions KVM: s390: vsie: Fix region 1 ASCE sanity shadow address checks KVM: nVMX: Properly handle userspace interrupt window request x86/entry/32: Add missing ASM_CLAC to general_protection entry signal: Extend exec_id to 64bits ath9k: Handle txpower changes even when TPC is disabled MIPS: OCTEON: irq: Fix potential NULL pointer dereference MIPS/tlbex: Fix LDDIR usage in setup_pw() for Loongson-3 pstore: pstore_ftrace_seq_next should increase position index irqchip/versatile-fpga: Apply clear-mask earlier KEYS: reaching the keys quotas correctly tpm: tpm2_bios_measurements_next should increase position index tpm: tpm1_bios_measurements_next should increase position index tpm: Don't make log failures fatal PCI: endpoint: Fix for concurrent memory allocation in OB address region PCI: Add boot interrupt quirk mechanism for Xeon chipsets PCI/ASPM: Clear the correct bits when enabling L1 substates PCI: pciehp: Fix indefinite wait on sysfs requests nvme: Treat discovery subsystems as unique subsystems nvme-fc: Revert "add module to ops template to allow module references" thermal: devfreq_cooling: inline all stubs for CONFIG_DEVFREQ_THERMAL=n acpi/x86: ignore unspecified bit positions in the ACPI global lock field media: ti-vpe: cal: fix disable_irqs to only the intended target ALSA: hda/realtek - Add quirk for MSI GL63 ALSA: hda/realtek - Remove now-unnecessary XPS 13 headphone noise fixups ALSA: hda/realtek - Set principled PC Beep configuration for ALC256 ALSA: doc: Document PC Beep Hidden Register on Realtek ALC256 ALSA: pcm: oss: Fix regression by buffer overflow fix ALSA: ice1724: Fix invalid access for enumerated ctl items ALSA: hda: Fix potential access overflow in beep helper ALSA: hda: Add driver blacklist ALSA: usb-audio: Add mixer workaround for TRX40 and co usb: gadget: composite: Inform controller driver of self-powered usb: gadget: f_fs: Fix use after free issue as part of queue failure ASoC: topology: use name_prefix for new kcontrol ASoC: dpcm: allow start or stop during pause for backend ASoC: dapm: connect virtual mux with default value ASoC: fix regwmask slub: improve bit diffusion for freelist ptr obfuscation uapi: rename ext2_swab() to swab() and share globally in swab.h IB/mlx5: Replace tunnel mpls capability bits for tunnel_offloads btrfs: track reloc roots based on their commit root bytenr btrfs: remove a BUG_ON() from merge_reloc_roots() btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued block, bfq: fix use-after-free in bfq_idle_slice_timer_body locking/lockdep: Avoid recursion in lockdep_count_{for,back}ward_deps() firmware: fix a double abort case with fw_load_sysfs_fallback md: check arrays is suspended in mddev_detach before call quiesce operations irqchip/gic-v4: Provide irq_retrigger to avoid circular locking dependency usb: dwc3: core: add support for disabling SS instances in park mode media: i2c: ov5695: Fix power on and off sequences block: Fix use-after-free issue accessing struct io_cq genirq/irqdomain: Check pointer in irq_domain_alloc_irqs_hierarchy() efi/x86: Ignore the memory attributes table on i386 x86/boot: Use unsigned comparison for addresses gfs2: Don't demote a glock until its revokes are written pstore/platform: fix potential mem leak if pstore_init_fs failed libata: Remove extra scsi_host_put() in ata_scsi_add_hosts() media: i2c: video-i2c: fix build errors due to 'imply hwmon' PCI/switchtec: Fix init_completion race condition with poll_wait() selftests/x86/ptrace_syscall_32: Fix no-vDSO segfault sched: Avoid scale real weight down to zero irqchip/versatile-fpga: Handle chained IRQs properly block: keep bdi->io_pages in sync with max_sectors_kb for stacked devices x86: Don't let pgprot_modify() change the page encryption bit xhci: bail out early if driver can't accress host in resume null_blk: fix spurious IO errors after failed past-wp access null_blk: Handle null_add_dev() failures properly null_blk: Fix the null_add_dev() error path firmware: arm_sdei: fix double-lock on hibernate with shared events media: venus: hfi_parser: Ignore HEVC encoding for V1 cpufreq: imx6q: Fixes unwanted cpu overclocking on i.MX6ULL i2c: st: fix missing struct parameter description qlcnic: Fix bad kzalloc null test cxgb4/ptp: pass the sign of offset delta in FW CMD hinic: fix wrong para of wait_for_completion_timeout hinic: fix a bug of waitting for IO stopped net: vxge: fix wrong __VA_ARGS__ usage bus: sunxi-rsb: Return correct data when mixing 16-bit and 8-bit reads ARM: dts: sun8i-a83t-tbs-a711: HM5065 doesn't like such a high voltage ANDROID: build.config.allmodconfig: Re-enable XFS_FS FROMGIT: of: property: Add device link support for extcon ANDROID: GKI: arm64: gki_defconfig: enable CONFIG_MM_EVENT_STAT ANDROID: GKI: add fields from per-process mm event tracking feature ANDROID: GKI: fix ABI diffs caused by ION heap and pool vmstat additions UPSTREAM: GKI: panic/reboot: allow specifying reboot_mode for panic only ANDROID: GKI: of: property: Add device link support for phys property ANDROID: GKI: usb: phy: Fix ABI diff for usb_otg_state ANDROID: GKI: usb: phy: Fix ABI diff due to usb_phy.drive_dp_pulse ANDROID: GKI: usb: phy: Fix ABI diff for usb_phy_type and usb_phy.reset ANDROID: gki_defconfig: enable CONFIG_GPIO_SYSFS ANDROID: GKI: qcom: Fix compile issue when setting msm_lmh_dcvs as a module ANDROID: GKI: drivers: cpu_cooling: allow platform freq mitigation ANDROID: GKI: ASoC: Add locking in DAPM widget power update ANDROID: GKI: ASoC: jack: Fix buttons enum value ANDROID: GKI: ALSA: jack: Add support to report second microphone ANDROID: GKI: ALSA: jack: Update supported jack switch types ANDROID: GKI: ALSA: jack: update jack types ANDROID: GKI: Export symbols arm_cpuidle_suspend, cpuidle_dev and cpuidle_register_governor ANDROID: GKI: usb: hcd: Add USB atomic notifier callback for HC died error ANDROID: media: increase video max frame number BACKPORT: nvmem: core: add NVMEM_SYSFS Kconfig UPSTREAM: nvmem: add support for cell info UPSTREAM: nvmem: remove the global cell list UPSTREAM: nvmem: use kref UPSTREAM: nvmem: use list_for_each_entry_safe in nvmem_device_remove_all_cells() UPSTREAM: nvmem: provide nvmem_dev_name() ANDROID: GKI: Bulk ABI update ANDROID: GKI: cpuhotplug: adding hotplug enums for vendor code ANDROID: Incremental fs: Fix create_file performance ANDROID: build.config.common: Add BUILDTOOLS_PREBUILT_BIN UPSTREAM: kheaders: include only headers into kheaders_data.tar.xz UPSTREAM: kheaders: remove meaningless -R option of 'ls' ANDROID: GKI: of: platform: initialize of_reserved_mem ANDROID: driver: gpu: drm: add notifier for panel related events ANDROID: include: drm: support unicasting mipi cmds to dsi ctrls ANDROID: include: drm: increase DRM max property count to 64 BACKPORT: drm: Add HDMI colorspace property ANDROID: drm: edid: add support for additional CEA extension blocks BACKPORT: drm: Parse HDR metadata info from EDID BACKPORT: drm: Add HDR source metadata property BACKPORT: drm/dp_mst: Parse FEC capability on MST ports ANDROID: GKI: ABI update for DRM changes ANDROID: ABI: add missing elf variables to representation ANDROID: GKI: power_supply: Add PROP_MOISTURE_DETECTION_ENABLED ANDROID: include: drm: add the definitions for DP Link Compliance tests ANDROID: drivers: gpu: drm: fix bugs encountered while fuzzing FROMLIST: power_supply: Add additional health properties to the header UPSTREAM: power: supply: core: Update sysfs-class-power ABI document UPSTREAM: Merge remote-tracking branch 'aosp/upstream-f2fs-stable-linux-4.19.y' into android-4.19 (v5.7-rc1) ANDROID: drivers: gpu: drm: add support for secure framebuffer ANDROID: include: uapi: drm: add additional QCOM modifiers ANDROID: drm: dsi: add two DSI mode flags for BLLP ANDROID: include: uapi: drm: add additional drm mode flags UPSTREAM: drm: plug memory leak on drm_setup() failure UPSTREAM: drm: factor out drm_close_helper() function ANDROID: GKI: Bulk ABI update BACKPORT: nl80211: Add per peer statistics to compute FCS error rate ANDROID: GKI: sound: usb: Add snd_usb_enable_audio_stream/find_snd_usb_substream ANDROID: GKI: add dma-buf includes ANDROID: GKI: sched: struct fields for Per-Sched-domain over utilization ANDROID: GKI: Add vendor fields to root_domain ANDROID: gki_defconfig: Enable CONFIG_IRQ_TIME_ACCOUNTING ANDROID: fix allmodconfig build to use the right toolchain ANDROID: fix allmodconfig build to use the right toolchain ANDROID: GKI: Update ABI Revert "UPSTREAM: mm, page_alloc: spread allocations across zones before introducing fragmentation" Revert "UPSTREAM: mm: use alloc_flags to record if kswapd can wake" Revert "BACKPORT: mm: move zone watermark accesses behind an accessor" Revert "BACKPORT: mm: reclaim small amounts of memory when an external fragmentation event occurs" Revert "BACKPORT: mm, compaction: be selective about what pageblocks to clear skip hints" ANDROID: GKI: panic: add vendor callback function in panic() UPSTREAM: GKI: thermal: make device_register's type argument const ANDROID: GKI: add base.h include to match MODULE_VERSIONS ANDROID: update the ABI based on the new whitelist ANDROID: GKI: fdt: export symbols required by modules ANDROID: GKI: drivers: of: Add APIs to find DDR device rank, HBB ANDROID: GKI: security: Add mmap export symbols for modules ANDROID: GKI: arch: add stub symbols for boot_reason and cold_boot ANDROID: GKI: USB: Fix ABI diff for struct usb_bus ANDROID: GKI: USB: Resolve ABI diff for usb_gadget and usb_gadget_ops ANDROID: GKI: add hidden V4L2_MEM2MEM_DEV ANDROID: GKI: enable VIDEO_V4L2_SUBDEV_API ANDROID: GKI: export symbols from abi_gki_aarch64_qcom_whitelist ANDROID: Update the whitelist for qcom SoCs ANDROID: Incremental fs: Fix compound page usercopy crash ANDROID: Incremental fs: Clean up incfs_test build process ANDROID: Incremental fs: make remount log buffer change atomic ANDROID: Incremental fs: Optimize get_filled_block ANDROID: Incremental fs: Fix mislabeled __user ptrs ANDROID: Incremental fs: Use 64-bit int for file_size when writing hash blocks Linux 4.19.115 drm/msm: Use the correct dma_sync calls in msm_gem drm_dp_mst_topology: fix broken drm_dp_sideband_parse_remote_dpcd_read() usb: dwc3: don't set gadget->is_otg flag rpmsg: glink: Remove chunk size word align warning arm64: Fix size of __early_cpu_boot_status drm/msm: stop abusing dma_map/unmap for cache clk: qcom: rcg: Return failure for RCG update fbcon: fix null-ptr-deref in fbcon_switch RDMA/cm: Update num_paths in cma_resolve_iboe_route error flow Bluetooth: RFCOMM: fix ODEBUG bug in rfcomm_dev_ioctl RDMA/cma: Teach lockdep about the order of rtnl and lock RDMA/ucma: Put a lock around every call to the rdma_cm layer ceph: canonicalize server path in place ceph: remove the extra slashes in the server path IB/hfi1: Fix memory leaks in sysfs registration and unregistration IB/hfi1: Call kobject_put() when kobject_init_and_add() fails ASoC: jz4740-i2s: Fix divider written at incorrect offset in register hwrng: imx-rngc - fix an error path tools/accounting/getdelays.c: fix netlink attribute length usb: dwc3: gadget: Wrap around when skip TRBs random: always use batched entropy for get_random_u{32,64} mlxsw: spectrum_flower: Do not stop at FLOW_ACTION_VLAN_MANGLE slcan: Don't transmit uninitialized stack data in padding net: stmmac: dwmac1000: fix out-of-bounds mac address reg setting net: phy: micrel: kszphy_resume(): add delay after genphy_resume() before accessing PHY registers net: dsa: bcm_sf2: Ensure correct sub-node is parsed net: dsa: bcm_sf2: Do not register slave MDIO bus with OF ipv6: don't auto-add link-local address to lag ports mm: mempolicy: require at least one nodeid for MPOL_PREFERRED include/linux/notifier.h: SRCU: fix ctags bitops: protect variables in set_mask_bits() macro padata: always acquire cpu_hotplug_lock before pinst->lock net: Fix Tx hash bound checking rxrpc: Fix sendmsg(MSG_WAITALL) handling ALSA: hda/ca0132 - Add Recon3Di quirk to handle integrated sound on EVGA X99 Classified motherboard power: supply: axp288_charger: Add special handling for HP Pavilion x2 10 extcon: axp288: Add wakeup support mei: me: add cedar fork device ids coresight: do not use the BIT() macro in the UAPI header misc: pci_endpoint_test: Avoid using module parameter to determine irqtype misc: pci_endpoint_test: Fix to support > 10 pci-endpoint-test devices misc: rtsx: set correct pcr_ops for rts522A media: rc: IR signal for Panasonic air conditioner too long drm/etnaviv: replace MMU flush marker with flush sequence tools/power turbostat: Fix missing SYS_LPI counter on some Chromebooks tools/power turbostat: Fix gcc build warnings drm/amdgpu: fix typo for vcn1 idle check initramfs: restore default compression behavior drm/bochs: downgrade pci_request_region failure from error to warning drm/amd/display: Add link_rate quirk for Apple 15" MBP 2017 nvme-rdma: Avoid double freeing of async event data sctp: fix possibly using a bad saddr with a given dst sctp: fix refcount bug in sctp_wfree net, ip_tunnel: fix interface lookup with no key ipv4: fix a RCU-list lock in fib_triestat_seq_show ANDROID: GKI: export symbols required by SPECTRA_CAMERA ANDROID: GKI: ARM/ARM64: Introduce arch_read_hardware_id ANDROID: GKI: drivers: base: soc: export symbols for socinfo ANDROID: GKI: Update ABI ANDROID: GKI: ASoC: msm: fix integer overflow for long duration offload playback ANDROID: GKI: Bulk ABI update Revert "ANDROID: GKI: mm: add struct/enum fields for SPECULATIVE_PAGE_FAULTS" ANDROID: GKI: Revert "arm64: kill flush_cache_all()" ANDROID: GKI: Revert "arm64: Remove unused macros from assembler.h" ANDROID: GKI: kernel/dma, mm/cma: Export symbols needed by vendor modules ANDROID: GKI: mm: Export symbols __next_zones_zonelist and zone_watermark_ok_safe ANDROID: GKI: mm/memblock: export memblock_overlaps_memory ANDROID: GKI: net, skbuff: export symbols needed by vendor drivers ANDROID: GKI: Add stub __cpu_isolated_mask symbol ANDROID: GKI: sched: stub sched_isolate symbols ANDROID: GKI: export saved_command_line ANDROID: GKI: Update ABI ANDROID: GKI: ASoC: core: Update ALSA core to issue restart in underrun. ANDROID: GKI: SoC: pcm: Add a restart callback field to struct snd_pcm_ops ANDROID: GKI: SoC: pcm: Add fields to struct snd_pcm_ops and struct snd_soc_component_driver ANDROID: GKI: ASoC: core: Add compat_ioctl callback to struct snd_pcm_ops ANDROID: GKI: ALSA: core: modify, rename and export create_subdir API ANDROID: GKI: usb: Add helper API to issue stop endpoint command ANDROID: GKI: Thermal: thermal_zone_get_cdev_by_name added ANDROID: GKI: add missing exports for CONFIG_ARM_SMMU=m ANDROID: power: wakeup_reason: wake reason enhancements BACKPORT: FROMGIT: kbuild: mkcompile_h: Include $LD version in /proc/version ANDROID: GKI: kernel: Export symbols needed by msm_minidump.ko and minidump_log.ko ubifs: wire up FS_IOC_GET_ENCRYPTION_NONCE f2fs: wire up FS_IOC_GET_ENCRYPTION_NONCE ext4: wire up FS_IOC_GET_ENCRYPTION_NONCE fscrypt: add FS_IOC_GET_ENCRYPTION_NONCE ioctl ANDROID: Bulk update the ABI xml ANDROID: gki_defconfig: add CONFIG_IPV6_SUBTREES ANDROID: GKI: arm64: reserve space in cpu_hwcaps and cpu_hwcap_keys arrays ANDROID: GKI: of: reserved_mem: Fix kmemleak crash on no-map region ANDROID: GKI: sched: add task boost vendor fields to task_struct ANDROID: GKI: mm: add rss counter for unreclaimable pages ANDROID: GKI: irqdomain: add bus token DOMAIN_BUS_WAKEUP ANDROID: GKI: arm64: fault: do_tlb_conf_fault_cb register fault callback ANDROID: GKI: QoS: Enhance framework to support cpu/irq specific QoS requests ANDROID: GKI: Bulk ABI update ANDROID: GKI: PM/devfreq: Do not switch governors from sysfs when device is suspended ANDROID: GKI: PM / devfreq: Fix race condition between suspend/resume and governor_store ANDROID: GKI: PM / devfreq: Introduce a sysfs lock ANDROID: GKI: regmap: irq: Add support to clear ack registers ANDROID: GKI: Remove SCHED_AUTOGROUP ANDROID: ignore compiler tag __must_check for GENKSYMS ANDROID: GKI: Bulk update ABI ANDROID: GKI: Fix ABI diff for struct thermal_cooling_device_ops ANDROID: GKI: ASoC: soc-core: export function to find components ANDROID: GKI: thermal: thermal_sys: Add configurable thermal trip points. ANDROID: fscrypt: fall back to filesystem-layer crypto when needed ANDROID: block: require drivers to declare supported crypto key type(s) ANDROID: block: make blk_crypto_start_using_mode() properly check for support ANDROID: GKI: power: supply: format regression ANDROID: GKI: kobject: increase number of kobject uevent pointers to 64 ANDROID: GKI: drivers: video: backlight: Fix ABI diff for struct backlight_device ANDROID: GKI: usb: xhci: Add support for secondary interrupters ANDROID: GKI: usb: host: xhci: Add support for usb core indexing ANDROID: gki_defconfig: enable USB_XHCI_HCD ANDROID: gki_defconfig: enable CONFIG_BRIDGE ANDROID: GKI: Update ABI report ANDROID: GKI: arm64: smp: Add set_update_ipi_history_callback ANDROID: kbuild: ensure __cfi_check is correctly aligned f2fs: keep inline_data when compression conversion f2fs: fix to disable compression on directory f2fs: add missing CONFIG_F2FS_FS_COMPRESSION f2fs: switch discard_policy.timeout to bool type f2fs: fix to verify tpage before releasing in f2fs_free_dic() f2fs: show compression in statx f2fs: clean up dic->tpages assignment f2fs: compress: support zstd compress algorithm f2fs: compress: add .{init,destroy}_decompress_ctx callback f2fs: compress: fix to call missing destroy_compress_ctx() f2fs: change default compression algorithm f2fs: clean up {cic,dic}.ref handling f2fs: fix to use f2fs_readpage_limit() in f2fs_read_multi_pages() f2fs: xattr.h: Make stub helpers inline f2fs: fix to avoid double unlock f2fs: fix potential .flags overflow on 32bit architecture f2fs: fix NULL pointer dereference in f2fs_verity_work() f2fs: fix to clear PG_error if fsverity failed f2fs: don't call fscrypt_get_encryption_info() explicitly in f2fs_tmpfile() f2fs: don't trigger data flush in foreground operation f2fs: fix NULL pointer dereference in f2fs_write_begin() f2fs: clean up f2fs_may_encrypt() f2fs: fix to avoid potential deadlock f2fs: don't change inode status under page lock f2fs: fix potential deadlock on compressed quota file f2fs: delete DIO read lock f2fs: don't mark compressed inode dirty during f2fs_iget() f2fs: fix to account compressed blocks in f2fs_compressed_blocks() f2fs: xattr.h: Replace zero-length array with flexible-array member f2fs: fix to update f2fs_super_block fields under sb_lock f2fs: Add a new CP flag to help fsck fix resize SPO issues f2fs: Fix mount failure due to SPO after a successful online resize FS f2fs: use kmem_cache pool during inline xattr lookups f2fs: skip migration only when BG_GC is called f2fs: fix to show tracepoint correctly f2fs: avoid __GFP_NOFAIL in f2fs_bio_alloc f2fs: introduce F2FS_IOC_GET_COMPRESS_BLOCKS f2fs: fix to avoid triggering IO in write path f2fs: add prefix for f2fs slab cache name f2fs: introduce DEFAULT_IO_TIMEOUT f2fs: skip GC when section is full f2fs: add migration count iff migration happens f2fs: clean up bggc mount option f2fs: clean up lfs/adaptive mount option f2fs: fix to show norecovery mount option f2fs: clean up parameter of macro XATTR_SIZE() f2fs: clean up codes with {f2fs_,}data_blkaddr() f2fs: show mounted time f2fs: Use scnprintf() for avoiding potential buffer overflow f2fs: allow to clear F2FS_COMPR_FL flag f2fs: fix to check dirty pages during compressed inode conversion f2fs: fix to account compressed inode correctly f2fs: fix wrong check on F2FS_IOC_FSSETXATTR f2fs: fix to avoid use-after-free in f2fs_write_multi_pages() f2fs: fix to avoid using uninitialized variable f2fs: fix inconsistent comments f2fs: remove i_sem lock coverage in f2fs_setxattr() f2fs: cover last_disk_size update with spinlock f2fs: fix to check i_compr_blocks correctly FROMLIST: kmod: make request_module() return an error when autoloading is disabled ANDROID: GKI: Update ABI report ANDROID: GKI: ARM64: dma-mapping: export symbol arch_setup_dma_ops ANDROID: GKI: ARM: dma-mapping: export symbol arch_setup_dma_ops ANDROID: GKI: ASoC: dapm: Avoid static route b/w cpu and codec dai ANDROID: GKI: ASoC: pcm: Add support for hostless playback/capture ANDROID: GKI: ASoC: core - add hostless DAI support ANDROID: GKI: drivers: thermal: Resolve ABI diff for struct thermal_zone_device_ops ANDROID: GKI: drivers: thermal: Add support for getting trip temperature ANDROID: GKI: Add functions of_thermal_handle_trip/of_thermal_handle_trip_temp ANDROID: GKI: drivers: thermal: Add post suspend evaluate flag to thermal zone devicetree UPSTREAM: loop: Only freeze block queue when needed. UPSTREAM: loop: Only change blocksize when needed. ANDROID: Fix wq fp check for CFI builds ANDROID: GKI: update abi definition after CONFIG_DEBUG_LIST was enabled ANDROID: gki_defconfig: enable CONFIG_DEBUG_LIST ANDROID: GKI: Update ABI definition ANDROID: GKI: remove condition causing sk_buff struct ABI differences ANDROID: GKI: Export symbol arch_timer_mem_get_cval ANDROID: GKI: pwm: core: Add option to config PWM duty/period with u64 data length ANDROID: Update ABI whitelist for qcom SoCs ANDROID: Incremental fs: Fix remount ANDROID: Incremental fs: Protect get_fill_block, and add a field ANDROID: Incremental fs: Fix crash polling 0 size read_log ANDROID: Incremental fs: get_filled_blocks: better index_out ANDROID: GKI: of: property: Add device links support for "qcom,wrapper-dev" ANDROID: GKI: update abi definitions due to recent changes ANDROID: GKI: clk: Initialize in stack clk_init_data to 0 in all drivers ANDROID: GKI: drivers: clksource: Add API to return cval ANDROID: GKI: clk: Add support for voltage voting ANDROID: GKI: kernel: Export task and IRQ affinity symbols ANDROID: GKI: regulator: core: Add support for regulator providers with sync state ANDROID: GKI: regulator: Call proxy-consumer functions for each regulator registered ANDROID: GKI: regulator: Add proxy consumer driver ANDROID: GKI: regulator: core: allow long device tree supply regulator property names ANDROID: GKI: Revert "regulator: Enable supply regulator if child rail is enabled." ANDROID: GKI: regulator: Remove redundant set_mode call in drms_uA_update ANDROID: GKI: net: Add the get current NAPI context API ANDROID: GKI: remove DRM_KMS_CMA_HELPER from GKI configuration ANDROID: GKI: edac: Fix ABI diffs in edac_device_ctl_info struct ANDROID: GKI: pwm: Add different PWM output types support UPSTREAM: cfg80211: Authentication offload to user space in AP mode Linux 4.19.114 arm64: dts: ls1046ardb: set RGMII interfaces to RGMII_ID mode arm64: dts: ls1043a-rdb: correct RGMII delay mode to rgmii-id ARM: dts: N900: fix onenand timings ARM: dts: imx6: phycore-som: fix arm and soc minimum voltage ARM: bcm2835-rpi-zero-w: Add missing pinctrl name ARM: dts: oxnas: Fix clear-mask property perf map: Fix off by one in strncpy() size argument arm64: alternative: fix build with clang integrated assembler net: ks8851-ml: Fix IO operations, again gpiolib: acpi: Add quirk to ignore EC wakeups on HP x2 10 CHT + AXP288 model bpf: Explicitly memset some bpf info structures declared on the stack bpf: Explicitly memset the bpf_attr structure platform/x86: pmc_atom: Add Lex 2I385SW to critclk_systems DMI table vt: vt_ioctl: fix use-after-free in vt_in_use() vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console vt: vt_ioctl: remove unnecessary console allocation checks vt: switch vt_dont_switch to bool vt: ioctl, switch VT_IS_IN_USE and VT_BUSY to inlines vt: selection, introduce vc_is_sel mac80211: fix authentication with iwlwifi/mvm mac80211: Check port authorization in the ieee80211_tx_dequeue() case media: xirlink_cit: add missing descriptor sanity checks media: stv06xx: add missing descriptor sanity checks media: dib0700: fix rc endpoint lookup media: ov519: add missing endpoint sanity checks libfs: fix infoleak in simple_attr_read() ahci: Add Intel Comet Lake H RAID PCI ID staging: wlan-ng: fix use-after-free Read in hfa384x_usbin_callback staging: wlan-ng: fix ODEBUG bug in prism2sta_disconnect_usb staging: rtl8188eu: Add ASUS USB-N10 Nano B1 to device table media: usbtv: fix control-message timeouts media: flexcop-usb: fix endpoint sanity check usb: musb: fix crash with highmen PIO and usbmon USB: serial: io_edgeport: fix slab-out-of-bounds read in edge_interrupt_callback USB: cdc-acm: restore capability check order USB: serial: option: add Wistron Neweb D19Q1 USB: serial: option: add BroadMobi BM806U USB: serial: option: add support for ASKEY WWHC050 mac80211: set IEEE80211_TX_CTRL_PORT_CTRL_PROTO for nl80211 TX mac80211: add option for setting control flags Revert "r8169: check that Realtek PHY driver module is loaded" vti6: Fix memory leak of skb if input policy check fails bpf/btf: Fix BTF verification of enum members in struct/union netfilter: nft_fwd_netdev: validate family and chain type netfilter: flowtable: reload ip{v6}h in nf_flow_tuple_ip{v6} afs: Fix some tracing details xfrm: policy: Fix doulbe free in xfrm_policy_timer xfrm: add the missing verify_sec_ctx_len check in xfrm_add_acquire xfrm: fix uctx len check in verify_sec_ctx_len RDMA/mlx5: Block delay drop to unprivileged users vti[6]: fix packet tx through bpf_redirect() in XinY cases xfrm: handle NETDEV_UNREGISTER for xfrm device genirq: Fix reference leaks on irq affinity notifiers RDMA/core: Ensure security pkey modify is not lost gpiolib: acpi: Add quirk to ignore EC wakeups on HP x2 10 BYT + AXP288 model gpiolib: acpi: Rework honor_wakeup option into an ignore_wake option gpiolib: acpi: Correct comment for HP x2 10 honor_wakeup quirk mac80211: mark station unauthorized before key removal nl80211: fix NL80211_ATTR_CHANNEL_WIDTH attribute type scsi: sd: Fix optimal I/O size for devices that change reported values scripts/dtc: Remove redundant YYLOC global declaration tools: Let O= makes handle a relative path with -C option perf probe: Do not depend on dwfl_module_addrsym() ARM: dts: omap5: Add bus_dma_limit for L3 bus ARM: dts: dra7: Add bus_dma_limit for L3 bus ceph: check POOL_FLAG_FULL/NEARFULL in addition to OSDMAP_FULL/NEARFULL Input: avoid BIT() macro usage in the serio.h UAPI header Input: synaptics - enable RMI on HP Envy 13-ad105ng Input: raydium_i2c_ts - fix error codes in raydium_i2c_boot_trigger() i2c: hix5hd2: add missed clk_disable_unprepare in remove ftrace/x86: Anotate text_mutex split between ftrace_arch_code_modify_post_process() and ftrace_arch_code_modify_prepare() sxgbe: Fix off by one in samsung driver strncpy size arg dpaa_eth: Remove unnecessary boolean expression in dpaa_get_headroom mac80211: Do not send mesh HWMP PREQ if HWMP is disabled scsi: ipr: Fix softlockup when rescanning devices in petitboot s390/qeth: handle error when backing RX buffer fsl/fman: detect FMan erratum A050385 arm64: dts: ls1043a: FMan erratum A050385 dt-bindings: net: FMan erratum A050385 cgroup1: don't call release_agent when it is "" drivers/of/of_mdio.c:fix of_mdiobus_register() cpupower: avoid multiple definition with gcc -fno-common nfs: add minor version to nfs_server_key for fscache cgroup-v1: cgroup_pidlist_next should update position index hsr: set .netnsok flag hsr: add restart routine into hsr_get_node_list() hsr: use rcu_read_lock() in hsr_get_node_{list/status}() vxlan: check return value of gro_cells_init() tcp: repair: fix TCP_QUEUE_SEQ implementation r8169: re-enable MSI on RTL8168c net: phy: mdio-mux-bcm-iproc: check clk_prepare_enable() return value net: dsa: mt7530: Change the LINK bit to reflect the link status net: ip_gre: Accept IFLA_INFO_DATA-less configuration net: ip_gre: Separate ERSPAN newlink / changelink callbacks bnxt_en: Reset rings if ring reservation fails during open() bnxt_en: fix memory leaks in bnxt_dcbnl_ieee_getets() slcan: not call free_netdev before rtnl_unlock in slcan_open NFC: fdp: Fix a signedness bug in fdp_nci_send_patch() net: stmmac: dwmac-rk: fix error path in rk_gmac_probe net_sched: keep alloc_hash updated after hash allocation net_sched: cls_route: remove the right filter from hashtable net: qmi_wwan: add support for ASKEY WWHC050 net/packet: tpacket_rcv: avoid a producer race condition net: mvneta: Fix the case where the last poll did not process all rx net: dsa: Fix duplicate frames flooded by learning net: cbs: Fix software cbs to consider packet sending time mlxsw: spectrum_mr: Fix list iteration in error path macsec: restrict to ethernet devices hsr: fix general protection fault in hsr_addr_is_self() geneve: move debug check after netdev unregister Revert "drm/dp_mst: Skip validating ports during destruction, just ref" mmc: sdhci-tegra: Fix busy detection by enabling MMC_CAP_NEED_RSP_BUSY mmc: sdhci-omap: Fix busy detection by enabling MMC_CAP_NEED_RSP_BUSY mmc: core: Respect MMC_CAP_NEED_RSP_BUSY for eMMC sleep command mmc: core: Respect MMC_CAP_NEED_RSP_BUSY for erase/trim/discard mmc: core: Allow host controllers to require R1B for CMD6 f2fs: fix to avoid potential deadlock f2fs: add missing function name in kernel message f2fs: recycle unused compress_data.chksum feild f2fs: fix to avoid NULL pointer dereference f2fs: fix leaking uninitialized memory in compressed clusters f2fs: fix the panic in do_checkpoint() f2fs: fix to wait all node page writeback mm/swapfile.c: move inode_lock out of claim_swapfile fscrypt: don't evict dirty inodes after removing key Conflicts: Documentation/arm64/silicon-errata.txt Documentation/devicetree/bindings Documentation/devicetree/bindings/net/fsl-fman.txt arch/arm/kernel/setup.c arch/arm/kernel/smp.c arch/arm/mm/dma-mapping.c arch/arm64/Kconfig arch/arm64/Makefile arch/arm64/include/asm/cpucaps.h arch/arm64/include/asm/cputype.h arch/arm64/include/asm/proc-fns.h arch/arm64/include/asm/traps.h arch/arm64/kernel/arm64ksyms.c arch/arm64/kernel/cpu_errata.c arch/arm64/kernel/setup.c arch/arm64/kernel/smp.c arch/arm64/mm/dma-mapping.c arch/arm64/mm/fault.c arch/arm64/mm/proc.S drivers/base/power/wakeup.c drivers/clk/clk.c drivers/clk/qcom/clk-rcg2.c drivers/clocksource/arm_arch_timer.c drivers/devfreq/devfreq.c drivers/devfreq/governor_simpleondemand.c drivers/dma-buf/dma-buf.c drivers/extcon/extcon.c drivers/gpu/Makefile drivers/gpu/drm/drm_connector.c drivers/gpu/drm/drm_dp_mst_topology.c drivers/gpu/drm/drm_edid.c drivers/gpu/drm/drm_file.c drivers/gpu/drm/drm_panel.c drivers/gpu/drm/drm_property.c drivers/iommu/Kconfig drivers/iommu/Makefile drivers/iommu/arm-smmu.c drivers/iommu/dma-iommu.c drivers/iommu/dma-mapping-fast.c drivers/iommu/io-pgtable-arm.c drivers/iommu/io-pgtable-fast.c drivers/iommu/io-pgtable.c drivers/iommu/iommu.c drivers/irqchip/irq-gic-v3.c drivers/media/v4l2-core/v4l2-ioctl.c drivers/mmc/core/Kconfig drivers/mmc/core/block.c drivers/mmc/core/queue.c drivers/mmc/host/cqhci.c drivers/mmc/host/sdhci-msm.c drivers/net/wireless/ath/wil6210/interrupt.c drivers/net/wireless/ath/wil6210/main.c drivers/net/wireless/ath/wil6210/wil6210.h drivers/net/wireless/ath/wil6210/wmi.c drivers/nvmem/core.c drivers/nvmem/nvmem-sysfs.c drivers/of/fdt.c drivers/power/supply/power_supply_sysfs.c drivers/pwm/sysfs.c drivers/regulator/core.c drivers/scsi/sd.c drivers/scsi/ufs/ufshcd.c drivers/tty/serial/Kconfig drivers/tty/serial/Makefile drivers/usb/common/common.c fs/crypto/crypto.c fs/f2fs/checkpoint.c fs/f2fs/f2fs.h include/drm/drm_connector.h include/drm/drm_dp_mst_helper.h include/drm/drm_panel.h include/linux/clk-provider.h include/linux/dma-buf.h include/linux/dma-mapping-fast.h include/linux/dma-mapping.h include/linux/extcon.h include/linux/io-pgtable.h include/linux/iommu.h include/linux/kobject.h include/linux/mm.h include/linux/mm_types.h include/linux/mmc/host.h include/linux/netdevice.h include/linux/power_supply.h include/linux/pwm.h include/linux/regulator/driver.h include/linux/thermal.h include/linux/vm_event_item.h include/net/cfg80211.h include/scsi/scsi_device.h include/sound/pcm.h include/sound/soc.h include/uapi/drm/drm_mode.h include/uapi/linux/coresight-stm.h include/uapi/linux/ip.h include/uapi/linux/nl80211.h include/uapi/linux/videodev2.h include/uapi/sound/compress_offload.h kernel/dma/coherent.c kernel/dma/mapping.c kernel/panic.c kernel/power/qos.c kernel/sched/sched.h mm/Kconfig mm/filemap.c mm/swapfile.c mm/vmalloc.c mm/vmstat.c net/qrtr/qrtr.c net/wireless/nl80211.c net/wireless/scan.c sound/core/compress_offload.c sound/soc/soc-core.c sound/usb/card.c sound/usb/pcm.c sound/usb/pcm.h sound/usb/usbaudio.h Fixed build errors: drivers/base/power/main.c drivers/thermal/thermal_core.c drivers/cpuidle/lpm-levels.c include/soc/qcom/lpm_levels.h Change-Id: Idf25b239f53681bdfa2ef371a91720fadf1a3f01 Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
5886 lines
162 KiB
C
5886 lines
162 KiB
C
/*
|
|
* kernel/workqueue.c - generic async execution with shared worker pool
|
|
*
|
|
* Copyright (C) 2002 Ingo Molnar
|
|
*
|
|
* Derived from the taskqueue/keventd code by:
|
|
* David Woodhouse <dwmw2@infradead.org>
|
|
* Andrew Morton
|
|
* Kai Petzke <wpp@marie.physik.tu-berlin.de>
|
|
* Theodore Ts'o <tytso@mit.edu>
|
|
*
|
|
* Made to use alloc_percpu by Christoph Lameter.
|
|
*
|
|
* Copyright (C) 2010 SUSE Linux Products GmbH
|
|
* Copyright (C) 2010 Tejun Heo <tj@kernel.org>
|
|
*
|
|
* This is the generic async execution mechanism. Work items as are
|
|
* executed in process context. The worker pool is shared and
|
|
* automatically managed. There are two worker pools for each CPU (one for
|
|
* normal work items and the other for high priority ones) and some extra
|
|
* pools for workqueues which are not bound to any specific CPU - the
|
|
* number of these backing pools is dynamic.
|
|
*
|
|
* Please read Documentation/core-api/workqueue.rst for details.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/isolation.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "workqueue_internal.h"
|
|
|
|
enum {
|
|
/*
|
|
* worker_pool flags
|
|
*
|
|
* A bound pool is either associated or disassociated with its CPU.
|
|
* While associated (!DISASSOCIATED), all workers are bound to the
|
|
* CPU and none has %WORKER_UNBOUND set and concurrency management
|
|
* is in effect.
|
|
*
|
|
* While DISASSOCIATED, the cpu may be offline and all workers have
|
|
* %WORKER_UNBOUND set and concurrency management disabled, and may
|
|
* be executing on any CPU. The pool behaves as an unbound one.
|
|
*
|
|
* Note that DISASSOCIATED should be flipped only while holding
|
|
* wq_pool_attach_mutex to avoid changing binding state while
|
|
* worker_attach_to_pool() is in progress.
|
|
*/
|
|
POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
|
|
POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
|
|
|
|
/* worker flags */
|
|
WORKER_DIE = 1 << 1, /* die die die */
|
|
WORKER_IDLE = 1 << 2, /* is idle */
|
|
WORKER_PREP = 1 << 3, /* preparing to run works */
|
|
WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
|
|
WORKER_UNBOUND = 1 << 7, /* worker is unbound */
|
|
WORKER_REBOUND = 1 << 8, /* worker was rebound */
|
|
|
|
WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
|
|
WORKER_UNBOUND | WORKER_REBOUND,
|
|
|
|
NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
|
|
|
|
UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
|
|
BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
|
|
|
|
MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
|
|
IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
|
|
|
|
MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
|
|
/* call for help after 10ms
|
|
(min two ticks) */
|
|
MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
|
|
CREATE_COOLDOWN = HZ, /* time to breath after fail */
|
|
|
|
/*
|
|
* Rescue workers are used only on emergencies and shared by
|
|
* all cpus. Give MIN_NICE.
|
|
*/
|
|
RESCUER_NICE_LEVEL = MIN_NICE,
|
|
HIGHPRI_NICE_LEVEL = MIN_NICE,
|
|
|
|
WQ_NAME_LEN = 24,
|
|
};
|
|
|
|
/*
|
|
* Structure fields follow one of the following exclusion rules.
|
|
*
|
|
* I: Modifiable by initialization/destruction paths and read-only for
|
|
* everyone else.
|
|
*
|
|
* P: Preemption protected. Disabling preemption is enough and should
|
|
* only be modified and accessed from the local cpu.
|
|
*
|
|
* L: pool->lock protected. Access with pool->lock held.
|
|
*
|
|
* X: During normal operation, modification requires pool->lock and should
|
|
* be done only from local cpu. Either disabling preemption on local
|
|
* cpu or grabbing pool->lock is enough for read access. If
|
|
* POOL_DISASSOCIATED is set, it's identical to L.
|
|
*
|
|
* A: wq_pool_attach_mutex protected.
|
|
*
|
|
* PL: wq_pool_mutex protected.
|
|
*
|
|
* PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
|
|
*
|
|
* PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
|
|
*
|
|
* PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
|
|
* sched-RCU for reads.
|
|
*
|
|
* WQ: wq->mutex protected.
|
|
*
|
|
* WR: wq->mutex protected for writes. Sched-RCU protected for reads.
|
|
*
|
|
* MD: wq_mayday_lock protected.
|
|
*/
|
|
|
|
/* struct worker is defined in workqueue_internal.h */
|
|
|
|
struct worker_pool {
|
|
spinlock_t lock; /* the pool lock */
|
|
int cpu; /* I: the associated cpu */
|
|
int node; /* I: the associated node ID */
|
|
int id; /* I: pool ID */
|
|
unsigned int flags; /* X: flags */
|
|
|
|
unsigned long watchdog_ts; /* L: watchdog timestamp */
|
|
|
|
struct list_head worklist; /* L: list of pending works */
|
|
|
|
int nr_workers; /* L: total number of workers */
|
|
int nr_idle; /* L: currently idle workers */
|
|
|
|
struct list_head idle_list; /* X: list of idle workers */
|
|
struct timer_list idle_timer; /* L: worker idle timeout */
|
|
struct timer_list mayday_timer; /* L: SOS timer for workers */
|
|
|
|
/* a workers is either on busy_hash or idle_list, or the manager */
|
|
DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
|
|
/* L: hash of busy workers */
|
|
|
|
struct worker *manager; /* L: purely informational */
|
|
struct list_head workers; /* A: attached workers */
|
|
struct completion *detach_completion; /* all workers detached */
|
|
|
|
struct ida worker_ida; /* worker IDs for task name */
|
|
|
|
struct workqueue_attrs *attrs; /* I: worker attributes */
|
|
struct hlist_node hash_node; /* PL: unbound_pool_hash node */
|
|
int refcnt; /* PL: refcnt for unbound pools */
|
|
|
|
/*
|
|
* The current concurrency level. As it's likely to be accessed
|
|
* from other CPUs during try_to_wake_up(), put it in a separate
|
|
* cacheline.
|
|
*/
|
|
atomic_t nr_running ____cacheline_aligned_in_smp;
|
|
|
|
/*
|
|
* Destruction of pool is sched-RCU protected to allow dereferences
|
|
* from get_work_pool().
|
|
*/
|
|
struct rcu_head rcu;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
/*
|
|
* The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
|
|
* of work_struct->data are used for flags and the remaining high bits
|
|
* point to the pwq; thus, pwqs need to be aligned at two's power of the
|
|
* number of flag bits.
|
|
*/
|
|
struct pool_workqueue {
|
|
struct worker_pool *pool; /* I: the associated pool */
|
|
struct workqueue_struct *wq; /* I: the owning workqueue */
|
|
int work_color; /* L: current color */
|
|
int flush_color; /* L: flushing color */
|
|
int refcnt; /* L: reference count */
|
|
int nr_in_flight[WORK_NR_COLORS];
|
|
/* L: nr of in_flight works */
|
|
int nr_active; /* L: nr of active works */
|
|
int max_active; /* L: max active works */
|
|
struct list_head delayed_works; /* L: delayed works */
|
|
struct list_head pwqs_node; /* WR: node on wq->pwqs */
|
|
struct list_head mayday_node; /* MD: node on wq->maydays */
|
|
|
|
/*
|
|
* Release of unbound pwq is punted to system_wq. See put_pwq()
|
|
* and pwq_unbound_release_workfn() for details. pool_workqueue
|
|
* itself is also sched-RCU protected so that the first pwq can be
|
|
* determined without grabbing wq->mutex.
|
|
*/
|
|
struct work_struct unbound_release_work;
|
|
struct rcu_head rcu;
|
|
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
|
|
|
|
/*
|
|
* Structure used to wait for workqueue flush.
|
|
*/
|
|
struct wq_flusher {
|
|
struct list_head list; /* WQ: list of flushers */
|
|
int flush_color; /* WQ: flush color waiting for */
|
|
struct completion done; /* flush completion */
|
|
};
|
|
|
|
struct wq_device;
|
|
|
|
/*
|
|
* The externally visible workqueue. It relays the issued work items to
|
|
* the appropriate worker_pool through its pool_workqueues.
|
|
*/
|
|
struct workqueue_struct {
|
|
struct list_head pwqs; /* WR: all pwqs of this wq */
|
|
struct list_head list; /* PR: list of all workqueues */
|
|
|
|
struct mutex mutex; /* protects this wq */
|
|
int work_color; /* WQ: current work color */
|
|
int flush_color; /* WQ: current flush color */
|
|
atomic_t nr_pwqs_to_flush; /* flush in progress */
|
|
struct wq_flusher *first_flusher; /* WQ: first flusher */
|
|
struct list_head flusher_queue; /* WQ: flush waiters */
|
|
struct list_head flusher_overflow; /* WQ: flush overflow list */
|
|
|
|
struct list_head maydays; /* MD: pwqs requesting rescue */
|
|
struct worker *rescuer; /* I: rescue worker */
|
|
|
|
int nr_drainers; /* WQ: drain in progress */
|
|
int saved_max_active; /* WQ: saved pwq max_active */
|
|
|
|
struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
|
|
struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
struct wq_device *wq_dev; /* I: for sysfs interface */
|
|
#endif
|
|
#ifdef CONFIG_LOCKDEP
|
|
struct lockdep_map lockdep_map;
|
|
#endif
|
|
char name[WQ_NAME_LEN]; /* I: workqueue name */
|
|
|
|
/*
|
|
* Destruction of workqueue_struct is sched-RCU protected to allow
|
|
* walking the workqueues list without grabbing wq_pool_mutex.
|
|
* This is used to dump all workqueues from sysrq.
|
|
*/
|
|
struct rcu_head rcu;
|
|
|
|
/* hot fields used during command issue, aligned to cacheline */
|
|
unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
|
|
struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
|
|
struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
|
|
};
|
|
|
|
static struct kmem_cache *pwq_cache;
|
|
|
|
static cpumask_var_t *wq_numa_possible_cpumask;
|
|
/* possible CPUs of each node */
|
|
|
|
static bool wq_disable_numa;
|
|
module_param_named(disable_numa, wq_disable_numa, bool, 0444);
|
|
|
|
/* see the comment above the definition of WQ_POWER_EFFICIENT */
|
|
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
|
|
module_param_named(power_efficient, wq_power_efficient, bool, 0444);
|
|
|
|
static bool wq_online; /* can kworkers be created yet? */
|
|
|
|
static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
|
|
|
|
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
|
|
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
|
|
|
|
static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
|
|
static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
|
|
static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
|
|
static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
|
|
|
|
static LIST_HEAD(workqueues); /* PR: list of all workqueues */
|
|
static bool workqueue_freezing; /* PL: have wqs started freezing? */
|
|
|
|
/* PL: allowable cpus for unbound wqs and work items */
|
|
static cpumask_var_t wq_unbound_cpumask;
|
|
|
|
/* CPU where unbound work was last round robin scheduled from this CPU */
|
|
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
|
|
|
|
/*
|
|
* Local execution of unbound work items is no longer guaranteed. The
|
|
* following always forces round-robin CPU selection on unbound work items
|
|
* to uncover usages which depend on it.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
|
|
static bool wq_debug_force_rr_cpu = true;
|
|
#else
|
|
static bool wq_debug_force_rr_cpu = false;
|
|
#endif
|
|
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
|
|
|
|
/* the per-cpu worker pools */
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
|
|
|
|
static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
|
|
|
|
/* PL: hash of all unbound pools keyed by pool->attrs */
|
|
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
|
|
|
|
/* I: attributes used when instantiating standard unbound pools on demand */
|
|
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
|
|
|
|
/* I: attributes used when instantiating ordered pools on demand */
|
|
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
|
|
|
|
struct workqueue_struct *system_wq __read_mostly;
|
|
EXPORT_SYMBOL(system_wq);
|
|
struct workqueue_struct *system_highpri_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_highpri_wq);
|
|
struct workqueue_struct *system_long_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_long_wq);
|
|
struct workqueue_struct *system_unbound_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_unbound_wq);
|
|
struct workqueue_struct *system_freezable_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_freezable_wq);
|
|
struct workqueue_struct *system_power_efficient_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
|
|
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
|
|
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
|
|
|
|
static int worker_thread(void *__worker);
|
|
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/workqueue.h>
|
|
|
|
#define assert_rcu_or_pool_mutex() \
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
|
|
!lockdep_is_held(&wq_pool_mutex), \
|
|
"sched RCU or wq_pool_mutex should be held")
|
|
|
|
#define assert_rcu_or_wq_mutex(wq) \
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
|
|
!lockdep_is_held(&wq->mutex), \
|
|
"sched RCU or wq->mutex should be held")
|
|
|
|
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
|
|
!lockdep_is_held(&wq->mutex) && \
|
|
!lockdep_is_held(&wq_pool_mutex), \
|
|
"sched RCU, wq->mutex or wq_pool_mutex should be held")
|
|
|
|
#define for_each_cpu_worker_pool(pool, cpu) \
|
|
for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
|
|
(pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
|
|
(pool)++)
|
|
|
|
/**
|
|
* for_each_pool - iterate through all worker_pools in the system
|
|
* @pool: iteration cursor
|
|
* @pi: integer used for iteration
|
|
*
|
|
* This must be called either with wq_pool_mutex held or sched RCU read
|
|
* locked. If the pool needs to be used beyond the locking in effect, the
|
|
* caller is responsible for guaranteeing that the pool stays online.
|
|
*
|
|
* The if/else clause exists only for the lockdep assertion and can be
|
|
* ignored.
|
|
*/
|
|
#define for_each_pool(pool, pi) \
|
|
idr_for_each_entry(&worker_pool_idr, pool, pi) \
|
|
if (({ assert_rcu_or_pool_mutex(); false; })) { } \
|
|
else
|
|
|
|
/**
|
|
* for_each_pool_worker - iterate through all workers of a worker_pool
|
|
* @worker: iteration cursor
|
|
* @pool: worker_pool to iterate workers of
|
|
*
|
|
* This must be called with wq_pool_attach_mutex.
|
|
*
|
|
* The if/else clause exists only for the lockdep assertion and can be
|
|
* ignored.
|
|
*/
|
|
#define for_each_pool_worker(worker, pool) \
|
|
list_for_each_entry((worker), &(pool)->workers, node) \
|
|
if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
|
|
else
|
|
|
|
/**
|
|
* for_each_pwq - iterate through all pool_workqueues of the specified workqueue
|
|
* @pwq: iteration cursor
|
|
* @wq: the target workqueue
|
|
*
|
|
* This must be called either with wq->mutex held or sched RCU read locked.
|
|
* If the pwq needs to be used beyond the locking in effect, the caller is
|
|
* responsible for guaranteeing that the pwq stays online.
|
|
*
|
|
* The if/else clause exists only for the lockdep assertion and can be
|
|
* ignored.
|
|
*/
|
|
#define for_each_pwq(pwq, wq) \
|
|
list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
|
|
if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
|
|
else
|
|
|
|
#ifdef CONFIG_DEBUG_OBJECTS_WORK
|
|
|
|
static struct debug_obj_descr work_debug_descr;
|
|
|
|
static void *work_debug_hint(void *addr)
|
|
{
|
|
return ((struct work_struct *) addr)->func;
|
|
}
|
|
|
|
static bool work_is_static_object(void *addr)
|
|
{
|
|
struct work_struct *work = addr;
|
|
|
|
return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
|
|
}
|
|
|
|
/*
|
|
* fixup_init is called when:
|
|
* - an active object is initialized
|
|
*/
|
|
static bool work_fixup_init(void *addr, enum debug_obj_state state)
|
|
{
|
|
struct work_struct *work = addr;
|
|
|
|
switch (state) {
|
|
case ODEBUG_STATE_ACTIVE:
|
|
cancel_work_sync(work);
|
|
debug_object_init(work, &work_debug_descr);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fixup_free is called when:
|
|
* - an active object is freed
|
|
*/
|
|
static bool work_fixup_free(void *addr, enum debug_obj_state state)
|
|
{
|
|
struct work_struct *work = addr;
|
|
|
|
switch (state) {
|
|
case ODEBUG_STATE_ACTIVE:
|
|
cancel_work_sync(work);
|
|
debug_object_free(work, &work_debug_descr);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static struct debug_obj_descr work_debug_descr = {
|
|
.name = "work_struct",
|
|
.debug_hint = work_debug_hint,
|
|
.is_static_object = work_is_static_object,
|
|
.fixup_init = work_fixup_init,
|
|
.fixup_free = work_fixup_free,
|
|
};
|
|
|
|
static inline void debug_work_activate(struct work_struct *work)
|
|
{
|
|
debug_object_activate(work, &work_debug_descr);
|
|
}
|
|
|
|
static inline void debug_work_deactivate(struct work_struct *work)
|
|
{
|
|
debug_object_deactivate(work, &work_debug_descr);
|
|
}
|
|
|
|
void __init_work(struct work_struct *work, int onstack)
|
|
{
|
|
if (onstack)
|
|
debug_object_init_on_stack(work, &work_debug_descr);
|
|
else
|
|
debug_object_init(work, &work_debug_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__init_work);
|
|
|
|
void destroy_work_on_stack(struct work_struct *work)
|
|
{
|
|
debug_object_free(work, &work_debug_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(destroy_work_on_stack);
|
|
|
|
void destroy_delayed_work_on_stack(struct delayed_work *work)
|
|
{
|
|
destroy_timer_on_stack(&work->timer);
|
|
debug_object_free(&work->work, &work_debug_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
|
|
|
|
#else
|
|
static inline void debug_work_activate(struct work_struct *work) { }
|
|
static inline void debug_work_deactivate(struct work_struct *work) { }
|
|
#endif
|
|
|
|
/**
|
|
* worker_pool_assign_id - allocate ID and assing it to @pool
|
|
* @pool: the pool pointer of interest
|
|
*
|
|
* Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
|
|
* successfully, -errno on failure.
|
|
*/
|
|
static int worker_pool_assign_id(struct worker_pool *pool)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
|
|
GFP_KERNEL);
|
|
if (ret >= 0) {
|
|
pool->id = ret;
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* unbound_pwq_by_node - return the unbound pool_workqueue for the given node
|
|
* @wq: the target workqueue
|
|
* @node: the node ID
|
|
*
|
|
* This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
|
|
* read locked.
|
|
* If the pwq needs to be used beyond the locking in effect, the caller is
|
|
* responsible for guaranteeing that the pwq stays online.
|
|
*
|
|
* Return: The unbound pool_workqueue for @node.
|
|
*/
|
|
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
|
|
int node)
|
|
{
|
|
assert_rcu_or_wq_mutex_or_pool_mutex(wq);
|
|
|
|
/*
|
|
* XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
|
|
* delayed item is pending. The plan is to keep CPU -> NODE
|
|
* mapping valid and stable across CPU on/offlines. Once that
|
|
* happens, this workaround can be removed.
|
|
*/
|
|
if (unlikely(node == NUMA_NO_NODE))
|
|
return wq->dfl_pwq;
|
|
|
|
return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
|
|
}
|
|
|
|
static unsigned int work_color_to_flags(int color)
|
|
{
|
|
return color << WORK_STRUCT_COLOR_SHIFT;
|
|
}
|
|
|
|
static int get_work_color(struct work_struct *work)
|
|
{
|
|
return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
|
|
((1 << WORK_STRUCT_COLOR_BITS) - 1);
|
|
}
|
|
|
|
static int work_next_color(int color)
|
|
{
|
|
return (color + 1) % WORK_NR_COLORS;
|
|
}
|
|
|
|
/*
|
|
* While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
|
|
* contain the pointer to the queued pwq. Once execution starts, the flag
|
|
* is cleared and the high bits contain OFFQ flags and pool ID.
|
|
*
|
|
* set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
|
|
* and clear_work_data() can be used to set the pwq, pool or clear
|
|
* work->data. These functions should only be called while the work is
|
|
* owned - ie. while the PENDING bit is set.
|
|
*
|
|
* get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
|
|
* corresponding to a work. Pool is available once the work has been
|
|
* queued anywhere after initialization until it is sync canceled. pwq is
|
|
* available only while the work item is queued.
|
|
*
|
|
* %WORK_OFFQ_CANCELING is used to mark a work item which is being
|
|
* canceled. While being canceled, a work item may have its PENDING set
|
|
* but stay off timer and worklist for arbitrarily long and nobody should
|
|
* try to steal the PENDING bit.
|
|
*/
|
|
static inline void set_work_data(struct work_struct *work, unsigned long data,
|
|
unsigned long flags)
|
|
{
|
|
WARN_ON_ONCE(!work_pending(work));
|
|
atomic_long_set(&work->data, data | flags | work_static(work));
|
|
}
|
|
|
|
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
|
|
unsigned long extra_flags)
|
|
{
|
|
set_work_data(work, (unsigned long)pwq,
|
|
WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
|
|
}
|
|
|
|
static void set_work_pool_and_keep_pending(struct work_struct *work,
|
|
int pool_id)
|
|
{
|
|
set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
|
|
WORK_STRUCT_PENDING);
|
|
}
|
|
|
|
static void set_work_pool_and_clear_pending(struct work_struct *work,
|
|
int pool_id)
|
|
{
|
|
/*
|
|
* The following wmb is paired with the implied mb in
|
|
* test_and_set_bit(PENDING) and ensures all updates to @work made
|
|
* here are visible to and precede any updates by the next PENDING
|
|
* owner.
|
|
*/
|
|
smp_wmb();
|
|
set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
|
|
/*
|
|
* The following mb guarantees that previous clear of a PENDING bit
|
|
* will not be reordered with any speculative LOADS or STORES from
|
|
* work->current_func, which is executed afterwards. This possible
|
|
* reordering can lead to a missed execution on attempt to qeueue
|
|
* the same @work. E.g. consider this case:
|
|
*
|
|
* CPU#0 CPU#1
|
|
* ---------------------------- --------------------------------
|
|
*
|
|
* 1 STORE event_indicated
|
|
* 2 queue_work_on() {
|
|
* 3 test_and_set_bit(PENDING)
|
|
* 4 } set_..._and_clear_pending() {
|
|
* 5 set_work_data() # clear bit
|
|
* 6 smp_mb()
|
|
* 7 work->current_func() {
|
|
* 8 LOAD event_indicated
|
|
* }
|
|
*
|
|
* Without an explicit full barrier speculative LOAD on line 8 can
|
|
* be executed before CPU#0 does STORE on line 1. If that happens,
|
|
* CPU#0 observes the PENDING bit is still set and new execution of
|
|
* a @work is not queued in a hope, that CPU#1 will eventually
|
|
* finish the queued @work. Meanwhile CPU#1 does not see
|
|
* event_indicated is set, because speculative LOAD was executed
|
|
* before actual STORE.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
|
|
static void clear_work_data(struct work_struct *work)
|
|
{
|
|
smp_wmb(); /* see set_work_pool_and_clear_pending() */
|
|
set_work_data(work, WORK_STRUCT_NO_POOL, 0);
|
|
}
|
|
|
|
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
|
|
{
|
|
unsigned long data = atomic_long_read(&work->data);
|
|
|
|
if (data & WORK_STRUCT_PWQ)
|
|
return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* get_work_pool - return the worker_pool a given work was associated with
|
|
* @work: the work item of interest
|
|
*
|
|
* Pools are created and destroyed under wq_pool_mutex, and allows read
|
|
* access under sched-RCU read lock. As such, this function should be
|
|
* called under wq_pool_mutex or with preemption disabled.
|
|
*
|
|
* All fields of the returned pool are accessible as long as the above
|
|
* mentioned locking is in effect. If the returned pool needs to be used
|
|
* beyond the critical section, the caller is responsible for ensuring the
|
|
* returned pool is and stays online.
|
|
*
|
|
* Return: The worker_pool @work was last associated with. %NULL if none.
|
|
*/
|
|
static struct worker_pool *get_work_pool(struct work_struct *work)
|
|
{
|
|
unsigned long data = atomic_long_read(&work->data);
|
|
int pool_id;
|
|
|
|
assert_rcu_or_pool_mutex();
|
|
|
|
if (data & WORK_STRUCT_PWQ)
|
|
return ((struct pool_workqueue *)
|
|
(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
|
|
|
|
pool_id = data >> WORK_OFFQ_POOL_SHIFT;
|
|
if (pool_id == WORK_OFFQ_POOL_NONE)
|
|
return NULL;
|
|
|
|
return idr_find(&worker_pool_idr, pool_id);
|
|
}
|
|
|
|
/**
|
|
* get_work_pool_id - return the worker pool ID a given work is associated with
|
|
* @work: the work item of interest
|
|
*
|
|
* Return: The worker_pool ID @work was last associated with.
|
|
* %WORK_OFFQ_POOL_NONE if none.
|
|
*/
|
|
static int get_work_pool_id(struct work_struct *work)
|
|
{
|
|
unsigned long data = atomic_long_read(&work->data);
|
|
|
|
if (data & WORK_STRUCT_PWQ)
|
|
return ((struct pool_workqueue *)
|
|
(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
|
|
|
|
return data >> WORK_OFFQ_POOL_SHIFT;
|
|
}
|
|
|
|
static void mark_work_canceling(struct work_struct *work)
|
|
{
|
|
unsigned long pool_id = get_work_pool_id(work);
|
|
|
|
pool_id <<= WORK_OFFQ_POOL_SHIFT;
|
|
set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
|
|
}
|
|
|
|
static bool work_is_canceling(struct work_struct *work)
|
|
{
|
|
unsigned long data = atomic_long_read(&work->data);
|
|
|
|
return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
|
|
}
|
|
|
|
/*
|
|
* Policy functions. These define the policies on how the global worker
|
|
* pools are managed. Unless noted otherwise, these functions assume that
|
|
* they're being called with pool->lock held.
|
|
*/
|
|
|
|
static bool __need_more_worker(struct worker_pool *pool)
|
|
{
|
|
return !atomic_read(&pool->nr_running);
|
|
}
|
|
|
|
/*
|
|
* Need to wake up a worker? Called from anything but currently
|
|
* running workers.
|
|
*
|
|
* Note that, because unbound workers never contribute to nr_running, this
|
|
* function will always return %true for unbound pools as long as the
|
|
* worklist isn't empty.
|
|
*/
|
|
static bool need_more_worker(struct worker_pool *pool)
|
|
{
|
|
return !list_empty(&pool->worklist) && __need_more_worker(pool);
|
|
}
|
|
|
|
/* Can I start working? Called from busy but !running workers. */
|
|
static bool may_start_working(struct worker_pool *pool)
|
|
{
|
|
return pool->nr_idle;
|
|
}
|
|
|
|
/* Do I need to keep working? Called from currently running workers. */
|
|
static bool keep_working(struct worker_pool *pool)
|
|
{
|
|
return !list_empty(&pool->worklist) &&
|
|
atomic_read(&pool->nr_running) <= 1;
|
|
}
|
|
|
|
/* Do we need a new worker? Called from manager. */
|
|
static bool need_to_create_worker(struct worker_pool *pool)
|
|
{
|
|
return need_more_worker(pool) && !may_start_working(pool);
|
|
}
|
|
|
|
/* Do we have too many workers and should some go away? */
|
|
static bool too_many_workers(struct worker_pool *pool)
|
|
{
|
|
bool managing = pool->flags & POOL_MANAGER_ACTIVE;
|
|
int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
|
|
int nr_busy = pool->nr_workers - nr_idle;
|
|
|
|
return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
|
|
}
|
|
|
|
/*
|
|
* Wake up functions.
|
|
*/
|
|
|
|
/* Return the first idle worker. Safe with preemption disabled */
|
|
static struct worker *first_idle_worker(struct worker_pool *pool)
|
|
{
|
|
if (unlikely(list_empty(&pool->idle_list)))
|
|
return NULL;
|
|
|
|
return list_first_entry(&pool->idle_list, struct worker, entry);
|
|
}
|
|
|
|
/**
|
|
* wake_up_worker - wake up an idle worker
|
|
* @pool: worker pool to wake worker from
|
|
*
|
|
* Wake up the first idle worker of @pool.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void wake_up_worker(struct worker_pool *pool)
|
|
{
|
|
struct worker *worker = first_idle_worker(pool);
|
|
|
|
if (likely(worker))
|
|
wake_up_process(worker->task);
|
|
}
|
|
|
|
/**
|
|
* wq_worker_waking_up - a worker is waking up
|
|
* @task: task waking up
|
|
* @cpu: CPU @task is waking up to
|
|
*
|
|
* This function is called during try_to_wake_up() when a worker is
|
|
* being awoken.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(rq->lock)
|
|
*/
|
|
void wq_worker_waking_up(struct task_struct *task, int cpu)
|
|
{
|
|
struct worker *worker = kthread_data(task);
|
|
|
|
if (!(worker->flags & WORKER_NOT_RUNNING)) {
|
|
WARN_ON_ONCE(worker->pool->cpu != cpu);
|
|
atomic_inc(&worker->pool->nr_running);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* wq_worker_sleeping - a worker is going to sleep
|
|
* @task: task going to sleep
|
|
*
|
|
* This function is called during schedule() when a busy worker is
|
|
* going to sleep. Worker on the same cpu can be woken up by
|
|
* returning pointer to its task.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(rq->lock)
|
|
*
|
|
* Return:
|
|
* Worker task on @cpu to wake up, %NULL if none.
|
|
*/
|
|
struct task_struct *wq_worker_sleeping(struct task_struct *task)
|
|
{
|
|
struct worker *worker = kthread_data(task), *to_wakeup = NULL;
|
|
struct worker_pool *pool;
|
|
|
|
/*
|
|
* Rescuers, which may not have all the fields set up like normal
|
|
* workers, also reach here, let's not access anything before
|
|
* checking NOT_RUNNING.
|
|
*/
|
|
if (worker->flags & WORKER_NOT_RUNNING)
|
|
return NULL;
|
|
|
|
pool = worker->pool;
|
|
|
|
/* this can only happen on the local cpu */
|
|
if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
|
|
return NULL;
|
|
|
|
/*
|
|
* The counterpart of the following dec_and_test, implied mb,
|
|
* worklist not empty test sequence is in insert_work().
|
|
* Please read comment there.
|
|
*
|
|
* NOT_RUNNING is clear. This means that we're bound to and
|
|
* running on the local cpu w/ rq lock held and preemption
|
|
* disabled, which in turn means that none else could be
|
|
* manipulating idle_list, so dereferencing idle_list without pool
|
|
* lock is safe.
|
|
*/
|
|
if (atomic_dec_and_test(&pool->nr_running) &&
|
|
!list_empty(&pool->worklist))
|
|
to_wakeup = first_idle_worker(pool);
|
|
return to_wakeup ? to_wakeup->task : NULL;
|
|
}
|
|
|
|
/**
|
|
* wq_worker_last_func - retrieve worker's last work function
|
|
*
|
|
* Determine the last function a worker executed. This is called from
|
|
* the scheduler to get a worker's last known identity.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(rq->lock)
|
|
*
|
|
* This function is called during schedule() when a kworker is going
|
|
* to sleep. It's used by psi to identify aggregation workers during
|
|
* dequeuing, to allow periodic aggregation to shut-off when that
|
|
* worker is the last task in the system or cgroup to go to sleep.
|
|
*
|
|
* As this function doesn't involve any workqueue-related locking, it
|
|
* only returns stable values when called from inside the scheduler's
|
|
* queuing and dequeuing paths, when @task, which must be a kworker,
|
|
* is guaranteed to not be processing any works.
|
|
*
|
|
* Return:
|
|
* The last work function %current executed as a worker, NULL if it
|
|
* hasn't executed any work yet.
|
|
*/
|
|
work_func_t wq_worker_last_func(struct task_struct *task)
|
|
{
|
|
struct worker *worker = kthread_data(task);
|
|
|
|
return worker->last_func;
|
|
}
|
|
|
|
/**
|
|
* worker_set_flags - set worker flags and adjust nr_running accordingly
|
|
* @worker: self
|
|
* @flags: flags to set
|
|
*
|
|
* Set @flags in @worker->flags and adjust nr_running accordingly.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock)
|
|
*/
|
|
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
WARN_ON_ONCE(worker->task != current);
|
|
|
|
/* If transitioning into NOT_RUNNING, adjust nr_running. */
|
|
if ((flags & WORKER_NOT_RUNNING) &&
|
|
!(worker->flags & WORKER_NOT_RUNNING)) {
|
|
atomic_dec(&pool->nr_running);
|
|
}
|
|
|
|
worker->flags |= flags;
|
|
}
|
|
|
|
/**
|
|
* worker_clr_flags - clear worker flags and adjust nr_running accordingly
|
|
* @worker: self
|
|
* @flags: flags to clear
|
|
*
|
|
* Clear @flags in @worker->flags and adjust nr_running accordingly.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock)
|
|
*/
|
|
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
unsigned int oflags = worker->flags;
|
|
|
|
WARN_ON_ONCE(worker->task != current);
|
|
|
|
worker->flags &= ~flags;
|
|
|
|
/*
|
|
* If transitioning out of NOT_RUNNING, increment nr_running. Note
|
|
* that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
|
|
* of multiple flags, not a single flag.
|
|
*/
|
|
if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
|
|
if (!(worker->flags & WORKER_NOT_RUNNING))
|
|
atomic_inc(&pool->nr_running);
|
|
}
|
|
|
|
/**
|
|
* find_worker_executing_work - find worker which is executing a work
|
|
* @pool: pool of interest
|
|
* @work: work to find worker for
|
|
*
|
|
* Find a worker which is executing @work on @pool by searching
|
|
* @pool->busy_hash which is keyed by the address of @work. For a worker
|
|
* to match, its current execution should match the address of @work and
|
|
* its work function. This is to avoid unwanted dependency between
|
|
* unrelated work executions through a work item being recycled while still
|
|
* being executed.
|
|
*
|
|
* This is a bit tricky. A work item may be freed once its execution
|
|
* starts and nothing prevents the freed area from being recycled for
|
|
* another work item. If the same work item address ends up being reused
|
|
* before the original execution finishes, workqueue will identify the
|
|
* recycled work item as currently executing and make it wait until the
|
|
* current execution finishes, introducing an unwanted dependency.
|
|
*
|
|
* This function checks the work item address and work function to avoid
|
|
* false positives. Note that this isn't complete as one may construct a
|
|
* work function which can introduce dependency onto itself through a
|
|
* recycled work item. Well, if somebody wants to shoot oneself in the
|
|
* foot that badly, there's only so much we can do, and if such deadlock
|
|
* actually occurs, it should be easy to locate the culprit work function.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*
|
|
* Return:
|
|
* Pointer to worker which is executing @work if found, %NULL
|
|
* otherwise.
|
|
*/
|
|
static struct worker *find_worker_executing_work(struct worker_pool *pool,
|
|
struct work_struct *work)
|
|
{
|
|
struct worker *worker;
|
|
|
|
hash_for_each_possible(pool->busy_hash, worker, hentry,
|
|
(unsigned long)work)
|
|
if (worker->current_work == work &&
|
|
worker->current_func == work->func)
|
|
return worker;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* move_linked_works - move linked works to a list
|
|
* @work: start of series of works to be scheduled
|
|
* @head: target list to append @work to
|
|
* @nextp: out parameter for nested worklist walking
|
|
*
|
|
* Schedule linked works starting from @work to @head. Work series to
|
|
* be scheduled starts at @work and includes any consecutive work with
|
|
* WORK_STRUCT_LINKED set in its predecessor.
|
|
*
|
|
* If @nextp is not NULL, it's updated to point to the next work of
|
|
* the last scheduled work. This allows move_linked_works() to be
|
|
* nested inside outer list_for_each_entry_safe().
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void move_linked_works(struct work_struct *work, struct list_head *head,
|
|
struct work_struct **nextp)
|
|
{
|
|
struct work_struct *n;
|
|
|
|
/*
|
|
* Linked worklist will always end before the end of the list,
|
|
* use NULL for list head.
|
|
*/
|
|
list_for_each_entry_safe_from(work, n, NULL, entry) {
|
|
list_move_tail(&work->entry, head);
|
|
if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we're already inside safe list traversal and have moved
|
|
* multiple works to the scheduled queue, the next position
|
|
* needs to be updated.
|
|
*/
|
|
if (nextp)
|
|
*nextp = n;
|
|
}
|
|
|
|
/**
|
|
* get_pwq - get an extra reference on the specified pool_workqueue
|
|
* @pwq: pool_workqueue to get
|
|
*
|
|
* Obtain an extra reference on @pwq. The caller should guarantee that
|
|
* @pwq has positive refcnt and be holding the matching pool->lock.
|
|
*/
|
|
static void get_pwq(struct pool_workqueue *pwq)
|
|
{
|
|
lockdep_assert_held(&pwq->pool->lock);
|
|
WARN_ON_ONCE(pwq->refcnt <= 0);
|
|
pwq->refcnt++;
|
|
}
|
|
|
|
/**
|
|
* put_pwq - put a pool_workqueue reference
|
|
* @pwq: pool_workqueue to put
|
|
*
|
|
* Drop a reference of @pwq. If its refcnt reaches zero, schedule its
|
|
* destruction. The caller should be holding the matching pool->lock.
|
|
*/
|
|
static void put_pwq(struct pool_workqueue *pwq)
|
|
{
|
|
lockdep_assert_held(&pwq->pool->lock);
|
|
if (likely(--pwq->refcnt))
|
|
return;
|
|
if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
|
|
return;
|
|
/*
|
|
* @pwq can't be released under pool->lock, bounce to
|
|
* pwq_unbound_release_workfn(). This never recurses on the same
|
|
* pool->lock as this path is taken only for unbound workqueues and
|
|
* the release work item is scheduled on a per-cpu workqueue. To
|
|
* avoid lockdep warning, unbound pool->locks are given lockdep
|
|
* subclass of 1 in get_unbound_pool().
|
|
*/
|
|
schedule_work(&pwq->unbound_release_work);
|
|
}
|
|
|
|
/**
|
|
* put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
|
|
* @pwq: pool_workqueue to put (can be %NULL)
|
|
*
|
|
* put_pwq() with locking. This function also allows %NULL @pwq.
|
|
*/
|
|
static void put_pwq_unlocked(struct pool_workqueue *pwq)
|
|
{
|
|
if (pwq) {
|
|
/*
|
|
* As both pwqs and pools are sched-RCU protected, the
|
|
* following lock operations are safe.
|
|
*/
|
|
spin_lock_irq(&pwq->pool->lock);
|
|
put_pwq(pwq);
|
|
spin_unlock_irq(&pwq->pool->lock);
|
|
}
|
|
}
|
|
|
|
static void pwq_activate_delayed_work(struct work_struct *work)
|
|
{
|
|
struct pool_workqueue *pwq = get_work_pwq(work);
|
|
|
|
trace_workqueue_activate_work(work);
|
|
if (list_empty(&pwq->pool->worklist))
|
|
pwq->pool->watchdog_ts = jiffies;
|
|
move_linked_works(work, &pwq->pool->worklist, NULL);
|
|
__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
|
|
pwq->nr_active++;
|
|
}
|
|
|
|
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
|
|
{
|
|
struct work_struct *work = list_first_entry(&pwq->delayed_works,
|
|
struct work_struct, entry);
|
|
|
|
pwq_activate_delayed_work(work);
|
|
}
|
|
|
|
/**
|
|
* pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
|
|
* @pwq: pwq of interest
|
|
* @color: color of work which left the queue
|
|
*
|
|
* A work either has completed or is removed from pending queue,
|
|
* decrement nr_in_flight of its pwq and handle workqueue flushing.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
|
|
{
|
|
/* uncolored work items don't participate in flushing or nr_active */
|
|
if (color == WORK_NO_COLOR)
|
|
goto out_put;
|
|
|
|
pwq->nr_in_flight[color]--;
|
|
|
|
pwq->nr_active--;
|
|
if (!list_empty(&pwq->delayed_works)) {
|
|
/* one down, submit a delayed one */
|
|
if (pwq->nr_active < pwq->max_active)
|
|
pwq_activate_first_delayed(pwq);
|
|
}
|
|
|
|
/* is flush in progress and are we at the flushing tip? */
|
|
if (likely(pwq->flush_color != color))
|
|
goto out_put;
|
|
|
|
/* are there still in-flight works? */
|
|
if (pwq->nr_in_flight[color])
|
|
goto out_put;
|
|
|
|
/* this pwq is done, clear flush_color */
|
|
pwq->flush_color = -1;
|
|
|
|
/*
|
|
* If this was the last pwq, wake up the first flusher. It
|
|
* will handle the rest.
|
|
*/
|
|
if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
|
|
complete(&pwq->wq->first_flusher->done);
|
|
out_put:
|
|
put_pwq(pwq);
|
|
}
|
|
|
|
/**
|
|
* try_to_grab_pending - steal work item from worklist and disable irq
|
|
* @work: work item to steal
|
|
* @is_dwork: @work is a delayed_work
|
|
* @flags: place to store irq state
|
|
*
|
|
* Try to grab PENDING bit of @work. This function can handle @work in any
|
|
* stable state - idle, on timer or on worklist.
|
|
*
|
|
* Return:
|
|
* 1 if @work was pending and we successfully stole PENDING
|
|
* 0 if @work was idle and we claimed PENDING
|
|
* -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
|
|
* -ENOENT if someone else is canceling @work, this state may persist
|
|
* for arbitrarily long
|
|
*
|
|
* Note:
|
|
* On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
|
|
* interrupted while holding PENDING and @work off queue, irq must be
|
|
* disabled on entry. This, combined with delayed_work->timer being
|
|
* irqsafe, ensures that we return -EAGAIN for finite short period of time.
|
|
*
|
|
* On successful return, >= 0, irq is disabled and the caller is
|
|
* responsible for releasing it using local_irq_restore(*@flags).
|
|
*
|
|
* This function is safe to call from any context including IRQ handler.
|
|
*/
|
|
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
|
|
unsigned long *flags)
|
|
{
|
|
struct worker_pool *pool;
|
|
struct pool_workqueue *pwq;
|
|
|
|
local_irq_save(*flags);
|
|
|
|
/* try to steal the timer if it exists */
|
|
if (is_dwork) {
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
|
|
/*
|
|
* dwork->timer is irqsafe. If del_timer() fails, it's
|
|
* guaranteed that the timer is not queued anywhere and not
|
|
* running on the local CPU.
|
|
*/
|
|
if (likely(del_timer(&dwork->timer)))
|
|
return 1;
|
|
}
|
|
|
|
/* try to claim PENDING the normal way */
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
|
|
return 0;
|
|
|
|
/*
|
|
* The queueing is in progress, or it is already queued. Try to
|
|
* steal it from ->worklist without clearing WORK_STRUCT_PENDING.
|
|
*/
|
|
pool = get_work_pool(work);
|
|
if (!pool)
|
|
goto fail;
|
|
|
|
spin_lock(&pool->lock);
|
|
/*
|
|
* work->data is guaranteed to point to pwq only while the work
|
|
* item is queued on pwq->wq, and both updating work->data to point
|
|
* to pwq on queueing and to pool on dequeueing are done under
|
|
* pwq->pool->lock. This in turn guarantees that, if work->data
|
|
* points to pwq which is associated with a locked pool, the work
|
|
* item is currently queued on that pool.
|
|
*/
|
|
pwq = get_work_pwq(work);
|
|
if (pwq && pwq->pool == pool) {
|
|
debug_work_deactivate(work);
|
|
|
|
/*
|
|
* A delayed work item cannot be grabbed directly because
|
|
* it might have linked NO_COLOR work items which, if left
|
|
* on the delayed_list, will confuse pwq->nr_active
|
|
* management later on and cause stall. Make sure the work
|
|
* item is activated before grabbing.
|
|
*/
|
|
if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
|
|
pwq_activate_delayed_work(work);
|
|
|
|
list_del_init(&work->entry);
|
|
pwq_dec_nr_in_flight(pwq, get_work_color(work));
|
|
|
|
/* work->data points to pwq iff queued, point to pool */
|
|
set_work_pool_and_keep_pending(work, pool->id);
|
|
|
|
spin_unlock(&pool->lock);
|
|
return 1;
|
|
}
|
|
spin_unlock(&pool->lock);
|
|
fail:
|
|
local_irq_restore(*flags);
|
|
if (work_is_canceling(work))
|
|
return -ENOENT;
|
|
cpu_relax();
|
|
/*
|
|
* The queueing is in progress in another context. If we keep
|
|
* taking the pool->lock in a busy loop, the other context may
|
|
* never get the lock. Give 1 usec delay to avoid this contention.
|
|
*/
|
|
udelay(1);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* insert_work - insert a work into a pool
|
|
* @pwq: pwq @work belongs to
|
|
* @work: work to insert
|
|
* @head: insertion point
|
|
* @extra_flags: extra WORK_STRUCT_* flags to set
|
|
*
|
|
* Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
|
|
* work_struct flags.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
|
|
struct list_head *head, unsigned int extra_flags)
|
|
{
|
|
struct worker_pool *pool = pwq->pool;
|
|
|
|
/* we own @work, set data and link */
|
|
set_work_pwq(work, pwq, extra_flags);
|
|
list_add_tail(&work->entry, head);
|
|
get_pwq(pwq);
|
|
|
|
/*
|
|
* Ensure either wq_worker_sleeping() sees the above
|
|
* list_add_tail() or we see zero nr_running to avoid workers lying
|
|
* around lazily while there are works to be processed.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (__need_more_worker(pool))
|
|
wake_up_worker(pool);
|
|
}
|
|
|
|
/*
|
|
* Test whether @work is being queued from another work executing on the
|
|
* same workqueue.
|
|
*/
|
|
static bool is_chained_work(struct workqueue_struct *wq)
|
|
{
|
|
struct worker *worker;
|
|
|
|
worker = current_wq_worker();
|
|
/*
|
|
* Return %true iff I'm a worker execuing a work item on @wq. If
|
|
* I'm @worker, it's safe to dereference it without locking.
|
|
*/
|
|
return worker && worker->current_pwq->wq == wq;
|
|
}
|
|
|
|
/*
|
|
* When queueing an unbound work item to a wq, prefer local CPU if allowed
|
|
* by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
|
|
* avoid perturbing sensitive tasks.
|
|
*/
|
|
static int wq_select_unbound_cpu(int cpu)
|
|
{
|
|
static bool printed_dbg_warning;
|
|
int new_cpu;
|
|
|
|
if (likely(!wq_debug_force_rr_cpu)) {
|
|
if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
|
|
return cpu;
|
|
} else if (!printed_dbg_warning) {
|
|
pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
|
|
printed_dbg_warning = true;
|
|
}
|
|
|
|
if (cpumask_empty(wq_unbound_cpumask))
|
|
return cpu;
|
|
|
|
new_cpu = __this_cpu_read(wq_rr_cpu_last);
|
|
new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
|
|
if (unlikely(new_cpu >= nr_cpu_ids)) {
|
|
new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
|
|
if (unlikely(new_cpu >= nr_cpu_ids))
|
|
return cpu;
|
|
}
|
|
__this_cpu_write(wq_rr_cpu_last, new_cpu);
|
|
|
|
return new_cpu;
|
|
}
|
|
|
|
static void __queue_work(int cpu, struct workqueue_struct *wq,
|
|
struct work_struct *work)
|
|
{
|
|
struct pool_workqueue *pwq;
|
|
struct worker_pool *last_pool;
|
|
struct list_head *worklist;
|
|
unsigned int work_flags;
|
|
unsigned int req_cpu = cpu;
|
|
|
|
/*
|
|
* While a work item is PENDING && off queue, a task trying to
|
|
* steal the PENDING will busy-loop waiting for it to either get
|
|
* queued or lose PENDING. Grabbing PENDING and queueing should
|
|
* happen with IRQ disabled.
|
|
*/
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
debug_work_activate(work);
|
|
|
|
/* if draining, only works from the same workqueue are allowed */
|
|
if (unlikely(wq->flags & __WQ_DRAINING) &&
|
|
WARN_ON_ONCE(!is_chained_work(wq)))
|
|
return;
|
|
retry:
|
|
/* pwq which will be used unless @work is executing elsewhere */
|
|
if (wq->flags & WQ_UNBOUND) {
|
|
if (req_cpu == WORK_CPU_UNBOUND)
|
|
cpu = wq_select_unbound_cpu(raw_smp_processor_id());
|
|
pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
|
|
} else {
|
|
if (req_cpu == WORK_CPU_UNBOUND)
|
|
cpu = raw_smp_processor_id();
|
|
pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
|
|
}
|
|
|
|
/*
|
|
* If @work was previously on a different pool, it might still be
|
|
* running there, in which case the work needs to be queued on that
|
|
* pool to guarantee non-reentrancy.
|
|
*/
|
|
last_pool = get_work_pool(work);
|
|
if (last_pool && last_pool != pwq->pool) {
|
|
struct worker *worker;
|
|
|
|
spin_lock(&last_pool->lock);
|
|
|
|
worker = find_worker_executing_work(last_pool, work);
|
|
|
|
if (worker && worker->current_pwq->wq == wq) {
|
|
pwq = worker->current_pwq;
|
|
} else {
|
|
/* meh... not running there, queue here */
|
|
spin_unlock(&last_pool->lock);
|
|
spin_lock(&pwq->pool->lock);
|
|
}
|
|
} else {
|
|
spin_lock(&pwq->pool->lock);
|
|
}
|
|
|
|
/*
|
|
* pwq is determined and locked. For unbound pools, we could have
|
|
* raced with pwq release and it could already be dead. If its
|
|
* refcnt is zero, repeat pwq selection. Note that pwqs never die
|
|
* without another pwq replacing it in the numa_pwq_tbl or while
|
|
* work items are executing on it, so the retrying is guaranteed to
|
|
* make forward-progress.
|
|
*/
|
|
if (unlikely(!pwq->refcnt)) {
|
|
if (wq->flags & WQ_UNBOUND) {
|
|
spin_unlock(&pwq->pool->lock);
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
/* oops */
|
|
WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
|
|
wq->name, cpu);
|
|
}
|
|
|
|
/* pwq determined, queue */
|
|
trace_workqueue_queue_work(req_cpu, pwq, work);
|
|
|
|
if (WARN_ON(!list_empty(&work->entry))) {
|
|
spin_unlock(&pwq->pool->lock);
|
|
return;
|
|
}
|
|
|
|
pwq->nr_in_flight[pwq->work_color]++;
|
|
work_flags = work_color_to_flags(pwq->work_color);
|
|
|
|
if (likely(pwq->nr_active < pwq->max_active)) {
|
|
trace_workqueue_activate_work(work);
|
|
pwq->nr_active++;
|
|
worklist = &pwq->pool->worklist;
|
|
if (list_empty(worklist))
|
|
pwq->pool->watchdog_ts = jiffies;
|
|
} else {
|
|
work_flags |= WORK_STRUCT_DELAYED;
|
|
worklist = &pwq->delayed_works;
|
|
}
|
|
|
|
insert_work(pwq, work, worklist, work_flags);
|
|
|
|
spin_unlock(&pwq->pool->lock);
|
|
}
|
|
|
|
/**
|
|
* queue_work_on - queue work on specific cpu
|
|
* @cpu: CPU number to execute work on
|
|
* @wq: workqueue to use
|
|
* @work: work to queue
|
|
*
|
|
* We queue the work to a specific CPU, the caller must ensure it
|
|
* can't go away.
|
|
*
|
|
* Return: %false if @work was already on a queue, %true otherwise.
|
|
*/
|
|
bool queue_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct work_struct *work)
|
|
{
|
|
bool ret = false;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
|
|
__queue_work(cpu, wq, work);
|
|
ret = true;
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(queue_work_on);
|
|
|
|
void delayed_work_timer_fn(struct timer_list *t)
|
|
{
|
|
struct delayed_work *dwork = from_timer(dwork, t, timer);
|
|
|
|
/* should have been called from irqsafe timer with irq already off */
|
|
__queue_work(dwork->cpu, dwork->wq, &dwork->work);
|
|
}
|
|
EXPORT_SYMBOL(delayed_work_timer_fn);
|
|
|
|
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
struct timer_list *timer = &dwork->timer;
|
|
struct work_struct *work = &dwork->work;
|
|
|
|
WARN_ON_ONCE(!wq);
|
|
#ifndef CONFIG_CFI_CLANG
|
|
WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
|
|
#endif
|
|
WARN_ON_ONCE(timer_pending(timer));
|
|
WARN_ON_ONCE(!list_empty(&work->entry));
|
|
|
|
/*
|
|
* If @delay is 0, queue @dwork->work immediately. This is for
|
|
* both optimization and correctness. The earliest @timer can
|
|
* expire is on the closest next tick and delayed_work users depend
|
|
* on that there's no such delay when @delay is 0.
|
|
*/
|
|
if (!delay) {
|
|
__queue_work(cpu, wq, &dwork->work);
|
|
return;
|
|
}
|
|
|
|
dwork->wq = wq;
|
|
dwork->cpu = cpu;
|
|
timer->expires = jiffies + delay;
|
|
|
|
if (unlikely(cpu != WORK_CPU_UNBOUND))
|
|
add_timer_on(timer, cpu);
|
|
else
|
|
add_timer(timer);
|
|
}
|
|
|
|
/**
|
|
* queue_delayed_work_on - queue work on specific CPU after delay
|
|
* @cpu: CPU number to execute work on
|
|
* @wq: workqueue to use
|
|
* @dwork: work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* Return: %false if @work was already on a queue, %true otherwise. If
|
|
* @delay is zero and @dwork is idle, it will be scheduled for immediate
|
|
* execution.
|
|
*/
|
|
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
struct work_struct *work = &dwork->work;
|
|
bool ret = false;
|
|
unsigned long flags;
|
|
|
|
/* read the comment in __queue_work() */
|
|
local_irq_save(flags);
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
|
|
__queue_delayed_work(cpu, wq, dwork, delay);
|
|
ret = true;
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(queue_delayed_work_on);
|
|
|
|
/**
|
|
* mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
|
|
* @cpu: CPU number to execute work on
|
|
* @wq: workqueue to use
|
|
* @dwork: work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
|
|
* modify @dwork's timer so that it expires after @delay. If @delay is
|
|
* zero, @work is guaranteed to be scheduled immediately regardless of its
|
|
* current state.
|
|
*
|
|
* Return: %false if @dwork was idle and queued, %true if @dwork was
|
|
* pending and its timer was modified.
|
|
*
|
|
* This function is safe to call from any context including IRQ handler.
|
|
* See try_to_grab_pending() for details.
|
|
*/
|
|
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
do {
|
|
ret = try_to_grab_pending(&dwork->work, true, &flags);
|
|
} while (unlikely(ret == -EAGAIN));
|
|
|
|
if (likely(ret >= 0)) {
|
|
__queue_delayed_work(cpu, wq, dwork, delay);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* -ENOENT from try_to_grab_pending() becomes %true */
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mod_delayed_work_on);
|
|
|
|
static void rcu_work_rcufn(struct rcu_head *rcu)
|
|
{
|
|
struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
|
|
|
|
/* read the comment in __queue_work() */
|
|
local_irq_disable();
|
|
__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
|
|
local_irq_enable();
|
|
}
|
|
|
|
/**
|
|
* queue_rcu_work - queue work after a RCU grace period
|
|
* @wq: workqueue to use
|
|
* @rwork: work to queue
|
|
*
|
|
* Return: %false if @rwork was already pending, %true otherwise. Note
|
|
* that a full RCU grace period is guaranteed only after a %true return.
|
|
* While @rwork is guarnateed to be executed after a %false return, the
|
|
* execution may happen before a full RCU grace period has passed.
|
|
*/
|
|
bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
|
|
{
|
|
struct work_struct *work = &rwork->work;
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
|
|
rwork->wq = wq;
|
|
call_rcu(&rwork->rcu, rcu_work_rcufn);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(queue_rcu_work);
|
|
|
|
/**
|
|
* worker_enter_idle - enter idle state
|
|
* @worker: worker which is entering idle state
|
|
*
|
|
* @worker is entering idle state. Update stats and idle timer if
|
|
* necessary.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void worker_enter_idle(struct worker *worker)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
|
|
WARN_ON_ONCE(!list_empty(&worker->entry) &&
|
|
(worker->hentry.next || worker->hentry.pprev)))
|
|
return;
|
|
|
|
/* can't use worker_set_flags(), also called from create_worker() */
|
|
worker->flags |= WORKER_IDLE;
|
|
pool->nr_idle++;
|
|
worker->last_active = jiffies;
|
|
|
|
/* idle_list is LIFO */
|
|
list_add(&worker->entry, &pool->idle_list);
|
|
|
|
if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
|
|
mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
|
|
|
|
/*
|
|
* Sanity check nr_running. Because unbind_workers() releases
|
|
* pool->lock between setting %WORKER_UNBOUND and zapping
|
|
* nr_running, the warning may trigger spuriously. Check iff
|
|
* unbind is not in progress.
|
|
*/
|
|
WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
|
|
pool->nr_workers == pool->nr_idle &&
|
|
atomic_read(&pool->nr_running));
|
|
}
|
|
|
|
/**
|
|
* worker_leave_idle - leave idle state
|
|
* @worker: worker which is leaving idle state
|
|
*
|
|
* @worker is leaving idle state. Update stats.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void worker_leave_idle(struct worker *worker)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
|
|
return;
|
|
worker_clr_flags(worker, WORKER_IDLE);
|
|
pool->nr_idle--;
|
|
list_del_init(&worker->entry);
|
|
}
|
|
|
|
static struct worker *alloc_worker(int node)
|
|
{
|
|
struct worker *worker;
|
|
|
|
worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
|
|
if (worker) {
|
|
INIT_LIST_HEAD(&worker->entry);
|
|
INIT_LIST_HEAD(&worker->scheduled);
|
|
INIT_LIST_HEAD(&worker->node);
|
|
/* on creation a worker is in !idle && prep state */
|
|
worker->flags = WORKER_PREP;
|
|
}
|
|
return worker;
|
|
}
|
|
|
|
/**
|
|
* worker_attach_to_pool() - attach a worker to a pool
|
|
* @worker: worker to be attached
|
|
* @pool: the target pool
|
|
*
|
|
* Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
|
|
* cpu-binding of @worker are kept coordinated with the pool across
|
|
* cpu-[un]hotplugs.
|
|
*/
|
|
static void worker_attach_to_pool(struct worker *worker,
|
|
struct worker_pool *pool)
|
|
{
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
|
|
/*
|
|
* set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
|
|
* online CPUs. It'll be re-applied when any of the CPUs come up.
|
|
*/
|
|
set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
|
|
|
|
/*
|
|
* The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
|
|
* stable across this function. See the comments above the flag
|
|
* definition for details.
|
|
*/
|
|
if (pool->flags & POOL_DISASSOCIATED)
|
|
worker->flags |= WORKER_UNBOUND;
|
|
|
|
list_add_tail(&worker->node, &pool->workers);
|
|
worker->pool = pool;
|
|
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
}
|
|
|
|
/**
|
|
* worker_detach_from_pool() - detach a worker from its pool
|
|
* @worker: worker which is attached to its pool
|
|
*
|
|
* Undo the attaching which had been done in worker_attach_to_pool(). The
|
|
* caller worker shouldn't access to the pool after detached except it has
|
|
* other reference to the pool.
|
|
*/
|
|
static void worker_detach_from_pool(struct worker *worker)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
struct completion *detach_completion = NULL;
|
|
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
|
|
list_del(&worker->node);
|
|
worker->pool = NULL;
|
|
|
|
if (list_empty(&pool->workers))
|
|
detach_completion = pool->detach_completion;
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
|
|
/* clear leftover flags without pool->lock after it is detached */
|
|
worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
|
|
|
|
if (detach_completion)
|
|
complete(detach_completion);
|
|
}
|
|
|
|
/**
|
|
* create_worker - create a new workqueue worker
|
|
* @pool: pool the new worker will belong to
|
|
*
|
|
* Create and start a new worker which is attached to @pool.
|
|
*
|
|
* CONTEXT:
|
|
* Might sleep. Does GFP_KERNEL allocations.
|
|
*
|
|
* Return:
|
|
* Pointer to the newly created worker.
|
|
*/
|
|
static struct worker *create_worker(struct worker_pool *pool)
|
|
{
|
|
struct worker *worker = NULL;
|
|
int id = -1;
|
|
char id_buf[16];
|
|
|
|
/* ID is needed to determine kthread name */
|
|
id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
|
|
if (id < 0)
|
|
goto fail;
|
|
|
|
worker = alloc_worker(pool->node);
|
|
if (!worker)
|
|
goto fail;
|
|
|
|
worker->id = id;
|
|
|
|
if (pool->cpu >= 0)
|
|
snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
|
|
pool->attrs->nice < 0 ? "H" : "");
|
|
else
|
|
snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
|
|
|
|
worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
|
|
"kworker/%s", id_buf);
|
|
if (IS_ERR(worker->task))
|
|
goto fail;
|
|
|
|
set_user_nice(worker->task, pool->attrs->nice);
|
|
kthread_bind_mask(worker->task, pool->attrs->cpumask);
|
|
|
|
/* successful, attach the worker to the pool */
|
|
worker_attach_to_pool(worker, pool);
|
|
|
|
/* start the newly created worker */
|
|
spin_lock_irq(&pool->lock);
|
|
worker->pool->nr_workers++;
|
|
worker_enter_idle(worker);
|
|
wake_up_process(worker->task);
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
return worker;
|
|
|
|
fail:
|
|
if (id >= 0)
|
|
ida_simple_remove(&pool->worker_ida, id);
|
|
kfree(worker);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* destroy_worker - destroy a workqueue worker
|
|
* @worker: worker to be destroyed
|
|
*
|
|
* Destroy @worker and adjust @pool stats accordingly. The worker should
|
|
* be idle.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void destroy_worker(struct worker *worker)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
lockdep_assert_held(&pool->lock);
|
|
|
|
/* sanity check frenzy */
|
|
if (WARN_ON(worker->current_work) ||
|
|
WARN_ON(!list_empty(&worker->scheduled)) ||
|
|
WARN_ON(!(worker->flags & WORKER_IDLE)))
|
|
return;
|
|
|
|
pool->nr_workers--;
|
|
pool->nr_idle--;
|
|
|
|
list_del_init(&worker->entry);
|
|
worker->flags |= WORKER_DIE;
|
|
wake_up_process(worker->task);
|
|
}
|
|
|
|
static void idle_worker_timeout(struct timer_list *t)
|
|
{
|
|
struct worker_pool *pool = from_timer(pool, t, idle_timer);
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
while (too_many_workers(pool)) {
|
|
struct worker *worker;
|
|
unsigned long expires;
|
|
|
|
/* idle_list is kept in LIFO order, check the last one */
|
|
worker = list_entry(pool->idle_list.prev, struct worker, entry);
|
|
expires = worker->last_active + IDLE_WORKER_TIMEOUT;
|
|
|
|
if (time_before(jiffies, expires)) {
|
|
mod_timer(&pool->idle_timer, expires);
|
|
break;
|
|
}
|
|
|
|
destroy_worker(worker);
|
|
}
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
}
|
|
|
|
static void send_mayday(struct work_struct *work)
|
|
{
|
|
struct pool_workqueue *pwq = get_work_pwq(work);
|
|
struct workqueue_struct *wq = pwq->wq;
|
|
|
|
lockdep_assert_held(&wq_mayday_lock);
|
|
|
|
if (!wq->rescuer)
|
|
return;
|
|
|
|
/* mayday mayday mayday */
|
|
if (list_empty(&pwq->mayday_node)) {
|
|
/*
|
|
* If @pwq is for an unbound wq, its base ref may be put at
|
|
* any time due to an attribute change. Pin @pwq until the
|
|
* rescuer is done with it.
|
|
*/
|
|
get_pwq(pwq);
|
|
list_add_tail(&pwq->mayday_node, &wq->maydays);
|
|
wake_up_process(wq->rescuer->task);
|
|
}
|
|
}
|
|
|
|
static void pool_mayday_timeout(struct timer_list *t)
|
|
{
|
|
struct worker_pool *pool = from_timer(pool, t, mayday_timer);
|
|
struct work_struct *work;
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
spin_lock(&wq_mayday_lock); /* for wq->maydays */
|
|
|
|
if (need_to_create_worker(pool)) {
|
|
/*
|
|
* We've been trying to create a new worker but
|
|
* haven't been successful. We might be hitting an
|
|
* allocation deadlock. Send distress signals to
|
|
* rescuers.
|
|
*/
|
|
list_for_each_entry(work, &pool->worklist, entry)
|
|
send_mayday(work);
|
|
}
|
|
|
|
spin_unlock(&wq_mayday_lock);
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
|
|
}
|
|
|
|
/**
|
|
* maybe_create_worker - create a new worker if necessary
|
|
* @pool: pool to create a new worker for
|
|
*
|
|
* Create a new worker for @pool if necessary. @pool is guaranteed to
|
|
* have at least one idle worker on return from this function. If
|
|
* creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
|
|
* sent to all rescuers with works scheduled on @pool to resolve
|
|
* possible allocation deadlock.
|
|
*
|
|
* On return, need_to_create_worker() is guaranteed to be %false and
|
|
* may_start_working() %true.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irq(pool->lock) which may be released and regrabbed
|
|
* multiple times. Does GFP_KERNEL allocations. Called only from
|
|
* manager.
|
|
*/
|
|
static void maybe_create_worker(struct worker_pool *pool)
|
|
__releases(&pool->lock)
|
|
__acquires(&pool->lock)
|
|
{
|
|
restart:
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
|
|
mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
|
|
|
|
while (true) {
|
|
if (create_worker(pool) || !need_to_create_worker(pool))
|
|
break;
|
|
|
|
schedule_timeout_interruptible(CREATE_COOLDOWN);
|
|
|
|
if (!need_to_create_worker(pool))
|
|
break;
|
|
}
|
|
|
|
del_timer_sync(&pool->mayday_timer);
|
|
spin_lock_irq(&pool->lock);
|
|
/*
|
|
* This is necessary even after a new worker was just successfully
|
|
* created as @pool->lock was dropped and the new worker might have
|
|
* already become busy.
|
|
*/
|
|
if (need_to_create_worker(pool))
|
|
goto restart;
|
|
}
|
|
|
|
/**
|
|
* manage_workers - manage worker pool
|
|
* @worker: self
|
|
*
|
|
* Assume the manager role and manage the worker pool @worker belongs
|
|
* to. At any given time, there can be only zero or one manager per
|
|
* pool. The exclusion is handled automatically by this function.
|
|
*
|
|
* The caller can safely start processing works on false return. On
|
|
* true return, it's guaranteed that need_to_create_worker() is false
|
|
* and may_start_working() is true.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock) which may be released and regrabbed
|
|
* multiple times. Does GFP_KERNEL allocations.
|
|
*
|
|
* Return:
|
|
* %false if the pool doesn't need management and the caller can safely
|
|
* start processing works, %true if management function was performed and
|
|
* the conditions that the caller verified before calling the function may
|
|
* no longer be true.
|
|
*/
|
|
static bool manage_workers(struct worker *worker)
|
|
{
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
if (pool->flags & POOL_MANAGER_ACTIVE)
|
|
return false;
|
|
|
|
pool->flags |= POOL_MANAGER_ACTIVE;
|
|
pool->manager = worker;
|
|
|
|
maybe_create_worker(pool);
|
|
|
|
pool->manager = NULL;
|
|
pool->flags &= ~POOL_MANAGER_ACTIVE;
|
|
wake_up(&wq_manager_wait);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* process_one_work - process single work
|
|
* @worker: self
|
|
* @work: work to process
|
|
*
|
|
* Process @work. This function contains all the logics necessary to
|
|
* process a single work including synchronization against and
|
|
* interaction with other workers on the same cpu, queueing and
|
|
* flushing. As long as context requirement is met, any worker can
|
|
* call this function to process a work.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock) which is released and regrabbed.
|
|
*/
|
|
static void process_one_work(struct worker *worker, struct work_struct *work)
|
|
__releases(&pool->lock)
|
|
__acquires(&pool->lock)
|
|
{
|
|
struct pool_workqueue *pwq = get_work_pwq(work);
|
|
struct worker_pool *pool = worker->pool;
|
|
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
|
|
int work_color;
|
|
struct worker *collision;
|
|
#ifdef CONFIG_LOCKDEP
|
|
/*
|
|
* It is permissible to free the struct work_struct from
|
|
* inside the function that is called from it, this we need to
|
|
* take into account for lockdep too. To avoid bogus "held
|
|
* lock freed" warnings as well as problems when looking into
|
|
* work->lockdep_map, make a copy and use that here.
|
|
*/
|
|
struct lockdep_map lockdep_map;
|
|
|
|
lockdep_copy_map(&lockdep_map, &work->lockdep_map);
|
|
#endif
|
|
/* ensure we're on the correct CPU */
|
|
WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
|
|
raw_smp_processor_id() != pool->cpu);
|
|
|
|
/*
|
|
* A single work shouldn't be executed concurrently by
|
|
* multiple workers on a single cpu. Check whether anyone is
|
|
* already processing the work. If so, defer the work to the
|
|
* currently executing one.
|
|
*/
|
|
collision = find_worker_executing_work(pool, work);
|
|
if (unlikely(collision)) {
|
|
move_linked_works(work, &collision->scheduled, NULL);
|
|
return;
|
|
}
|
|
|
|
/* claim and dequeue */
|
|
debug_work_deactivate(work);
|
|
hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
|
|
worker->current_work = work;
|
|
worker->current_func = work->func;
|
|
worker->current_pwq = pwq;
|
|
work_color = get_work_color(work);
|
|
|
|
/*
|
|
* Record wq name for cmdline and debug reporting, may get
|
|
* overridden through set_worker_desc().
|
|
*/
|
|
strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
|
|
|
|
list_del_init(&work->entry);
|
|
|
|
/*
|
|
* CPU intensive works don't participate in concurrency management.
|
|
* They're the scheduler's responsibility. This takes @worker out
|
|
* of concurrency management and the next code block will chain
|
|
* execution of the pending work items.
|
|
*/
|
|
if (unlikely(cpu_intensive))
|
|
worker_set_flags(worker, WORKER_CPU_INTENSIVE);
|
|
|
|
/*
|
|
* Wake up another worker if necessary. The condition is always
|
|
* false for normal per-cpu workers since nr_running would always
|
|
* be >= 1 at this point. This is used to chain execution of the
|
|
* pending work items for WORKER_NOT_RUNNING workers such as the
|
|
* UNBOUND and CPU_INTENSIVE ones.
|
|
*/
|
|
if (need_more_worker(pool))
|
|
wake_up_worker(pool);
|
|
|
|
/*
|
|
* Record the last pool and clear PENDING which should be the last
|
|
* update to @work. Also, do this inside @pool->lock so that
|
|
* PENDING and queued state changes happen together while IRQ is
|
|
* disabled.
|
|
*/
|
|
set_work_pool_and_clear_pending(work, pool->id);
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
lock_map_acquire(&pwq->wq->lockdep_map);
|
|
lock_map_acquire(&lockdep_map);
|
|
/*
|
|
* Strictly speaking we should mark the invariant state without holding
|
|
* any locks, that is, before these two lock_map_acquire()'s.
|
|
*
|
|
* However, that would result in:
|
|
*
|
|
* A(W1)
|
|
* WFC(C)
|
|
* A(W1)
|
|
* C(C)
|
|
*
|
|
* Which would create W1->C->W1 dependencies, even though there is no
|
|
* actual deadlock possible. There are two solutions, using a
|
|
* read-recursive acquire on the work(queue) 'locks', but this will then
|
|
* hit the lockdep limitation on recursive locks, or simply discard
|
|
* these locks.
|
|
*
|
|
* AFAICT there is no possible deadlock scenario between the
|
|
* flush_work() and complete() primitives (except for single-threaded
|
|
* workqueues), so hiding them isn't a problem.
|
|
*/
|
|
lockdep_invariant_state(true);
|
|
trace_workqueue_execute_start(work);
|
|
worker->current_func(work);
|
|
/*
|
|
* While we must be careful to not use "work" after this, the trace
|
|
* point will only record its address.
|
|
*/
|
|
trace_workqueue_execute_end(work);
|
|
lock_map_release(&lockdep_map);
|
|
lock_map_release(&pwq->wq->lockdep_map);
|
|
|
|
if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
|
|
pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
|
|
" last function: %pf\n",
|
|
current->comm, preempt_count(), task_pid_nr(current),
|
|
worker->current_func);
|
|
debug_show_held_locks(current);
|
|
dump_stack();
|
|
}
|
|
|
|
/*
|
|
* The following prevents a kworker from hogging CPU on !PREEMPT
|
|
* kernels, where a requeueing work item waiting for something to
|
|
* happen could deadlock with stop_machine as such work item could
|
|
* indefinitely requeue itself while all other CPUs are trapped in
|
|
* stop_machine. At the same time, report a quiescent RCU state so
|
|
* the same condition doesn't freeze RCU.
|
|
*/
|
|
cond_resched();
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
/* clear cpu intensive status */
|
|
if (unlikely(cpu_intensive))
|
|
worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
|
|
|
|
/* tag the worker for identification in schedule() */
|
|
worker->last_func = worker->current_func;
|
|
|
|
/* we're done with it, release */
|
|
hash_del(&worker->hentry);
|
|
worker->current_work = NULL;
|
|
worker->current_func = NULL;
|
|
worker->current_pwq = NULL;
|
|
pwq_dec_nr_in_flight(pwq, work_color);
|
|
}
|
|
|
|
/**
|
|
* process_scheduled_works - process scheduled works
|
|
* @worker: self
|
|
*
|
|
* Process all scheduled works. Please note that the scheduled list
|
|
* may change while processing a work, so this function repeatedly
|
|
* fetches a work from the top and executes it.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock) which may be released and regrabbed
|
|
* multiple times.
|
|
*/
|
|
static void process_scheduled_works(struct worker *worker)
|
|
{
|
|
while (!list_empty(&worker->scheduled)) {
|
|
struct work_struct *work = list_first_entry(&worker->scheduled,
|
|
struct work_struct, entry);
|
|
process_one_work(worker, work);
|
|
}
|
|
}
|
|
|
|
static void set_pf_worker(bool val)
|
|
{
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
if (val)
|
|
current->flags |= PF_WQ_WORKER;
|
|
else
|
|
current->flags &= ~PF_WQ_WORKER;
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
}
|
|
|
|
/**
|
|
* worker_thread - the worker thread function
|
|
* @__worker: self
|
|
*
|
|
* The worker thread function. All workers belong to a worker_pool -
|
|
* either a per-cpu one or dynamic unbound one. These workers process all
|
|
* work items regardless of their specific target workqueue. The only
|
|
* exception is work items which belong to workqueues with a rescuer which
|
|
* will be explained in rescuer_thread().
|
|
*
|
|
* Return: 0
|
|
*/
|
|
static int worker_thread(void *__worker)
|
|
{
|
|
struct worker *worker = __worker;
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
/* tell the scheduler that this is a workqueue worker */
|
|
set_pf_worker(true);
|
|
woke_up:
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
/* am I supposed to die? */
|
|
if (unlikely(worker->flags & WORKER_DIE)) {
|
|
spin_unlock_irq(&pool->lock);
|
|
WARN_ON_ONCE(!list_empty(&worker->entry));
|
|
set_pf_worker(false);
|
|
|
|
set_task_comm(worker->task, "kworker/dying");
|
|
ida_simple_remove(&pool->worker_ida, worker->id);
|
|
worker_detach_from_pool(worker);
|
|
kfree(worker);
|
|
return 0;
|
|
}
|
|
|
|
worker_leave_idle(worker);
|
|
recheck:
|
|
/* no more worker necessary? */
|
|
if (!need_more_worker(pool))
|
|
goto sleep;
|
|
|
|
/* do we need to manage? */
|
|
if (unlikely(!may_start_working(pool)) && manage_workers(worker))
|
|
goto recheck;
|
|
|
|
/*
|
|
* ->scheduled list can only be filled while a worker is
|
|
* preparing to process a work or actually processing it.
|
|
* Make sure nobody diddled with it while I was sleeping.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(&worker->scheduled));
|
|
|
|
/*
|
|
* Finish PREP stage. We're guaranteed to have at least one idle
|
|
* worker or that someone else has already assumed the manager
|
|
* role. This is where @worker starts participating in concurrency
|
|
* management if applicable and concurrency management is restored
|
|
* after being rebound. See rebind_workers() for details.
|
|
*/
|
|
worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
|
|
|
|
do {
|
|
struct work_struct *work =
|
|
list_first_entry(&pool->worklist,
|
|
struct work_struct, entry);
|
|
|
|
pool->watchdog_ts = jiffies;
|
|
|
|
if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
|
|
/* optimization path, not strictly necessary */
|
|
process_one_work(worker, work);
|
|
if (unlikely(!list_empty(&worker->scheduled)))
|
|
process_scheduled_works(worker);
|
|
} else {
|
|
move_linked_works(work, &worker->scheduled, NULL);
|
|
process_scheduled_works(worker);
|
|
}
|
|
} while (keep_working(pool));
|
|
|
|
worker_set_flags(worker, WORKER_PREP);
|
|
sleep:
|
|
/*
|
|
* pool->lock is held and there's no work to process and no need to
|
|
* manage, sleep. Workers are woken up only while holding
|
|
* pool->lock or from local cpu, so setting the current state
|
|
* before releasing pool->lock is enough to prevent losing any
|
|
* event.
|
|
*/
|
|
worker_enter_idle(worker);
|
|
__set_current_state(TASK_IDLE);
|
|
spin_unlock_irq(&pool->lock);
|
|
schedule();
|
|
goto woke_up;
|
|
}
|
|
|
|
/**
|
|
* rescuer_thread - the rescuer thread function
|
|
* @__rescuer: self
|
|
*
|
|
* Workqueue rescuer thread function. There's one rescuer for each
|
|
* workqueue which has WQ_MEM_RECLAIM set.
|
|
*
|
|
* Regular work processing on a pool may block trying to create a new
|
|
* worker which uses GFP_KERNEL allocation which has slight chance of
|
|
* developing into deadlock if some works currently on the same queue
|
|
* need to be processed to satisfy the GFP_KERNEL allocation. This is
|
|
* the problem rescuer solves.
|
|
*
|
|
* When such condition is possible, the pool summons rescuers of all
|
|
* workqueues which have works queued on the pool and let them process
|
|
* those works so that forward progress can be guaranteed.
|
|
*
|
|
* This should happen rarely.
|
|
*
|
|
* Return: 0
|
|
*/
|
|
static int rescuer_thread(void *__rescuer)
|
|
{
|
|
struct worker *rescuer = __rescuer;
|
|
struct workqueue_struct *wq = rescuer->rescue_wq;
|
|
struct list_head *scheduled = &rescuer->scheduled;
|
|
bool should_stop;
|
|
|
|
set_user_nice(current, RESCUER_NICE_LEVEL);
|
|
|
|
/*
|
|
* Mark rescuer as worker too. As WORKER_PREP is never cleared, it
|
|
* doesn't participate in concurrency management.
|
|
*/
|
|
set_pf_worker(true);
|
|
repeat:
|
|
set_current_state(TASK_IDLE);
|
|
|
|
/*
|
|
* By the time the rescuer is requested to stop, the workqueue
|
|
* shouldn't have any work pending, but @wq->maydays may still have
|
|
* pwq(s) queued. This can happen by non-rescuer workers consuming
|
|
* all the work items before the rescuer got to them. Go through
|
|
* @wq->maydays processing before acting on should_stop so that the
|
|
* list is always empty on exit.
|
|
*/
|
|
should_stop = kthread_should_stop();
|
|
|
|
/* see whether any pwq is asking for help */
|
|
spin_lock_irq(&wq_mayday_lock);
|
|
|
|
while (!list_empty(&wq->maydays)) {
|
|
struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
|
|
struct pool_workqueue, mayday_node);
|
|
struct worker_pool *pool = pwq->pool;
|
|
struct work_struct *work, *n;
|
|
bool first = true;
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
list_del_init(&pwq->mayday_node);
|
|
|
|
spin_unlock_irq(&wq_mayday_lock);
|
|
|
|
worker_attach_to_pool(rescuer, pool);
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
/*
|
|
* Slurp in all works issued via this workqueue and
|
|
* process'em.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(scheduled));
|
|
list_for_each_entry_safe(work, n, &pool->worklist, entry) {
|
|
if (get_work_pwq(work) == pwq) {
|
|
if (first)
|
|
pool->watchdog_ts = jiffies;
|
|
move_linked_works(work, scheduled, &n);
|
|
}
|
|
first = false;
|
|
}
|
|
|
|
if (!list_empty(scheduled)) {
|
|
process_scheduled_works(rescuer);
|
|
|
|
/*
|
|
* The above execution of rescued work items could
|
|
* have created more to rescue through
|
|
* pwq_activate_first_delayed() or chained
|
|
* queueing. Let's put @pwq back on mayday list so
|
|
* that such back-to-back work items, which may be
|
|
* being used to relieve memory pressure, don't
|
|
* incur MAYDAY_INTERVAL delay inbetween.
|
|
*/
|
|
if (need_to_create_worker(pool)) {
|
|
spin_lock(&wq_mayday_lock);
|
|
/*
|
|
* Queue iff we aren't racing destruction
|
|
* and somebody else hasn't queued it already.
|
|
*/
|
|
if (wq->rescuer && list_empty(&pwq->mayday_node)) {
|
|
get_pwq(pwq);
|
|
list_add_tail(&pwq->mayday_node, &wq->maydays);
|
|
}
|
|
spin_unlock(&wq_mayday_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put the reference grabbed by send_mayday(). @pool won't
|
|
* go away while we're still attached to it.
|
|
*/
|
|
put_pwq(pwq);
|
|
|
|
/*
|
|
* Leave this pool. If need_more_worker() is %true, notify a
|
|
* regular worker; otherwise, we end up with 0 concurrency
|
|
* and stalling the execution.
|
|
*/
|
|
if (need_more_worker(pool))
|
|
wake_up_worker(pool);
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
worker_detach_from_pool(rescuer);
|
|
|
|
spin_lock_irq(&wq_mayday_lock);
|
|
}
|
|
|
|
spin_unlock_irq(&wq_mayday_lock);
|
|
|
|
if (should_stop) {
|
|
__set_current_state(TASK_RUNNING);
|
|
set_pf_worker(false);
|
|
return 0;
|
|
}
|
|
|
|
/* rescuers should never participate in concurrency management */
|
|
WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
|
|
schedule();
|
|
goto repeat;
|
|
}
|
|
|
|
/**
|
|
* check_flush_dependency - check for flush dependency sanity
|
|
* @target_wq: workqueue being flushed
|
|
* @target_work: work item being flushed (NULL for workqueue flushes)
|
|
*
|
|
* %current is trying to flush the whole @target_wq or @target_work on it.
|
|
* If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
|
|
* reclaiming memory or running on a workqueue which doesn't have
|
|
* %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
|
|
* a deadlock.
|
|
*/
|
|
static void check_flush_dependency(struct workqueue_struct *target_wq,
|
|
struct work_struct *target_work)
|
|
{
|
|
work_func_t target_func = target_work ? target_work->func : NULL;
|
|
struct worker *worker;
|
|
|
|
if (target_wq->flags & WQ_MEM_RECLAIM)
|
|
return;
|
|
|
|
worker = current_wq_worker();
|
|
|
|
WARN_ONCE(current->flags & PF_MEMALLOC,
|
|
"workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
|
|
current->pid, current->comm, target_wq->name, target_func);
|
|
WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
|
|
(WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
|
|
"workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
|
|
worker->current_pwq->wq->name, worker->current_func,
|
|
target_wq->name, target_func);
|
|
}
|
|
|
|
struct wq_barrier {
|
|
struct work_struct work;
|
|
struct completion done;
|
|
struct task_struct *task; /* purely informational */
|
|
};
|
|
|
|
static void wq_barrier_func(struct work_struct *work)
|
|
{
|
|
struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
|
|
complete(&barr->done);
|
|
}
|
|
|
|
/**
|
|
* insert_wq_barrier - insert a barrier work
|
|
* @pwq: pwq to insert barrier into
|
|
* @barr: wq_barrier to insert
|
|
* @target: target work to attach @barr to
|
|
* @worker: worker currently executing @target, NULL if @target is not executing
|
|
*
|
|
* @barr is linked to @target such that @barr is completed only after
|
|
* @target finishes execution. Please note that the ordering
|
|
* guarantee is observed only with respect to @target and on the local
|
|
* cpu.
|
|
*
|
|
* Currently, a queued barrier can't be canceled. This is because
|
|
* try_to_grab_pending() can't determine whether the work to be
|
|
* grabbed is at the head of the queue and thus can't clear LINKED
|
|
* flag of the previous work while there must be a valid next work
|
|
* after a work with LINKED flag set.
|
|
*
|
|
* Note that when @worker is non-NULL, @target may be modified
|
|
* underneath us, so we can't reliably determine pwq from @target.
|
|
*
|
|
* CONTEXT:
|
|
* spin_lock_irq(pool->lock).
|
|
*/
|
|
static void insert_wq_barrier(struct pool_workqueue *pwq,
|
|
struct wq_barrier *barr,
|
|
struct work_struct *target, struct worker *worker)
|
|
{
|
|
struct list_head *head;
|
|
unsigned int linked = 0;
|
|
|
|
/*
|
|
* debugobject calls are safe here even with pool->lock locked
|
|
* as we know for sure that this will not trigger any of the
|
|
* checks and call back into the fixup functions where we
|
|
* might deadlock.
|
|
*/
|
|
INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
|
|
__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
|
|
|
|
init_completion_map(&barr->done, &target->lockdep_map);
|
|
|
|
barr->task = current;
|
|
|
|
/*
|
|
* If @target is currently being executed, schedule the
|
|
* barrier to the worker; otherwise, put it after @target.
|
|
*/
|
|
if (worker)
|
|
head = worker->scheduled.next;
|
|
else {
|
|
unsigned long *bits = work_data_bits(target);
|
|
|
|
head = target->entry.next;
|
|
/* there can already be other linked works, inherit and set */
|
|
linked = *bits & WORK_STRUCT_LINKED;
|
|
__set_bit(WORK_STRUCT_LINKED_BIT, bits);
|
|
}
|
|
|
|
debug_work_activate(&barr->work);
|
|
insert_work(pwq, &barr->work, head,
|
|
work_color_to_flags(WORK_NO_COLOR) | linked);
|
|
}
|
|
|
|
/**
|
|
* flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
|
|
* @wq: workqueue being flushed
|
|
* @flush_color: new flush color, < 0 for no-op
|
|
* @work_color: new work color, < 0 for no-op
|
|
*
|
|
* Prepare pwqs for workqueue flushing.
|
|
*
|
|
* If @flush_color is non-negative, flush_color on all pwqs should be
|
|
* -1. If no pwq has in-flight commands at the specified color, all
|
|
* pwq->flush_color's stay at -1 and %false is returned. If any pwq
|
|
* has in flight commands, its pwq->flush_color is set to
|
|
* @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
|
|
* wakeup logic is armed and %true is returned.
|
|
*
|
|
* The caller should have initialized @wq->first_flusher prior to
|
|
* calling this function with non-negative @flush_color. If
|
|
* @flush_color is negative, no flush color update is done and %false
|
|
* is returned.
|
|
*
|
|
* If @work_color is non-negative, all pwqs should have the same
|
|
* work_color which is previous to @work_color and all will be
|
|
* advanced to @work_color.
|
|
*
|
|
* CONTEXT:
|
|
* mutex_lock(wq->mutex).
|
|
*
|
|
* Return:
|
|
* %true if @flush_color >= 0 and there's something to flush. %false
|
|
* otherwise.
|
|
*/
|
|
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
|
|
int flush_color, int work_color)
|
|
{
|
|
bool wait = false;
|
|
struct pool_workqueue *pwq;
|
|
|
|
if (flush_color >= 0) {
|
|
WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
|
|
atomic_set(&wq->nr_pwqs_to_flush, 1);
|
|
}
|
|
|
|
for_each_pwq(pwq, wq) {
|
|
struct worker_pool *pool = pwq->pool;
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
if (flush_color >= 0) {
|
|
WARN_ON_ONCE(pwq->flush_color != -1);
|
|
|
|
if (pwq->nr_in_flight[flush_color]) {
|
|
pwq->flush_color = flush_color;
|
|
atomic_inc(&wq->nr_pwqs_to_flush);
|
|
wait = true;
|
|
}
|
|
}
|
|
|
|
if (work_color >= 0) {
|
|
WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
|
|
pwq->work_color = work_color;
|
|
}
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
}
|
|
|
|
if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
|
|
complete(&wq->first_flusher->done);
|
|
|
|
return wait;
|
|
}
|
|
|
|
/**
|
|
* flush_workqueue - ensure that any scheduled work has run to completion.
|
|
* @wq: workqueue to flush
|
|
*
|
|
* This function sleeps until all work items which were queued on entry
|
|
* have finished execution, but it is not livelocked by new incoming ones.
|
|
*/
|
|
void flush_workqueue(struct workqueue_struct *wq)
|
|
{
|
|
struct wq_flusher this_flusher = {
|
|
.list = LIST_HEAD_INIT(this_flusher.list),
|
|
.flush_color = -1,
|
|
.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
|
|
};
|
|
int next_color;
|
|
|
|
if (WARN_ON(!wq_online))
|
|
return;
|
|
|
|
lock_map_acquire(&wq->lockdep_map);
|
|
lock_map_release(&wq->lockdep_map);
|
|
|
|
mutex_lock(&wq->mutex);
|
|
|
|
/*
|
|
* Start-to-wait phase
|
|
*/
|
|
next_color = work_next_color(wq->work_color);
|
|
|
|
if (next_color != wq->flush_color) {
|
|
/*
|
|
* Color space is not full. The current work_color
|
|
* becomes our flush_color and work_color is advanced
|
|
* by one.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
|
|
this_flusher.flush_color = wq->work_color;
|
|
wq->work_color = next_color;
|
|
|
|
if (!wq->first_flusher) {
|
|
/* no flush in progress, become the first flusher */
|
|
WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
|
|
|
|
wq->first_flusher = &this_flusher;
|
|
|
|
if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
|
|
wq->work_color)) {
|
|
/* nothing to flush, done */
|
|
wq->flush_color = next_color;
|
|
wq->first_flusher = NULL;
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
/* wait in queue */
|
|
WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
|
|
list_add_tail(&this_flusher.list, &wq->flusher_queue);
|
|
flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
|
|
}
|
|
} else {
|
|
/*
|
|
* Oops, color space is full, wait on overflow queue.
|
|
* The next flush completion will assign us
|
|
* flush_color and transfer to flusher_queue.
|
|
*/
|
|
list_add_tail(&this_flusher.list, &wq->flusher_overflow);
|
|
}
|
|
|
|
check_flush_dependency(wq, NULL);
|
|
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
wait_for_completion(&this_flusher.done);
|
|
|
|
/*
|
|
* Wake-up-and-cascade phase
|
|
*
|
|
* First flushers are responsible for cascading flushes and
|
|
* handling overflow. Non-first flushers can simply return.
|
|
*/
|
|
if (wq->first_flusher != &this_flusher)
|
|
return;
|
|
|
|
mutex_lock(&wq->mutex);
|
|
|
|
/* we might have raced, check again with mutex held */
|
|
if (wq->first_flusher != &this_flusher)
|
|
goto out_unlock;
|
|
|
|
wq->first_flusher = NULL;
|
|
|
|
WARN_ON_ONCE(!list_empty(&this_flusher.list));
|
|
WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
|
|
|
|
while (true) {
|
|
struct wq_flusher *next, *tmp;
|
|
|
|
/* complete all the flushers sharing the current flush color */
|
|
list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
|
|
if (next->flush_color != wq->flush_color)
|
|
break;
|
|
list_del_init(&next->list);
|
|
complete(&next->done);
|
|
}
|
|
|
|
WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
|
|
wq->flush_color != work_next_color(wq->work_color));
|
|
|
|
/* this flush_color is finished, advance by one */
|
|
wq->flush_color = work_next_color(wq->flush_color);
|
|
|
|
/* one color has been freed, handle overflow queue */
|
|
if (!list_empty(&wq->flusher_overflow)) {
|
|
/*
|
|
* Assign the same color to all overflowed
|
|
* flushers, advance work_color and append to
|
|
* flusher_queue. This is the start-to-wait
|
|
* phase for these overflowed flushers.
|
|
*/
|
|
list_for_each_entry(tmp, &wq->flusher_overflow, list)
|
|
tmp->flush_color = wq->work_color;
|
|
|
|
wq->work_color = work_next_color(wq->work_color);
|
|
|
|
list_splice_tail_init(&wq->flusher_overflow,
|
|
&wq->flusher_queue);
|
|
flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
|
|
}
|
|
|
|
if (list_empty(&wq->flusher_queue)) {
|
|
WARN_ON_ONCE(wq->flush_color != wq->work_color);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Need to flush more colors. Make the next flusher
|
|
* the new first flusher and arm pwqs.
|
|
*/
|
|
WARN_ON_ONCE(wq->flush_color == wq->work_color);
|
|
WARN_ON_ONCE(wq->flush_color != next->flush_color);
|
|
|
|
list_del_init(&next->list);
|
|
wq->first_flusher = next;
|
|
|
|
if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
|
|
break;
|
|
|
|
/*
|
|
* Meh... this color is already done, clear first
|
|
* flusher and repeat cascading.
|
|
*/
|
|
wq->first_flusher = NULL;
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
EXPORT_SYMBOL(flush_workqueue);
|
|
|
|
/**
|
|
* drain_workqueue - drain a workqueue
|
|
* @wq: workqueue to drain
|
|
*
|
|
* Wait until the workqueue becomes empty. While draining is in progress,
|
|
* only chain queueing is allowed. IOW, only currently pending or running
|
|
* work items on @wq can queue further work items on it. @wq is flushed
|
|
* repeatedly until it becomes empty. The number of flushing is determined
|
|
* by the depth of chaining and should be relatively short. Whine if it
|
|
* takes too long.
|
|
*/
|
|
void drain_workqueue(struct workqueue_struct *wq)
|
|
{
|
|
unsigned int flush_cnt = 0;
|
|
struct pool_workqueue *pwq;
|
|
|
|
/*
|
|
* __queue_work() needs to test whether there are drainers, is much
|
|
* hotter than drain_workqueue() and already looks at @wq->flags.
|
|
* Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
|
|
*/
|
|
mutex_lock(&wq->mutex);
|
|
if (!wq->nr_drainers++)
|
|
wq->flags |= __WQ_DRAINING;
|
|
mutex_unlock(&wq->mutex);
|
|
reflush:
|
|
flush_workqueue(wq);
|
|
|
|
mutex_lock(&wq->mutex);
|
|
|
|
for_each_pwq(pwq, wq) {
|
|
bool drained;
|
|
|
|
spin_lock_irq(&pwq->pool->lock);
|
|
drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
|
|
spin_unlock_irq(&pwq->pool->lock);
|
|
|
|
if (drained)
|
|
continue;
|
|
|
|
if (++flush_cnt == 10 ||
|
|
(flush_cnt % 100 == 0 && flush_cnt <= 1000))
|
|
pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
|
|
wq->name, flush_cnt);
|
|
|
|
mutex_unlock(&wq->mutex);
|
|
goto reflush;
|
|
}
|
|
|
|
if (!--wq->nr_drainers)
|
|
wq->flags &= ~__WQ_DRAINING;
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(drain_workqueue);
|
|
|
|
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
|
|
bool from_cancel)
|
|
{
|
|
struct worker *worker = NULL;
|
|
struct worker_pool *pool;
|
|
struct pool_workqueue *pwq;
|
|
|
|
might_sleep();
|
|
|
|
local_irq_disable();
|
|
pool = get_work_pool(work);
|
|
if (!pool) {
|
|
local_irq_enable();
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&pool->lock);
|
|
/* see the comment in try_to_grab_pending() with the same code */
|
|
pwq = get_work_pwq(work);
|
|
if (pwq) {
|
|
if (unlikely(pwq->pool != pool))
|
|
goto already_gone;
|
|
} else {
|
|
worker = find_worker_executing_work(pool, work);
|
|
if (!worker)
|
|
goto already_gone;
|
|
pwq = worker->current_pwq;
|
|
}
|
|
|
|
check_flush_dependency(pwq->wq, work);
|
|
|
|
insert_wq_barrier(pwq, barr, work, worker);
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
/*
|
|
* Force a lock recursion deadlock when using flush_work() inside a
|
|
* single-threaded or rescuer equipped workqueue.
|
|
*
|
|
* For single threaded workqueues the deadlock happens when the work
|
|
* is after the work issuing the flush_work(). For rescuer equipped
|
|
* workqueues the deadlock happens when the rescuer stalls, blocking
|
|
* forward progress.
|
|
*/
|
|
if (!from_cancel &&
|
|
(pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
|
|
lock_map_acquire(&pwq->wq->lockdep_map);
|
|
lock_map_release(&pwq->wq->lockdep_map);
|
|
}
|
|
|
|
return true;
|
|
already_gone:
|
|
spin_unlock_irq(&pool->lock);
|
|
return false;
|
|
}
|
|
|
|
static bool __flush_work(struct work_struct *work, bool from_cancel)
|
|
{
|
|
struct wq_barrier barr;
|
|
|
|
if (WARN_ON(!wq_online))
|
|
return false;
|
|
|
|
if (WARN_ON(!work->func))
|
|
return false;
|
|
|
|
if (!from_cancel) {
|
|
lock_map_acquire(&work->lockdep_map);
|
|
lock_map_release(&work->lockdep_map);
|
|
}
|
|
|
|
if (start_flush_work(work, &barr, from_cancel)) {
|
|
wait_for_completion(&barr.done);
|
|
destroy_work_on_stack(&barr.work);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* flush_work - wait for a work to finish executing the last queueing instance
|
|
* @work: the work to flush
|
|
*
|
|
* Wait until @work has finished execution. @work is guaranteed to be idle
|
|
* on return if it hasn't been requeued since flush started.
|
|
*
|
|
* Return:
|
|
* %true if flush_work() waited for the work to finish execution,
|
|
* %false if it was already idle.
|
|
*/
|
|
bool flush_work(struct work_struct *work)
|
|
{
|
|
return __flush_work(work, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_work);
|
|
|
|
struct cwt_wait {
|
|
wait_queue_entry_t wait;
|
|
struct work_struct *work;
|
|
};
|
|
|
|
static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
|
|
{
|
|
struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
|
|
|
|
if (cwait->work != key)
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, key);
|
|
}
|
|
|
|
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
|
|
{
|
|
static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
do {
|
|
ret = try_to_grab_pending(work, is_dwork, &flags);
|
|
/*
|
|
* If someone else is already canceling, wait for it to
|
|
* finish. flush_work() doesn't work for PREEMPT_NONE
|
|
* because we may get scheduled between @work's completion
|
|
* and the other canceling task resuming and clearing
|
|
* CANCELING - flush_work() will return false immediately
|
|
* as @work is no longer busy, try_to_grab_pending() will
|
|
* return -ENOENT as @work is still being canceled and the
|
|
* other canceling task won't be able to clear CANCELING as
|
|
* we're hogging the CPU.
|
|
*
|
|
* Let's wait for completion using a waitqueue. As this
|
|
* may lead to the thundering herd problem, use a custom
|
|
* wake function which matches @work along with exclusive
|
|
* wait and wakeup.
|
|
*/
|
|
if (unlikely(ret == -ENOENT)) {
|
|
struct cwt_wait cwait;
|
|
|
|
init_wait(&cwait.wait);
|
|
cwait.wait.func = cwt_wakefn;
|
|
cwait.work = work;
|
|
|
|
prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
if (work_is_canceling(work))
|
|
schedule();
|
|
finish_wait(&cancel_waitq, &cwait.wait);
|
|
}
|
|
} while (unlikely(ret < 0));
|
|
|
|
/* tell other tasks trying to grab @work to back off */
|
|
mark_work_canceling(work);
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* This allows canceling during early boot. We know that @work
|
|
* isn't executing.
|
|
*/
|
|
if (wq_online)
|
|
__flush_work(work, true);
|
|
|
|
clear_work_data(work);
|
|
|
|
/*
|
|
* Paired with prepare_to_wait() above so that either
|
|
* waitqueue_active() is visible here or !work_is_canceling() is
|
|
* visible there.
|
|
*/
|
|
smp_mb();
|
|
if (waitqueue_active(&cancel_waitq))
|
|
__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cancel_work_sync - cancel a work and wait for it to finish
|
|
* @work: the work to cancel
|
|
*
|
|
* Cancel @work and wait for its execution to finish. This function
|
|
* can be used even if the work re-queues itself or migrates to
|
|
* another workqueue. On return from this function, @work is
|
|
* guaranteed to be not pending or executing on any CPU.
|
|
*
|
|
* cancel_work_sync(&delayed_work->work) must not be used for
|
|
* delayed_work's. Use cancel_delayed_work_sync() instead.
|
|
*
|
|
* The caller must ensure that the workqueue on which @work was last
|
|
* queued can't be destroyed before this function returns.
|
|
*
|
|
* Return:
|
|
* %true if @work was pending, %false otherwise.
|
|
*/
|
|
bool cancel_work_sync(struct work_struct *work)
|
|
{
|
|
return __cancel_work_timer(work, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cancel_work_sync);
|
|
|
|
/**
|
|
* flush_delayed_work - wait for a dwork to finish executing the last queueing
|
|
* @dwork: the delayed work to flush
|
|
*
|
|
* Delayed timer is cancelled and the pending work is queued for
|
|
* immediate execution. Like flush_work(), this function only
|
|
* considers the last queueing instance of @dwork.
|
|
*
|
|
* Return:
|
|
* %true if flush_work() waited for the work to finish execution,
|
|
* %false if it was already idle.
|
|
*/
|
|
bool flush_delayed_work(struct delayed_work *dwork)
|
|
{
|
|
local_irq_disable();
|
|
if (del_timer_sync(&dwork->timer))
|
|
__queue_work(dwork->cpu, dwork->wq, &dwork->work);
|
|
local_irq_enable();
|
|
return flush_work(&dwork->work);
|
|
}
|
|
EXPORT_SYMBOL(flush_delayed_work);
|
|
|
|
/**
|
|
* flush_rcu_work - wait for a rwork to finish executing the last queueing
|
|
* @rwork: the rcu work to flush
|
|
*
|
|
* Return:
|
|
* %true if flush_rcu_work() waited for the work to finish execution,
|
|
* %false if it was already idle.
|
|
*/
|
|
bool flush_rcu_work(struct rcu_work *rwork)
|
|
{
|
|
if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
|
|
rcu_barrier();
|
|
flush_work(&rwork->work);
|
|
return true;
|
|
} else {
|
|
return flush_work(&rwork->work);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(flush_rcu_work);
|
|
|
|
static bool __cancel_work(struct work_struct *work, bool is_dwork)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
do {
|
|
ret = try_to_grab_pending(work, is_dwork, &flags);
|
|
} while (unlikely(ret == -EAGAIN));
|
|
|
|
if (unlikely(ret < 0))
|
|
return false;
|
|
|
|
set_work_pool_and_clear_pending(work, get_work_pool_id(work));
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cancel_delayed_work - cancel a delayed work
|
|
* @dwork: delayed_work to cancel
|
|
*
|
|
* Kill off a pending delayed_work.
|
|
*
|
|
* Return: %true if @dwork was pending and canceled; %false if it wasn't
|
|
* pending.
|
|
*
|
|
* Note:
|
|
* The work callback function may still be running on return, unless
|
|
* it returns %true and the work doesn't re-arm itself. Explicitly flush or
|
|
* use cancel_delayed_work_sync() to wait on it.
|
|
*
|
|
* This function is safe to call from any context including IRQ handler.
|
|
*/
|
|
bool cancel_delayed_work(struct delayed_work *dwork)
|
|
{
|
|
return __cancel_work(&dwork->work, true);
|
|
}
|
|
EXPORT_SYMBOL(cancel_delayed_work);
|
|
|
|
/**
|
|
* cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
|
|
* @dwork: the delayed work cancel
|
|
*
|
|
* This is cancel_work_sync() for delayed works.
|
|
*
|
|
* Return:
|
|
* %true if @dwork was pending, %false otherwise.
|
|
*/
|
|
bool cancel_delayed_work_sync(struct delayed_work *dwork)
|
|
{
|
|
return __cancel_work_timer(&dwork->work, true);
|
|
}
|
|
EXPORT_SYMBOL(cancel_delayed_work_sync);
|
|
|
|
/**
|
|
* schedule_on_each_cpu - execute a function synchronously on each online CPU
|
|
* @func: the function to call
|
|
*
|
|
* schedule_on_each_cpu() executes @func on each online CPU using the
|
|
* system workqueue and blocks until all CPUs have completed.
|
|
* schedule_on_each_cpu() is very slow.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int schedule_on_each_cpu(work_func_t func)
|
|
{
|
|
int cpu;
|
|
struct work_struct __percpu *works;
|
|
|
|
works = alloc_percpu(struct work_struct);
|
|
if (!works)
|
|
return -ENOMEM;
|
|
|
|
get_online_cpus();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct work_struct *work = per_cpu_ptr(works, cpu);
|
|
|
|
INIT_WORK(work, func);
|
|
schedule_work_on(cpu, work);
|
|
}
|
|
|
|
for_each_online_cpu(cpu)
|
|
flush_work(per_cpu_ptr(works, cpu));
|
|
|
|
put_online_cpus();
|
|
free_percpu(works);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* execute_in_process_context - reliably execute the routine with user context
|
|
* @fn: the function to execute
|
|
* @ew: guaranteed storage for the execute work structure (must
|
|
* be available when the work executes)
|
|
*
|
|
* Executes the function immediately if process context is available,
|
|
* otherwise schedules the function for delayed execution.
|
|
*
|
|
* Return: 0 - function was executed
|
|
* 1 - function was scheduled for execution
|
|
*/
|
|
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
|
|
{
|
|
if (!in_interrupt()) {
|
|
fn(&ew->work);
|
|
return 0;
|
|
}
|
|
|
|
INIT_WORK(&ew->work, fn);
|
|
schedule_work(&ew->work);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(execute_in_process_context);
|
|
|
|
/**
|
|
* free_workqueue_attrs - free a workqueue_attrs
|
|
* @attrs: workqueue_attrs to free
|
|
*
|
|
* Undo alloc_workqueue_attrs().
|
|
*/
|
|
void free_workqueue_attrs(struct workqueue_attrs *attrs)
|
|
{
|
|
if (attrs) {
|
|
free_cpumask_var(attrs->cpumask);
|
|
kfree(attrs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* alloc_workqueue_attrs - allocate a workqueue_attrs
|
|
* @gfp_mask: allocation mask to use
|
|
*
|
|
* Allocate a new workqueue_attrs, initialize with default settings and
|
|
* return it.
|
|
*
|
|
* Return: The allocated new workqueue_attr on success. %NULL on failure.
|
|
*/
|
|
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
|
|
{
|
|
struct workqueue_attrs *attrs;
|
|
|
|
attrs = kzalloc(sizeof(*attrs), gfp_mask);
|
|
if (!attrs)
|
|
goto fail;
|
|
if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
|
|
goto fail;
|
|
|
|
cpumask_copy(attrs->cpumask, cpu_possible_mask);
|
|
return attrs;
|
|
fail:
|
|
free_workqueue_attrs(attrs);
|
|
return NULL;
|
|
}
|
|
|
|
static void copy_workqueue_attrs(struct workqueue_attrs *to,
|
|
const struct workqueue_attrs *from)
|
|
{
|
|
to->nice = from->nice;
|
|
cpumask_copy(to->cpumask, from->cpumask);
|
|
/*
|
|
* Unlike hash and equality test, this function doesn't ignore
|
|
* ->no_numa as it is used for both pool and wq attrs. Instead,
|
|
* get_unbound_pool() explicitly clears ->no_numa after copying.
|
|
*/
|
|
to->no_numa = from->no_numa;
|
|
}
|
|
|
|
/* hash value of the content of @attr */
|
|
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
|
|
{
|
|
u32 hash = 0;
|
|
|
|
hash = jhash_1word(attrs->nice, hash);
|
|
hash = jhash(cpumask_bits(attrs->cpumask),
|
|
BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
|
|
return hash;
|
|
}
|
|
|
|
/* content equality test */
|
|
static bool wqattrs_equal(const struct workqueue_attrs *a,
|
|
const struct workqueue_attrs *b)
|
|
{
|
|
if (a->nice != b->nice)
|
|
return false;
|
|
if (!cpumask_equal(a->cpumask, b->cpumask))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* init_worker_pool - initialize a newly zalloc'd worker_pool
|
|
* @pool: worker_pool to initialize
|
|
*
|
|
* Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
|
|
*
|
|
* Return: 0 on success, -errno on failure. Even on failure, all fields
|
|
* inside @pool proper are initialized and put_unbound_pool() can be called
|
|
* on @pool safely to release it.
|
|
*/
|
|
static int init_worker_pool(struct worker_pool *pool)
|
|
{
|
|
spin_lock_init(&pool->lock);
|
|
pool->id = -1;
|
|
pool->cpu = -1;
|
|
pool->node = NUMA_NO_NODE;
|
|
pool->flags |= POOL_DISASSOCIATED;
|
|
pool->watchdog_ts = jiffies;
|
|
INIT_LIST_HEAD(&pool->worklist);
|
|
INIT_LIST_HEAD(&pool->idle_list);
|
|
hash_init(pool->busy_hash);
|
|
|
|
timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
|
|
|
|
timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
|
|
|
|
INIT_LIST_HEAD(&pool->workers);
|
|
|
|
ida_init(&pool->worker_ida);
|
|
INIT_HLIST_NODE(&pool->hash_node);
|
|
pool->refcnt = 1;
|
|
|
|
/* shouldn't fail above this point */
|
|
pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
|
|
if (!pool->attrs)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void rcu_free_wq(struct rcu_head *rcu)
|
|
{
|
|
struct workqueue_struct *wq =
|
|
container_of(rcu, struct workqueue_struct, rcu);
|
|
|
|
if (!(wq->flags & WQ_UNBOUND))
|
|
free_percpu(wq->cpu_pwqs);
|
|
else
|
|
free_workqueue_attrs(wq->unbound_attrs);
|
|
|
|
kfree(wq->rescuer);
|
|
kfree(wq);
|
|
}
|
|
|
|
static void rcu_free_pool(struct rcu_head *rcu)
|
|
{
|
|
struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
|
|
|
|
ida_destroy(&pool->worker_ida);
|
|
free_workqueue_attrs(pool->attrs);
|
|
kfree(pool);
|
|
}
|
|
|
|
/**
|
|
* put_unbound_pool - put a worker_pool
|
|
* @pool: worker_pool to put
|
|
*
|
|
* Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
|
|
* safe manner. get_unbound_pool() calls this function on its failure path
|
|
* and this function should be able to release pools which went through,
|
|
* successfully or not, init_worker_pool().
|
|
*
|
|
* Should be called with wq_pool_mutex held.
|
|
*/
|
|
static void put_unbound_pool(struct worker_pool *pool)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(detach_completion);
|
|
struct worker *worker;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
if (--pool->refcnt)
|
|
return;
|
|
|
|
/* sanity checks */
|
|
if (WARN_ON(!(pool->cpu < 0)) ||
|
|
WARN_ON(!list_empty(&pool->worklist)))
|
|
return;
|
|
|
|
/* release id and unhash */
|
|
if (pool->id >= 0)
|
|
idr_remove(&worker_pool_idr, pool->id);
|
|
hash_del(&pool->hash_node);
|
|
|
|
/*
|
|
* Become the manager and destroy all workers. This prevents
|
|
* @pool's workers from blocking on attach_mutex. We're the last
|
|
* manager and @pool gets freed with the flag set.
|
|
*/
|
|
spin_lock_irq(&pool->lock);
|
|
wait_event_lock_irq(wq_manager_wait,
|
|
!(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
|
|
pool->flags |= POOL_MANAGER_ACTIVE;
|
|
|
|
while ((worker = first_idle_worker(pool)))
|
|
destroy_worker(worker);
|
|
WARN_ON(pool->nr_workers || pool->nr_idle);
|
|
spin_unlock_irq(&pool->lock);
|
|
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
if (!list_empty(&pool->workers))
|
|
pool->detach_completion = &detach_completion;
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
|
|
if (pool->detach_completion)
|
|
wait_for_completion(pool->detach_completion);
|
|
|
|
/* shut down the timers */
|
|
del_timer_sync(&pool->idle_timer);
|
|
del_timer_sync(&pool->mayday_timer);
|
|
|
|
/* sched-RCU protected to allow dereferences from get_work_pool() */
|
|
call_rcu_sched(&pool->rcu, rcu_free_pool);
|
|
}
|
|
|
|
/**
|
|
* get_unbound_pool - get a worker_pool with the specified attributes
|
|
* @attrs: the attributes of the worker_pool to get
|
|
*
|
|
* Obtain a worker_pool which has the same attributes as @attrs, bump the
|
|
* reference count and return it. If there already is a matching
|
|
* worker_pool, it will be used; otherwise, this function attempts to
|
|
* create a new one.
|
|
*
|
|
* Should be called with wq_pool_mutex held.
|
|
*
|
|
* Return: On success, a worker_pool with the same attributes as @attrs.
|
|
* On failure, %NULL.
|
|
*/
|
|
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
|
|
{
|
|
u32 hash = wqattrs_hash(attrs);
|
|
struct worker_pool *pool;
|
|
int node;
|
|
int target_node = NUMA_NO_NODE;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
/* do we already have a matching pool? */
|
|
hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
|
|
if (wqattrs_equal(pool->attrs, attrs)) {
|
|
pool->refcnt++;
|
|
return pool;
|
|
}
|
|
}
|
|
|
|
/* if cpumask is contained inside a NUMA node, we belong to that node */
|
|
if (wq_numa_enabled) {
|
|
for_each_node(node) {
|
|
if (cpumask_subset(attrs->cpumask,
|
|
wq_numa_possible_cpumask[node])) {
|
|
target_node = node;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* nope, create a new one */
|
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
|
|
if (!pool || init_worker_pool(pool) < 0)
|
|
goto fail;
|
|
|
|
lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
|
|
copy_workqueue_attrs(pool->attrs, attrs);
|
|
pool->node = target_node;
|
|
|
|
/*
|
|
* no_numa isn't a worker_pool attribute, always clear it. See
|
|
* 'struct workqueue_attrs' comments for detail.
|
|
*/
|
|
pool->attrs->no_numa = false;
|
|
|
|
if (worker_pool_assign_id(pool) < 0)
|
|
goto fail;
|
|
|
|
/* create and start the initial worker */
|
|
if (wq_online && !create_worker(pool))
|
|
goto fail;
|
|
|
|
/* install */
|
|
hash_add(unbound_pool_hash, &pool->hash_node, hash);
|
|
|
|
return pool;
|
|
fail:
|
|
if (pool)
|
|
put_unbound_pool(pool);
|
|
return NULL;
|
|
}
|
|
|
|
static void rcu_free_pwq(struct rcu_head *rcu)
|
|
{
|
|
kmem_cache_free(pwq_cache,
|
|
container_of(rcu, struct pool_workqueue, rcu));
|
|
}
|
|
|
|
/*
|
|
* Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
|
|
* and needs to be destroyed.
|
|
*/
|
|
static void pwq_unbound_release_workfn(struct work_struct *work)
|
|
{
|
|
struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
|
|
unbound_release_work);
|
|
struct workqueue_struct *wq = pwq->wq;
|
|
struct worker_pool *pool = pwq->pool;
|
|
bool is_last;
|
|
|
|
if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
|
|
return;
|
|
|
|
mutex_lock(&wq->mutex);
|
|
list_del_rcu(&pwq->pwqs_node);
|
|
is_last = list_empty(&wq->pwqs);
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
put_unbound_pool(pool);
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
call_rcu_sched(&pwq->rcu, rcu_free_pwq);
|
|
|
|
/*
|
|
* If we're the last pwq going away, @wq is already dead and no one
|
|
* is gonna access it anymore. Schedule RCU free.
|
|
*/
|
|
if (is_last)
|
|
call_rcu_sched(&wq->rcu, rcu_free_wq);
|
|
}
|
|
|
|
/**
|
|
* pwq_adjust_max_active - update a pwq's max_active to the current setting
|
|
* @pwq: target pool_workqueue
|
|
*
|
|
* If @pwq isn't freezing, set @pwq->max_active to the associated
|
|
* workqueue's saved_max_active and activate delayed work items
|
|
* accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
|
|
*/
|
|
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
|
|
{
|
|
struct workqueue_struct *wq = pwq->wq;
|
|
bool freezable = wq->flags & WQ_FREEZABLE;
|
|
unsigned long flags;
|
|
|
|
/* for @wq->saved_max_active */
|
|
lockdep_assert_held(&wq->mutex);
|
|
|
|
/* fast exit for non-freezable wqs */
|
|
if (!freezable && pwq->max_active == wq->saved_max_active)
|
|
return;
|
|
|
|
/* this function can be called during early boot w/ irq disabled */
|
|
spin_lock_irqsave(&pwq->pool->lock, flags);
|
|
|
|
/*
|
|
* During [un]freezing, the caller is responsible for ensuring that
|
|
* this function is called at least once after @workqueue_freezing
|
|
* is updated and visible.
|
|
*/
|
|
if (!freezable || !workqueue_freezing) {
|
|
pwq->max_active = wq->saved_max_active;
|
|
|
|
while (!list_empty(&pwq->delayed_works) &&
|
|
pwq->nr_active < pwq->max_active)
|
|
pwq_activate_first_delayed(pwq);
|
|
|
|
/*
|
|
* Need to kick a worker after thawed or an unbound wq's
|
|
* max_active is bumped. It's a slow path. Do it always.
|
|
*/
|
|
wake_up_worker(pwq->pool);
|
|
} else {
|
|
pwq->max_active = 0;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pwq->pool->lock, flags);
|
|
}
|
|
|
|
/* initialize newly alloced @pwq which is associated with @wq and @pool */
|
|
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
|
|
struct worker_pool *pool)
|
|
{
|
|
BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
|
|
|
|
memset(pwq, 0, sizeof(*pwq));
|
|
|
|
pwq->pool = pool;
|
|
pwq->wq = wq;
|
|
pwq->flush_color = -1;
|
|
pwq->refcnt = 1;
|
|
INIT_LIST_HEAD(&pwq->delayed_works);
|
|
INIT_LIST_HEAD(&pwq->pwqs_node);
|
|
INIT_LIST_HEAD(&pwq->mayday_node);
|
|
INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
|
|
}
|
|
|
|
/* sync @pwq with the current state of its associated wq and link it */
|
|
static void link_pwq(struct pool_workqueue *pwq)
|
|
{
|
|
struct workqueue_struct *wq = pwq->wq;
|
|
|
|
lockdep_assert_held(&wq->mutex);
|
|
|
|
/* may be called multiple times, ignore if already linked */
|
|
if (!list_empty(&pwq->pwqs_node))
|
|
return;
|
|
|
|
/* set the matching work_color */
|
|
pwq->work_color = wq->work_color;
|
|
|
|
/* sync max_active to the current setting */
|
|
pwq_adjust_max_active(pwq);
|
|
|
|
/* link in @pwq */
|
|
list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
|
|
}
|
|
|
|
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
|
|
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
|
|
const struct workqueue_attrs *attrs)
|
|
{
|
|
struct worker_pool *pool;
|
|
struct pool_workqueue *pwq;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
pool = get_unbound_pool(attrs);
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
|
|
if (!pwq) {
|
|
put_unbound_pool(pool);
|
|
return NULL;
|
|
}
|
|
|
|
init_pwq(pwq, wq, pool);
|
|
return pwq;
|
|
}
|
|
|
|
/**
|
|
* wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
|
|
* @attrs: the wq_attrs of the default pwq of the target workqueue
|
|
* @node: the target NUMA node
|
|
* @cpu_going_down: if >= 0, the CPU to consider as offline
|
|
* @cpumask: outarg, the resulting cpumask
|
|
*
|
|
* Calculate the cpumask a workqueue with @attrs should use on @node. If
|
|
* @cpu_going_down is >= 0, that cpu is considered offline during
|
|
* calculation. The result is stored in @cpumask.
|
|
*
|
|
* If NUMA affinity is not enabled, @attrs->cpumask is always used. If
|
|
* enabled and @node has online CPUs requested by @attrs, the returned
|
|
* cpumask is the intersection of the possible CPUs of @node and
|
|
* @attrs->cpumask.
|
|
*
|
|
* The caller is responsible for ensuring that the cpumask of @node stays
|
|
* stable.
|
|
*
|
|
* Return: %true if the resulting @cpumask is different from @attrs->cpumask,
|
|
* %false if equal.
|
|
*/
|
|
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
|
|
int cpu_going_down, cpumask_t *cpumask)
|
|
{
|
|
if (!wq_numa_enabled || attrs->no_numa)
|
|
goto use_dfl;
|
|
|
|
/* does @node have any online CPUs @attrs wants? */
|
|
cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
|
|
if (cpu_going_down >= 0)
|
|
cpumask_clear_cpu(cpu_going_down, cpumask);
|
|
|
|
if (cpumask_empty(cpumask))
|
|
goto use_dfl;
|
|
|
|
/* yeap, return possible CPUs in @node that @attrs wants */
|
|
cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
|
|
|
|
if (cpumask_empty(cpumask)) {
|
|
pr_warn_once("WARNING: workqueue cpumask: online intersect > "
|
|
"possible intersect\n");
|
|
return false;
|
|
}
|
|
|
|
return !cpumask_equal(cpumask, attrs->cpumask);
|
|
|
|
use_dfl:
|
|
cpumask_copy(cpumask, attrs->cpumask);
|
|
return false;
|
|
}
|
|
|
|
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
|
|
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
|
|
int node,
|
|
struct pool_workqueue *pwq)
|
|
{
|
|
struct pool_workqueue *old_pwq;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
lockdep_assert_held(&wq->mutex);
|
|
|
|
/* link_pwq() can handle duplicate calls */
|
|
link_pwq(pwq);
|
|
|
|
old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
|
|
rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
|
|
return old_pwq;
|
|
}
|
|
|
|
/* context to store the prepared attrs & pwqs before applying */
|
|
struct apply_wqattrs_ctx {
|
|
struct workqueue_struct *wq; /* target workqueue */
|
|
struct workqueue_attrs *attrs; /* attrs to apply */
|
|
struct list_head list; /* queued for batching commit */
|
|
struct pool_workqueue *dfl_pwq;
|
|
struct pool_workqueue *pwq_tbl[];
|
|
};
|
|
|
|
/* free the resources after success or abort */
|
|
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
|
|
{
|
|
if (ctx) {
|
|
int node;
|
|
|
|
for_each_node(node)
|
|
put_pwq_unlocked(ctx->pwq_tbl[node]);
|
|
put_pwq_unlocked(ctx->dfl_pwq);
|
|
|
|
free_workqueue_attrs(ctx->attrs);
|
|
|
|
kfree(ctx);
|
|
}
|
|
}
|
|
|
|
/* allocate the attrs and pwqs for later installation */
|
|
static struct apply_wqattrs_ctx *
|
|
apply_wqattrs_prepare(struct workqueue_struct *wq,
|
|
const struct workqueue_attrs *attrs)
|
|
{
|
|
struct apply_wqattrs_ctx *ctx;
|
|
struct workqueue_attrs *new_attrs, *tmp_attrs;
|
|
int node;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
|
|
|
|
new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
|
|
tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
|
|
if (!ctx || !new_attrs || !tmp_attrs)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Calculate the attrs of the default pwq.
|
|
* If the user configured cpumask doesn't overlap with the
|
|
* wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
|
|
*/
|
|
copy_workqueue_attrs(new_attrs, attrs);
|
|
cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
|
|
if (unlikely(cpumask_empty(new_attrs->cpumask)))
|
|
cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
|
|
|
|
/*
|
|
* We may create multiple pwqs with differing cpumasks. Make a
|
|
* copy of @new_attrs which will be modified and used to obtain
|
|
* pools.
|
|
*/
|
|
copy_workqueue_attrs(tmp_attrs, new_attrs);
|
|
|
|
/*
|
|
* If something goes wrong during CPU up/down, we'll fall back to
|
|
* the default pwq covering whole @attrs->cpumask. Always create
|
|
* it even if we don't use it immediately.
|
|
*/
|
|
ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
|
|
if (!ctx->dfl_pwq)
|
|
goto out_free;
|
|
|
|
for_each_node(node) {
|
|
if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
|
|
ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
|
|
if (!ctx->pwq_tbl[node])
|
|
goto out_free;
|
|
} else {
|
|
ctx->dfl_pwq->refcnt++;
|
|
ctx->pwq_tbl[node] = ctx->dfl_pwq;
|
|
}
|
|
}
|
|
|
|
/* save the user configured attrs and sanitize it. */
|
|
copy_workqueue_attrs(new_attrs, attrs);
|
|
cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
|
|
ctx->attrs = new_attrs;
|
|
|
|
ctx->wq = wq;
|
|
free_workqueue_attrs(tmp_attrs);
|
|
return ctx;
|
|
|
|
out_free:
|
|
free_workqueue_attrs(tmp_attrs);
|
|
free_workqueue_attrs(new_attrs);
|
|
apply_wqattrs_cleanup(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
|
|
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
|
|
{
|
|
int node;
|
|
|
|
/* all pwqs have been created successfully, let's install'em */
|
|
mutex_lock(&ctx->wq->mutex);
|
|
|
|
copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
|
|
|
|
/* save the previous pwq and install the new one */
|
|
for_each_node(node)
|
|
ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
|
|
ctx->pwq_tbl[node]);
|
|
|
|
/* @dfl_pwq might not have been used, ensure it's linked */
|
|
link_pwq(ctx->dfl_pwq);
|
|
swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
|
|
|
|
mutex_unlock(&ctx->wq->mutex);
|
|
}
|
|
|
|
static void apply_wqattrs_lock(void)
|
|
{
|
|
/* CPUs should stay stable across pwq creations and installations */
|
|
get_online_cpus();
|
|
mutex_lock(&wq_pool_mutex);
|
|
}
|
|
|
|
static void apply_wqattrs_unlock(void)
|
|
{
|
|
mutex_unlock(&wq_pool_mutex);
|
|
put_online_cpus();
|
|
}
|
|
|
|
static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
|
|
const struct workqueue_attrs *attrs)
|
|
{
|
|
struct apply_wqattrs_ctx *ctx;
|
|
|
|
/* only unbound workqueues can change attributes */
|
|
if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
|
|
return -EINVAL;
|
|
|
|
/* creating multiple pwqs breaks ordering guarantee */
|
|
if (!list_empty(&wq->pwqs)) {
|
|
if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
|
|
return -EINVAL;
|
|
|
|
wq->flags &= ~__WQ_ORDERED;
|
|
}
|
|
|
|
ctx = apply_wqattrs_prepare(wq, attrs);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
/* the ctx has been prepared successfully, let's commit it */
|
|
apply_wqattrs_commit(ctx);
|
|
apply_wqattrs_cleanup(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
|
|
* @wq: the target workqueue
|
|
* @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
|
|
*
|
|
* Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
|
|
* machines, this function maps a separate pwq to each NUMA node with
|
|
* possibles CPUs in @attrs->cpumask so that work items are affine to the
|
|
* NUMA node it was issued on. Older pwqs are released as in-flight work
|
|
* items finish. Note that a work item which repeatedly requeues itself
|
|
* back-to-back will stay on its current pwq.
|
|
*
|
|
* Performs GFP_KERNEL allocations.
|
|
*
|
|
* Return: 0 on success and -errno on failure.
|
|
*/
|
|
int apply_workqueue_attrs(struct workqueue_struct *wq,
|
|
const struct workqueue_attrs *attrs)
|
|
{
|
|
int ret;
|
|
|
|
apply_wqattrs_lock();
|
|
ret = apply_workqueue_attrs_locked(wq, attrs);
|
|
apply_wqattrs_unlock();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
|
|
|
|
/**
|
|
* wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
|
|
* @wq: the target workqueue
|
|
* @cpu: the CPU coming up or going down
|
|
* @online: whether @cpu is coming up or going down
|
|
*
|
|
* This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
|
|
* %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
|
|
* @wq accordingly.
|
|
*
|
|
* If NUMA affinity can't be adjusted due to memory allocation failure, it
|
|
* falls back to @wq->dfl_pwq which may not be optimal but is always
|
|
* correct.
|
|
*
|
|
* Note that when the last allowed CPU of a NUMA node goes offline for a
|
|
* workqueue with a cpumask spanning multiple nodes, the workers which were
|
|
* already executing the work items for the workqueue will lose their CPU
|
|
* affinity and may execute on any CPU. This is similar to how per-cpu
|
|
* workqueues behave on CPU_DOWN. If a workqueue user wants strict
|
|
* affinity, it's the user's responsibility to flush the work item from
|
|
* CPU_DOWN_PREPARE.
|
|
*/
|
|
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
|
|
bool online)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
int cpu_off = online ? -1 : cpu;
|
|
struct pool_workqueue *old_pwq = NULL, *pwq;
|
|
struct workqueue_attrs *target_attrs;
|
|
cpumask_t *cpumask;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
|
|
wq->unbound_attrs->no_numa)
|
|
return;
|
|
|
|
/*
|
|
* We don't wanna alloc/free wq_attrs for each wq for each CPU.
|
|
* Let's use a preallocated one. The following buf is protected by
|
|
* CPU hotplug exclusion.
|
|
*/
|
|
target_attrs = wq_update_unbound_numa_attrs_buf;
|
|
cpumask = target_attrs->cpumask;
|
|
|
|
copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
|
|
pwq = unbound_pwq_by_node(wq, node);
|
|
|
|
/*
|
|
* Let's determine what needs to be done. If the target cpumask is
|
|
* different from the default pwq's, we need to compare it to @pwq's
|
|
* and create a new one if they don't match. If the target cpumask
|
|
* equals the default pwq's, the default pwq should be used.
|
|
*/
|
|
if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
|
|
if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
|
|
return;
|
|
} else {
|
|
goto use_dfl_pwq;
|
|
}
|
|
|
|
/* create a new pwq */
|
|
pwq = alloc_unbound_pwq(wq, target_attrs);
|
|
if (!pwq) {
|
|
pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
|
|
wq->name);
|
|
goto use_dfl_pwq;
|
|
}
|
|
|
|
/* Install the new pwq. */
|
|
mutex_lock(&wq->mutex);
|
|
old_pwq = numa_pwq_tbl_install(wq, node, pwq);
|
|
goto out_unlock;
|
|
|
|
use_dfl_pwq:
|
|
mutex_lock(&wq->mutex);
|
|
spin_lock_irq(&wq->dfl_pwq->pool->lock);
|
|
get_pwq(wq->dfl_pwq);
|
|
spin_unlock_irq(&wq->dfl_pwq->pool->lock);
|
|
old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
|
|
out_unlock:
|
|
mutex_unlock(&wq->mutex);
|
|
put_pwq_unlocked(old_pwq);
|
|
}
|
|
|
|
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
|
|
{
|
|
bool highpri = wq->flags & WQ_HIGHPRI;
|
|
int cpu, ret;
|
|
|
|
if (!(wq->flags & WQ_UNBOUND)) {
|
|
wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
|
|
if (!wq->cpu_pwqs)
|
|
return -ENOMEM;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct pool_workqueue *pwq =
|
|
per_cpu_ptr(wq->cpu_pwqs, cpu);
|
|
struct worker_pool *cpu_pools =
|
|
per_cpu(cpu_worker_pools, cpu);
|
|
|
|
init_pwq(pwq, wq, &cpu_pools[highpri]);
|
|
|
|
mutex_lock(&wq->mutex);
|
|
link_pwq(pwq);
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
return 0;
|
|
} else if (wq->flags & __WQ_ORDERED) {
|
|
ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
|
|
/* there should only be single pwq for ordering guarantee */
|
|
WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
|
|
wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
|
|
"ordering guarantee broken for workqueue %s\n", wq->name);
|
|
return ret;
|
|
} else {
|
|
return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
|
|
}
|
|
}
|
|
|
|
static int wq_clamp_max_active(int max_active, unsigned int flags,
|
|
const char *name)
|
|
{
|
|
int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
|
|
|
|
if (max_active < 1 || max_active > lim)
|
|
pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
|
|
max_active, name, 1, lim);
|
|
|
|
return clamp_val(max_active, 1, lim);
|
|
}
|
|
|
|
/*
|
|
* Workqueues which may be used during memory reclaim should have a rescuer
|
|
* to guarantee forward progress.
|
|
*/
|
|
static int init_rescuer(struct workqueue_struct *wq)
|
|
{
|
|
struct worker *rescuer;
|
|
int ret;
|
|
|
|
if (!(wq->flags & WQ_MEM_RECLAIM))
|
|
return 0;
|
|
|
|
rescuer = alloc_worker(NUMA_NO_NODE);
|
|
if (!rescuer)
|
|
return -ENOMEM;
|
|
|
|
rescuer->rescue_wq = wq;
|
|
rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
|
|
ret = PTR_ERR_OR_ZERO(rescuer->task);
|
|
if (ret) {
|
|
kfree(rescuer);
|
|
return ret;
|
|
}
|
|
|
|
wq->rescuer = rescuer;
|
|
kthread_bind_mask(rescuer->task, cpu_possible_mask);
|
|
wake_up_process(rescuer->task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
|
|
unsigned int flags,
|
|
int max_active,
|
|
struct lock_class_key *key,
|
|
const char *lock_name, ...)
|
|
{
|
|
size_t tbl_size = 0;
|
|
va_list args;
|
|
struct workqueue_struct *wq;
|
|
struct pool_workqueue *pwq;
|
|
|
|
/*
|
|
* Unbound && max_active == 1 used to imply ordered, which is no
|
|
* longer the case on NUMA machines due to per-node pools. While
|
|
* alloc_ordered_workqueue() is the right way to create an ordered
|
|
* workqueue, keep the previous behavior to avoid subtle breakages
|
|
* on NUMA.
|
|
*/
|
|
if ((flags & WQ_UNBOUND) && max_active == 1)
|
|
flags |= __WQ_ORDERED;
|
|
|
|
/* see the comment above the definition of WQ_POWER_EFFICIENT */
|
|
if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
|
|
flags |= WQ_UNBOUND;
|
|
|
|
/* allocate wq and format name */
|
|
if (flags & WQ_UNBOUND)
|
|
tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
|
|
|
|
wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
|
|
if (!wq)
|
|
return NULL;
|
|
|
|
if (flags & WQ_UNBOUND) {
|
|
wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
|
|
if (!wq->unbound_attrs)
|
|
goto err_free_wq;
|
|
}
|
|
|
|
va_start(args, lock_name);
|
|
vsnprintf(wq->name, sizeof(wq->name), fmt, args);
|
|
va_end(args);
|
|
|
|
max_active = max_active ?: WQ_DFL_ACTIVE;
|
|
max_active = wq_clamp_max_active(max_active, flags, wq->name);
|
|
|
|
/* init wq */
|
|
wq->flags = flags;
|
|
wq->saved_max_active = max_active;
|
|
mutex_init(&wq->mutex);
|
|
atomic_set(&wq->nr_pwqs_to_flush, 0);
|
|
INIT_LIST_HEAD(&wq->pwqs);
|
|
INIT_LIST_HEAD(&wq->flusher_queue);
|
|
INIT_LIST_HEAD(&wq->flusher_overflow);
|
|
INIT_LIST_HEAD(&wq->maydays);
|
|
|
|
lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
|
|
INIT_LIST_HEAD(&wq->list);
|
|
|
|
if (alloc_and_link_pwqs(wq) < 0)
|
|
goto err_free_wq;
|
|
|
|
if (wq_online && init_rescuer(wq) < 0)
|
|
goto err_destroy;
|
|
|
|
if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
|
|
goto err_destroy;
|
|
|
|
/*
|
|
* wq_pool_mutex protects global freeze state and workqueues list.
|
|
* Grab it, adjust max_active and add the new @wq to workqueues
|
|
* list.
|
|
*/
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
mutex_lock(&wq->mutex);
|
|
for_each_pwq(pwq, wq)
|
|
pwq_adjust_max_active(pwq);
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
list_add_tail_rcu(&wq->list, &workqueues);
|
|
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
return wq;
|
|
|
|
err_free_wq:
|
|
free_workqueue_attrs(wq->unbound_attrs);
|
|
kfree(wq);
|
|
return NULL;
|
|
err_destroy:
|
|
destroy_workqueue(wq);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
|
|
|
|
/**
|
|
* destroy_workqueue - safely terminate a workqueue
|
|
* @wq: target workqueue
|
|
*
|
|
* Safely destroy a workqueue. All work currently pending will be done first.
|
|
*/
|
|
void destroy_workqueue(struct workqueue_struct *wq)
|
|
{
|
|
struct pool_workqueue *pwq;
|
|
int node;
|
|
|
|
/*
|
|
* Remove it from sysfs first so that sanity check failure doesn't
|
|
* lead to sysfs name conflicts.
|
|
*/
|
|
workqueue_sysfs_unregister(wq);
|
|
|
|
/* drain it before proceeding with destruction */
|
|
drain_workqueue(wq);
|
|
|
|
/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
|
|
if (wq->rescuer) {
|
|
struct worker *rescuer = wq->rescuer;
|
|
|
|
/* this prevents new queueing */
|
|
spin_lock_irq(&wq_mayday_lock);
|
|
wq->rescuer = NULL;
|
|
spin_unlock_irq(&wq_mayday_lock);
|
|
|
|
/* rescuer will empty maydays list before exiting */
|
|
kthread_stop(rescuer->task);
|
|
kfree(rescuer);
|
|
}
|
|
|
|
/* sanity checks */
|
|
mutex_lock(&wq->mutex);
|
|
for_each_pwq(pwq, wq) {
|
|
int i;
|
|
|
|
for (i = 0; i < WORK_NR_COLORS; i++) {
|
|
if (WARN_ON(pwq->nr_in_flight[i])) {
|
|
mutex_unlock(&wq->mutex);
|
|
show_workqueue_state();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
|
|
WARN_ON(pwq->nr_active) ||
|
|
WARN_ON(!list_empty(&pwq->delayed_works))) {
|
|
mutex_unlock(&wq->mutex);
|
|
show_workqueue_state();
|
|
return;
|
|
}
|
|
}
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
/*
|
|
* wq list is used to freeze wq, remove from list after
|
|
* flushing is complete in case freeze races us.
|
|
*/
|
|
mutex_lock(&wq_pool_mutex);
|
|
list_del_rcu(&wq->list);
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
if (!(wq->flags & WQ_UNBOUND)) {
|
|
/*
|
|
* The base ref is never dropped on per-cpu pwqs. Directly
|
|
* schedule RCU free.
|
|
*/
|
|
call_rcu_sched(&wq->rcu, rcu_free_wq);
|
|
} else {
|
|
/*
|
|
* We're the sole accessor of @wq at this point. Directly
|
|
* access numa_pwq_tbl[] and dfl_pwq to put the base refs.
|
|
* @wq will be freed when the last pwq is released.
|
|
*/
|
|
for_each_node(node) {
|
|
pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
|
|
RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
|
|
put_pwq_unlocked(pwq);
|
|
}
|
|
|
|
/*
|
|
* Put dfl_pwq. @wq may be freed any time after dfl_pwq is
|
|
* put. Don't access it afterwards.
|
|
*/
|
|
pwq = wq->dfl_pwq;
|
|
wq->dfl_pwq = NULL;
|
|
put_pwq_unlocked(pwq);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(destroy_workqueue);
|
|
|
|
/**
|
|
* workqueue_set_max_active - adjust max_active of a workqueue
|
|
* @wq: target workqueue
|
|
* @max_active: new max_active value.
|
|
*
|
|
* Set max_active of @wq to @max_active.
|
|
*
|
|
* CONTEXT:
|
|
* Don't call from IRQ context.
|
|
*/
|
|
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
|
|
{
|
|
struct pool_workqueue *pwq;
|
|
|
|
/* disallow meddling with max_active for ordered workqueues */
|
|
if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
|
|
return;
|
|
|
|
max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
|
|
|
|
mutex_lock(&wq->mutex);
|
|
|
|
wq->flags &= ~__WQ_ORDERED;
|
|
wq->saved_max_active = max_active;
|
|
|
|
for_each_pwq(pwq, wq)
|
|
pwq_adjust_max_active(pwq);
|
|
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
|
|
|
|
/**
|
|
* current_work - retrieve %current task's work struct
|
|
*
|
|
* Determine if %current task is a workqueue worker and what it's working on.
|
|
* Useful to find out the context that the %current task is running in.
|
|
*
|
|
* Return: work struct if %current task is a workqueue worker, %NULL otherwise.
|
|
*/
|
|
struct work_struct *current_work(void)
|
|
{
|
|
struct worker *worker = current_wq_worker();
|
|
|
|
return worker ? worker->current_work : NULL;
|
|
}
|
|
EXPORT_SYMBOL(current_work);
|
|
|
|
/**
|
|
* current_is_workqueue_rescuer - is %current workqueue rescuer?
|
|
*
|
|
* Determine whether %current is a workqueue rescuer. Can be used from
|
|
* work functions to determine whether it's being run off the rescuer task.
|
|
*
|
|
* Return: %true if %current is a workqueue rescuer. %false otherwise.
|
|
*/
|
|
bool current_is_workqueue_rescuer(void)
|
|
{
|
|
struct worker *worker = current_wq_worker();
|
|
|
|
return worker && worker->rescue_wq;
|
|
}
|
|
|
|
/**
|
|
* workqueue_congested - test whether a workqueue is congested
|
|
* @cpu: CPU in question
|
|
* @wq: target workqueue
|
|
*
|
|
* Test whether @wq's cpu workqueue for @cpu is congested. There is
|
|
* no synchronization around this function and the test result is
|
|
* unreliable and only useful as advisory hints or for debugging.
|
|
*
|
|
* If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
|
|
* Note that both per-cpu and unbound workqueues may be associated with
|
|
* multiple pool_workqueues which have separate congested states. A
|
|
* workqueue being congested on one CPU doesn't mean the workqueue is also
|
|
* contested on other CPUs / NUMA nodes.
|
|
*
|
|
* Return:
|
|
* %true if congested, %false otherwise.
|
|
*/
|
|
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
|
|
{
|
|
struct pool_workqueue *pwq;
|
|
bool ret;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
if (cpu == WORK_CPU_UNBOUND)
|
|
cpu = smp_processor_id();
|
|
|
|
if (!(wq->flags & WQ_UNBOUND))
|
|
pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
|
|
else
|
|
pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
|
|
|
|
ret = !list_empty(&pwq->delayed_works);
|
|
rcu_read_unlock_sched();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(workqueue_congested);
|
|
|
|
/**
|
|
* work_busy - test whether a work is currently pending or running
|
|
* @work: the work to be tested
|
|
*
|
|
* Test whether @work is currently pending or running. There is no
|
|
* synchronization around this function and the test result is
|
|
* unreliable and only useful as advisory hints or for debugging.
|
|
*
|
|
* Return:
|
|
* OR'd bitmask of WORK_BUSY_* bits.
|
|
*/
|
|
unsigned int work_busy(struct work_struct *work)
|
|
{
|
|
struct worker_pool *pool;
|
|
unsigned long flags;
|
|
unsigned int ret = 0;
|
|
|
|
if (work_pending(work))
|
|
ret |= WORK_BUSY_PENDING;
|
|
|
|
local_irq_save(flags);
|
|
pool = get_work_pool(work);
|
|
if (pool) {
|
|
spin_lock(&pool->lock);
|
|
if (find_worker_executing_work(pool, work))
|
|
ret |= WORK_BUSY_RUNNING;
|
|
spin_unlock(&pool->lock);
|
|
}
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(work_busy);
|
|
|
|
/**
|
|
* set_worker_desc - set description for the current work item
|
|
* @fmt: printf-style format string
|
|
* @...: arguments for the format string
|
|
*
|
|
* This function can be called by a running work function to describe what
|
|
* the work item is about. If the worker task gets dumped, this
|
|
* information will be printed out together to help debugging. The
|
|
* description can be at most WORKER_DESC_LEN including the trailing '\0'.
|
|
*/
|
|
void set_worker_desc(const char *fmt, ...)
|
|
{
|
|
struct worker *worker = current_wq_worker();
|
|
va_list args;
|
|
|
|
if (worker) {
|
|
va_start(args, fmt);
|
|
vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
|
|
va_end(args);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_worker_desc);
|
|
|
|
/**
|
|
* print_worker_info - print out worker information and description
|
|
* @log_lvl: the log level to use when printing
|
|
* @task: target task
|
|
*
|
|
* If @task is a worker and currently executing a work item, print out the
|
|
* name of the workqueue being serviced and worker description set with
|
|
* set_worker_desc() by the currently executing work item.
|
|
*
|
|
* This function can be safely called on any task as long as the
|
|
* task_struct itself is accessible. While safe, this function isn't
|
|
* synchronized and may print out mixups or garbages of limited length.
|
|
*/
|
|
void print_worker_info(const char *log_lvl, struct task_struct *task)
|
|
{
|
|
work_func_t *fn = NULL;
|
|
char name[WQ_NAME_LEN] = { };
|
|
char desc[WORKER_DESC_LEN] = { };
|
|
struct pool_workqueue *pwq = NULL;
|
|
struct workqueue_struct *wq = NULL;
|
|
struct worker *worker;
|
|
|
|
if (!(task->flags & PF_WQ_WORKER))
|
|
return;
|
|
|
|
/*
|
|
* This function is called without any synchronization and @task
|
|
* could be in any state. Be careful with dereferences.
|
|
*/
|
|
worker = kthread_probe_data(task);
|
|
|
|
/*
|
|
* Carefully copy the associated workqueue's workfn, name and desc.
|
|
* Keep the original last '\0' in case the original is garbage.
|
|
*/
|
|
probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
|
|
probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
|
|
probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
|
|
probe_kernel_read(name, wq->name, sizeof(name) - 1);
|
|
probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
|
|
|
|
if (fn || name[0] || desc[0]) {
|
|
printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
|
|
if (strcmp(name, desc))
|
|
pr_cont(" (%s)", desc);
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
static void pr_cont_pool_info(struct worker_pool *pool)
|
|
{
|
|
pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
|
|
if (pool->node != NUMA_NO_NODE)
|
|
pr_cont(" node=%d", pool->node);
|
|
pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
|
|
}
|
|
|
|
static void pr_cont_work(bool comma, struct work_struct *work)
|
|
{
|
|
if (work->func == wq_barrier_func) {
|
|
struct wq_barrier *barr;
|
|
|
|
barr = container_of(work, struct wq_barrier, work);
|
|
|
|
pr_cont("%s BAR(%d)", comma ? "," : "",
|
|
task_pid_nr(barr->task));
|
|
} else {
|
|
pr_cont("%s %pf", comma ? "," : "", work->func);
|
|
}
|
|
}
|
|
|
|
static void show_pwq(struct pool_workqueue *pwq)
|
|
{
|
|
struct worker_pool *pool = pwq->pool;
|
|
struct work_struct *work;
|
|
struct worker *worker;
|
|
bool has_in_flight = false, has_pending = false;
|
|
int bkt;
|
|
|
|
pr_info(" pwq %d:", pool->id);
|
|
pr_cont_pool_info(pool);
|
|
|
|
pr_cont(" active=%d/%d refcnt=%d%s\n",
|
|
pwq->nr_active, pwq->max_active, pwq->refcnt,
|
|
!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
|
|
|
|
hash_for_each(pool->busy_hash, bkt, worker, hentry) {
|
|
if (worker->current_pwq == pwq) {
|
|
has_in_flight = true;
|
|
break;
|
|
}
|
|
}
|
|
if (has_in_flight) {
|
|
bool comma = false;
|
|
|
|
pr_info(" in-flight:");
|
|
hash_for_each(pool->busy_hash, bkt, worker, hentry) {
|
|
if (worker->current_pwq != pwq)
|
|
continue;
|
|
|
|
pr_cont("%s %d%s:%pf", comma ? "," : "",
|
|
task_pid_nr(worker->task),
|
|
worker == pwq->wq->rescuer ? "(RESCUER)" : "",
|
|
worker->current_func);
|
|
list_for_each_entry(work, &worker->scheduled, entry)
|
|
pr_cont_work(false, work);
|
|
comma = true;
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
list_for_each_entry(work, &pool->worklist, entry) {
|
|
if (get_work_pwq(work) == pwq) {
|
|
has_pending = true;
|
|
break;
|
|
}
|
|
}
|
|
if (has_pending) {
|
|
bool comma = false;
|
|
|
|
pr_info(" pending:");
|
|
list_for_each_entry(work, &pool->worklist, entry) {
|
|
if (get_work_pwq(work) != pwq)
|
|
continue;
|
|
|
|
pr_cont_work(comma, work);
|
|
comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
if (!list_empty(&pwq->delayed_works)) {
|
|
bool comma = false;
|
|
|
|
pr_info(" delayed:");
|
|
list_for_each_entry(work, &pwq->delayed_works, entry) {
|
|
pr_cont_work(comma, work);
|
|
comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* show_workqueue_state - dump workqueue state
|
|
*
|
|
* Called from a sysrq handler or try_to_freeze_tasks() and prints out
|
|
* all busy workqueues and pools.
|
|
*/
|
|
void show_workqueue_state(void)
|
|
{
|
|
struct workqueue_struct *wq;
|
|
struct worker_pool *pool;
|
|
unsigned long flags;
|
|
int pi;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
pr_info("Showing busy workqueues and worker pools:\n");
|
|
|
|
list_for_each_entry_rcu(wq, &workqueues, list) {
|
|
struct pool_workqueue *pwq;
|
|
bool idle = true;
|
|
|
|
for_each_pwq(pwq, wq) {
|
|
if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
|
|
idle = false;
|
|
break;
|
|
}
|
|
}
|
|
if (idle)
|
|
continue;
|
|
|
|
pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
|
|
|
|
for_each_pwq(pwq, wq) {
|
|
spin_lock_irqsave(&pwq->pool->lock, flags);
|
|
if (pwq->nr_active || !list_empty(&pwq->delayed_works))
|
|
show_pwq(pwq);
|
|
spin_unlock_irqrestore(&pwq->pool->lock, flags);
|
|
/*
|
|
* We could be printing a lot from atomic context, e.g.
|
|
* sysrq-t -> show_workqueue_state(). Avoid triggering
|
|
* hard lockup.
|
|
*/
|
|
touch_nmi_watchdog();
|
|
}
|
|
}
|
|
|
|
for_each_pool(pool, pi) {
|
|
struct worker *worker;
|
|
bool first = true;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (pool->nr_workers == pool->nr_idle)
|
|
goto next_pool;
|
|
|
|
pr_info("pool %d:", pool->id);
|
|
pr_cont_pool_info(pool);
|
|
pr_cont(" hung=%us workers=%d",
|
|
jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
|
|
pool->nr_workers);
|
|
if (pool->manager)
|
|
pr_cont(" manager: %d",
|
|
task_pid_nr(pool->manager->task));
|
|
list_for_each_entry(worker, &pool->idle_list, entry) {
|
|
pr_cont(" %s%d", first ? "idle: " : "",
|
|
task_pid_nr(worker->task));
|
|
first = false;
|
|
}
|
|
pr_cont("\n");
|
|
next_pool:
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
/*
|
|
* We could be printing a lot from atomic context, e.g.
|
|
* sysrq-t -> show_workqueue_state(). Avoid triggering
|
|
* hard lockup.
|
|
*/
|
|
touch_nmi_watchdog();
|
|
}
|
|
|
|
rcu_read_unlock_sched();
|
|
}
|
|
|
|
/* used to show worker information through /proc/PID/{comm,stat,status} */
|
|
void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
|
|
{
|
|
int off;
|
|
|
|
/* always show the actual comm */
|
|
off = strscpy(buf, task->comm, size);
|
|
if (off < 0)
|
|
return;
|
|
|
|
/* stabilize PF_WQ_WORKER and worker pool association */
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
|
|
if (task->flags & PF_WQ_WORKER) {
|
|
struct worker *worker = kthread_data(task);
|
|
struct worker_pool *pool = worker->pool;
|
|
|
|
if (pool) {
|
|
spin_lock_irq(&pool->lock);
|
|
/*
|
|
* ->desc tracks information (wq name or
|
|
* set_worker_desc()) for the latest execution. If
|
|
* current, prepend '+', otherwise '-'.
|
|
*/
|
|
if (worker->desc[0] != '\0') {
|
|
if (worker->current_work)
|
|
scnprintf(buf + off, size - off, "+%s",
|
|
worker->desc);
|
|
else
|
|
scnprintf(buf + off, size - off, "-%s",
|
|
worker->desc);
|
|
}
|
|
spin_unlock_irq(&pool->lock);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* CPU hotplug.
|
|
*
|
|
* There are two challenges in supporting CPU hotplug. Firstly, there
|
|
* are a lot of assumptions on strong associations among work, pwq and
|
|
* pool which make migrating pending and scheduled works very
|
|
* difficult to implement without impacting hot paths. Secondly,
|
|
* worker pools serve mix of short, long and very long running works making
|
|
* blocked draining impractical.
|
|
*
|
|
* This is solved by allowing the pools to be disassociated from the CPU
|
|
* running as an unbound one and allowing it to be reattached later if the
|
|
* cpu comes back online.
|
|
*/
|
|
|
|
static void unbind_workers(int cpu)
|
|
{
|
|
struct worker_pool *pool;
|
|
struct worker *worker;
|
|
|
|
for_each_cpu_worker_pool(pool, cpu) {
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
/*
|
|
* We've blocked all attach/detach operations. Make all workers
|
|
* unbound and set DISASSOCIATED. Before this, all workers
|
|
* except for the ones which are still executing works from
|
|
* before the last CPU down must be on the cpu. After
|
|
* this, they may become diasporas.
|
|
*/
|
|
for_each_pool_worker(worker, pool)
|
|
worker->flags |= WORKER_UNBOUND;
|
|
|
|
pool->flags |= POOL_DISASSOCIATED;
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
|
|
/*
|
|
* Call schedule() so that we cross rq->lock and thus can
|
|
* guarantee sched callbacks see the %WORKER_UNBOUND flag.
|
|
* This is necessary as scheduler callbacks may be invoked
|
|
* from other cpus.
|
|
*/
|
|
schedule();
|
|
|
|
/*
|
|
* Sched callbacks are disabled now. Zap nr_running.
|
|
* After this, nr_running stays zero and need_more_worker()
|
|
* and keep_working() are always true as long as the
|
|
* worklist is not empty. This pool now behaves as an
|
|
* unbound (in terms of concurrency management) pool which
|
|
* are served by workers tied to the pool.
|
|
*/
|
|
atomic_set(&pool->nr_running, 0);
|
|
|
|
/*
|
|
* With concurrency management just turned off, a busy
|
|
* worker blocking could lead to lengthy stalls. Kick off
|
|
* unbound chain execution of currently pending work items.
|
|
*/
|
|
spin_lock_irq(&pool->lock);
|
|
wake_up_worker(pool);
|
|
spin_unlock_irq(&pool->lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rebind_workers - rebind all workers of a pool to the associated CPU
|
|
* @pool: pool of interest
|
|
*
|
|
* @pool->cpu is coming online. Rebind all workers to the CPU.
|
|
*/
|
|
static void rebind_workers(struct worker_pool *pool)
|
|
{
|
|
struct worker *worker;
|
|
|
|
lockdep_assert_held(&wq_pool_attach_mutex);
|
|
|
|
/*
|
|
* Restore CPU affinity of all workers. As all idle workers should
|
|
* be on the run-queue of the associated CPU before any local
|
|
* wake-ups for concurrency management happen, restore CPU affinity
|
|
* of all workers first and then clear UNBOUND. As we're called
|
|
* from CPU_ONLINE, the following shouldn't fail.
|
|
*/
|
|
for_each_pool_worker(worker, pool)
|
|
WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
|
|
pool->attrs->cpumask) < 0);
|
|
|
|
spin_lock_irq(&pool->lock);
|
|
|
|
pool->flags &= ~POOL_DISASSOCIATED;
|
|
|
|
for_each_pool_worker(worker, pool) {
|
|
unsigned int worker_flags = worker->flags;
|
|
|
|
/*
|
|
* A bound idle worker should actually be on the runqueue
|
|
* of the associated CPU for local wake-ups targeting it to
|
|
* work. Kick all idle workers so that they migrate to the
|
|
* associated CPU. Doing this in the same loop as
|
|
* replacing UNBOUND with REBOUND is safe as no worker will
|
|
* be bound before @pool->lock is released.
|
|
*/
|
|
if (worker_flags & WORKER_IDLE)
|
|
wake_up_process(worker->task);
|
|
|
|
/*
|
|
* We want to clear UNBOUND but can't directly call
|
|
* worker_clr_flags() or adjust nr_running. Atomically
|
|
* replace UNBOUND with another NOT_RUNNING flag REBOUND.
|
|
* @worker will clear REBOUND using worker_clr_flags() when
|
|
* it initiates the next execution cycle thus restoring
|
|
* concurrency management. Note that when or whether
|
|
* @worker clears REBOUND doesn't affect correctness.
|
|
*
|
|
* WRITE_ONCE() is necessary because @worker->flags may be
|
|
* tested without holding any lock in
|
|
* wq_worker_waking_up(). Without it, NOT_RUNNING test may
|
|
* fail incorrectly leading to premature concurrency
|
|
* management operations.
|
|
*/
|
|
WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
|
|
worker_flags |= WORKER_REBOUND;
|
|
worker_flags &= ~WORKER_UNBOUND;
|
|
WRITE_ONCE(worker->flags, worker_flags);
|
|
}
|
|
|
|
spin_unlock_irq(&pool->lock);
|
|
}
|
|
|
|
/**
|
|
* restore_unbound_workers_cpumask - restore cpumask of unbound workers
|
|
* @pool: unbound pool of interest
|
|
* @cpu: the CPU which is coming up
|
|
*
|
|
* An unbound pool may end up with a cpumask which doesn't have any online
|
|
* CPUs. When a worker of such pool get scheduled, the scheduler resets
|
|
* its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
|
|
* online CPU before, cpus_allowed of all its workers should be restored.
|
|
*/
|
|
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
|
|
{
|
|
static cpumask_t cpumask;
|
|
struct worker *worker;
|
|
|
|
lockdep_assert_held(&wq_pool_attach_mutex);
|
|
|
|
/* is @cpu allowed for @pool? */
|
|
if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
|
|
return;
|
|
|
|
cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
|
|
|
|
/* as we're called from CPU_ONLINE, the following shouldn't fail */
|
|
for_each_pool_worker(worker, pool)
|
|
WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
|
|
}
|
|
|
|
int workqueue_prepare_cpu(unsigned int cpu)
|
|
{
|
|
struct worker_pool *pool;
|
|
|
|
for_each_cpu_worker_pool(pool, cpu) {
|
|
if (pool->nr_workers)
|
|
continue;
|
|
if (!create_worker(pool))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int workqueue_online_cpu(unsigned int cpu)
|
|
{
|
|
struct worker_pool *pool;
|
|
struct workqueue_struct *wq;
|
|
int pi;
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
for_each_pool(pool, pi) {
|
|
mutex_lock(&wq_pool_attach_mutex);
|
|
|
|
if (pool->cpu == cpu)
|
|
rebind_workers(pool);
|
|
else if (pool->cpu < 0)
|
|
restore_unbound_workers_cpumask(pool, cpu);
|
|
|
|
mutex_unlock(&wq_pool_attach_mutex);
|
|
}
|
|
|
|
/* update NUMA affinity of unbound workqueues */
|
|
list_for_each_entry(wq, &workqueues, list)
|
|
wq_update_unbound_numa(wq, cpu, true);
|
|
|
|
mutex_unlock(&wq_pool_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int workqueue_offline_cpu(unsigned int cpu)
|
|
{
|
|
struct workqueue_struct *wq;
|
|
|
|
/* unbinding per-cpu workers should happen on the local CPU */
|
|
if (WARN_ON(cpu != smp_processor_id()))
|
|
return -1;
|
|
|
|
unbind_workers(cpu);
|
|
|
|
/* update NUMA affinity of unbound workqueues */
|
|
mutex_lock(&wq_pool_mutex);
|
|
list_for_each_entry(wq, &workqueues, list)
|
|
wq_update_unbound_numa(wq, cpu, false);
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct work_for_cpu {
|
|
struct work_struct work;
|
|
long (*fn)(void *);
|
|
void *arg;
|
|
long ret;
|
|
};
|
|
|
|
static void work_for_cpu_fn(struct work_struct *work)
|
|
{
|
|
struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
|
|
|
|
wfc->ret = wfc->fn(wfc->arg);
|
|
}
|
|
|
|
/**
|
|
* work_on_cpu - run a function in thread context on a particular cpu
|
|
* @cpu: the cpu to run on
|
|
* @fn: the function to run
|
|
* @arg: the function arg
|
|
*
|
|
* It is up to the caller to ensure that the cpu doesn't go offline.
|
|
* The caller must not hold any locks which would prevent @fn from completing.
|
|
*
|
|
* Return: The value @fn returns.
|
|
*/
|
|
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
|
|
{
|
|
struct work_for_cpu wfc = { .fn = fn, .arg = arg };
|
|
|
|
INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
|
|
schedule_work_on(cpu, &wfc.work);
|
|
flush_work(&wfc.work);
|
|
destroy_work_on_stack(&wfc.work);
|
|
return wfc.ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(work_on_cpu);
|
|
|
|
/**
|
|
* work_on_cpu_safe - run a function in thread context on a particular cpu
|
|
* @cpu: the cpu to run on
|
|
* @fn: the function to run
|
|
* @arg: the function argument
|
|
*
|
|
* Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
|
|
* any locks which would prevent @fn from completing.
|
|
*
|
|
* Return: The value @fn returns.
|
|
*/
|
|
long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
|
|
{
|
|
long ret = -ENODEV;
|
|
|
|
get_online_cpus();
|
|
if (cpu_online(cpu))
|
|
ret = work_on_cpu(cpu, fn, arg);
|
|
put_online_cpus();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(work_on_cpu_safe);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_FREEZER
|
|
|
|
/**
|
|
* freeze_workqueues_begin - begin freezing workqueues
|
|
*
|
|
* Start freezing workqueues. After this function returns, all freezable
|
|
* workqueues will queue new works to their delayed_works list instead of
|
|
* pool->worklist.
|
|
*
|
|
* CONTEXT:
|
|
* Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
|
|
*/
|
|
void freeze_workqueues_begin(void)
|
|
{
|
|
struct workqueue_struct *wq;
|
|
struct pool_workqueue *pwq;
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
WARN_ON_ONCE(workqueue_freezing);
|
|
workqueue_freezing = true;
|
|
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
mutex_lock(&wq->mutex);
|
|
for_each_pwq(pwq, wq)
|
|
pwq_adjust_max_active(pwq);
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
|
|
mutex_unlock(&wq_pool_mutex);
|
|
}
|
|
|
|
/**
|
|
* freeze_workqueues_busy - are freezable workqueues still busy?
|
|
*
|
|
* Check whether freezing is complete. This function must be called
|
|
* between freeze_workqueues_begin() and thaw_workqueues().
|
|
*
|
|
* CONTEXT:
|
|
* Grabs and releases wq_pool_mutex.
|
|
*
|
|
* Return:
|
|
* %true if some freezable workqueues are still busy. %false if freezing
|
|
* is complete.
|
|
*/
|
|
bool freeze_workqueues_busy(void)
|
|
{
|
|
bool busy = false;
|
|
struct workqueue_struct *wq;
|
|
struct pool_workqueue *pwq;
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
WARN_ON_ONCE(!workqueue_freezing);
|
|
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
if (!(wq->flags & WQ_FREEZABLE))
|
|
continue;
|
|
/*
|
|
* nr_active is monotonically decreasing. It's safe
|
|
* to peek without lock.
|
|
*/
|
|
rcu_read_lock_sched();
|
|
for_each_pwq(pwq, wq) {
|
|
WARN_ON_ONCE(pwq->nr_active < 0);
|
|
if (pwq->nr_active) {
|
|
busy = true;
|
|
rcu_read_unlock_sched();
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
rcu_read_unlock_sched();
|
|
}
|
|
out_unlock:
|
|
mutex_unlock(&wq_pool_mutex);
|
|
return busy;
|
|
}
|
|
|
|
/**
|
|
* thaw_workqueues - thaw workqueues
|
|
*
|
|
* Thaw workqueues. Normal queueing is restored and all collected
|
|
* frozen works are transferred to their respective pool worklists.
|
|
*
|
|
* CONTEXT:
|
|
* Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
|
|
*/
|
|
void thaw_workqueues(void)
|
|
{
|
|
struct workqueue_struct *wq;
|
|
struct pool_workqueue *pwq;
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
if (!workqueue_freezing)
|
|
goto out_unlock;
|
|
|
|
workqueue_freezing = false;
|
|
|
|
/* restore max_active and repopulate worklist */
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
mutex_lock(&wq->mutex);
|
|
for_each_pwq(pwq, wq)
|
|
pwq_adjust_max_active(pwq);
|
|
mutex_unlock(&wq->mutex);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&wq_pool_mutex);
|
|
}
|
|
#endif /* CONFIG_FREEZER */
|
|
|
|
static int workqueue_apply_unbound_cpumask(void)
|
|
{
|
|
LIST_HEAD(ctxs);
|
|
int ret = 0;
|
|
struct workqueue_struct *wq;
|
|
struct apply_wqattrs_ctx *ctx, *n;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
if (!(wq->flags & WQ_UNBOUND))
|
|
continue;
|
|
/* creating multiple pwqs breaks ordering guarantee */
|
|
if (wq->flags & __WQ_ORDERED)
|
|
continue;
|
|
|
|
ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
|
|
if (!ctx) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
list_add_tail(&ctx->list, &ctxs);
|
|
}
|
|
|
|
list_for_each_entry_safe(ctx, n, &ctxs, list) {
|
|
if (!ret)
|
|
apply_wqattrs_commit(ctx);
|
|
apply_wqattrs_cleanup(ctx);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
|
|
* @cpumask: the cpumask to set
|
|
*
|
|
* The low-level workqueues cpumask is a global cpumask that limits
|
|
* the affinity of all unbound workqueues. This function check the @cpumask
|
|
* and apply it to all unbound workqueues and updates all pwqs of them.
|
|
*
|
|
* Retun: 0 - Success
|
|
* -EINVAL - Invalid @cpumask
|
|
* -ENOMEM - Failed to allocate memory for attrs or pwqs.
|
|
*/
|
|
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
|
|
{
|
|
int ret = -EINVAL;
|
|
cpumask_var_t saved_cpumask;
|
|
|
|
if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Not excluding isolated cpus on purpose.
|
|
* If the user wishes to include them, we allow that.
|
|
*/
|
|
cpumask_and(cpumask, cpumask, cpu_possible_mask);
|
|
if (!cpumask_empty(cpumask)) {
|
|
apply_wqattrs_lock();
|
|
|
|
/* save the old wq_unbound_cpumask. */
|
|
cpumask_copy(saved_cpumask, wq_unbound_cpumask);
|
|
|
|
/* update wq_unbound_cpumask at first and apply it to wqs. */
|
|
cpumask_copy(wq_unbound_cpumask, cpumask);
|
|
ret = workqueue_apply_unbound_cpumask();
|
|
|
|
/* restore the wq_unbound_cpumask when failed. */
|
|
if (ret < 0)
|
|
cpumask_copy(wq_unbound_cpumask, saved_cpumask);
|
|
|
|
apply_wqattrs_unlock();
|
|
}
|
|
|
|
free_cpumask_var(saved_cpumask);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
/*
|
|
* Workqueues with WQ_SYSFS flag set is visible to userland via
|
|
* /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
|
|
* following attributes.
|
|
*
|
|
* per_cpu RO bool : whether the workqueue is per-cpu or unbound
|
|
* max_active RW int : maximum number of in-flight work items
|
|
*
|
|
* Unbound workqueues have the following extra attributes.
|
|
*
|
|
* pool_ids RO int : the associated pool IDs for each node
|
|
* nice RW int : nice value of the workers
|
|
* cpumask RW mask : bitmask of allowed CPUs for the workers
|
|
* numa RW bool : whether enable NUMA affinity
|
|
*/
|
|
struct wq_device {
|
|
struct workqueue_struct *wq;
|
|
struct device dev;
|
|
};
|
|
|
|
static struct workqueue_struct *dev_to_wq(struct device *dev)
|
|
{
|
|
struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
|
|
|
|
return wq_dev->wq;
|
|
}
|
|
|
|
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
|
|
}
|
|
static DEVICE_ATTR_RO(per_cpu);
|
|
|
|
static ssize_t max_active_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
|
|
}
|
|
|
|
static ssize_t max_active_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
int val;
|
|
|
|
if (sscanf(buf, "%d", &val) != 1 || val <= 0)
|
|
return -EINVAL;
|
|
|
|
workqueue_set_max_active(wq, val);
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(max_active);
|
|
|
|
static struct attribute *wq_sysfs_attrs[] = {
|
|
&dev_attr_per_cpu.attr,
|
|
&dev_attr_max_active.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(wq_sysfs);
|
|
|
|
static ssize_t wq_pool_ids_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
const char *delim = "";
|
|
int node, written = 0;
|
|
|
|
rcu_read_lock_sched();
|
|
for_each_node(node) {
|
|
written += scnprintf(buf + written, PAGE_SIZE - written,
|
|
"%s%d:%d", delim, node,
|
|
unbound_pwq_by_node(wq, node)->pool->id);
|
|
delim = " ";
|
|
}
|
|
written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
|
|
rcu_read_unlock_sched();
|
|
|
|
return written;
|
|
}
|
|
|
|
static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
int written;
|
|
|
|
mutex_lock(&wq->mutex);
|
|
written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
return written;
|
|
}
|
|
|
|
/* prepare workqueue_attrs for sysfs store operations */
|
|
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
|
|
{
|
|
struct workqueue_attrs *attrs;
|
|
|
|
lockdep_assert_held(&wq_pool_mutex);
|
|
|
|
attrs = alloc_workqueue_attrs(GFP_KERNEL);
|
|
if (!attrs)
|
|
return NULL;
|
|
|
|
copy_workqueue_attrs(attrs, wq->unbound_attrs);
|
|
return attrs;
|
|
}
|
|
|
|
static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
struct workqueue_attrs *attrs;
|
|
int ret = -ENOMEM;
|
|
|
|
apply_wqattrs_lock();
|
|
|
|
attrs = wq_sysfs_prep_attrs(wq);
|
|
if (!attrs)
|
|
goto out_unlock;
|
|
|
|
if (sscanf(buf, "%d", &attrs->nice) == 1 &&
|
|
attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
|
|
ret = apply_workqueue_attrs_locked(wq, attrs);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
out_unlock:
|
|
apply_wqattrs_unlock();
|
|
free_workqueue_attrs(attrs);
|
|
return ret ?: count;
|
|
}
|
|
|
|
static ssize_t wq_cpumask_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
int written;
|
|
|
|
mutex_lock(&wq->mutex);
|
|
written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
|
|
cpumask_pr_args(wq->unbound_attrs->cpumask));
|
|
mutex_unlock(&wq->mutex);
|
|
return written;
|
|
}
|
|
|
|
static ssize_t wq_cpumask_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
struct workqueue_attrs *attrs;
|
|
int ret = -ENOMEM;
|
|
|
|
apply_wqattrs_lock();
|
|
|
|
attrs = wq_sysfs_prep_attrs(wq);
|
|
if (!attrs)
|
|
goto out_unlock;
|
|
|
|
ret = cpumask_parse(buf, attrs->cpumask);
|
|
if (!ret)
|
|
ret = apply_workqueue_attrs_locked(wq, attrs);
|
|
|
|
out_unlock:
|
|
apply_wqattrs_unlock();
|
|
free_workqueue_attrs(attrs);
|
|
return ret ?: count;
|
|
}
|
|
|
|
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
int written;
|
|
|
|
mutex_lock(&wq->mutex);
|
|
written = scnprintf(buf, PAGE_SIZE, "%d\n",
|
|
!wq->unbound_attrs->no_numa);
|
|
mutex_unlock(&wq->mutex);
|
|
|
|
return written;
|
|
}
|
|
|
|
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct workqueue_struct *wq = dev_to_wq(dev);
|
|
struct workqueue_attrs *attrs;
|
|
int v, ret = -ENOMEM;
|
|
|
|
apply_wqattrs_lock();
|
|
|
|
attrs = wq_sysfs_prep_attrs(wq);
|
|
if (!attrs)
|
|
goto out_unlock;
|
|
|
|
ret = -EINVAL;
|
|
if (sscanf(buf, "%d", &v) == 1) {
|
|
attrs->no_numa = !v;
|
|
ret = apply_workqueue_attrs_locked(wq, attrs);
|
|
}
|
|
|
|
out_unlock:
|
|
apply_wqattrs_unlock();
|
|
free_workqueue_attrs(attrs);
|
|
return ret ?: count;
|
|
}
|
|
|
|
static struct device_attribute wq_sysfs_unbound_attrs[] = {
|
|
__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
|
|
__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
|
|
__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
|
|
__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static struct bus_type wq_subsys = {
|
|
.name = "workqueue",
|
|
.dev_groups = wq_sysfs_groups,
|
|
};
|
|
|
|
static ssize_t wq_unbound_cpumask_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int written;
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
|
|
cpumask_pr_args(wq_unbound_cpumask));
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
return written;
|
|
}
|
|
|
|
static ssize_t wq_unbound_cpumask_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
cpumask_var_t cpumask;
|
|
int ret;
|
|
|
|
if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
ret = cpumask_parse(buf, cpumask);
|
|
if (!ret)
|
|
ret = workqueue_set_unbound_cpumask(cpumask);
|
|
|
|
free_cpumask_var(cpumask);
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
static struct device_attribute wq_sysfs_cpumask_attr =
|
|
__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
|
|
wq_unbound_cpumask_store);
|
|
|
|
static int __init wq_sysfs_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = subsys_virtual_register(&wq_subsys, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
|
|
}
|
|
core_initcall(wq_sysfs_init);
|
|
|
|
static void wq_device_release(struct device *dev)
|
|
{
|
|
struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
|
|
|
|
kfree(wq_dev);
|
|
}
|
|
|
|
/**
|
|
* workqueue_sysfs_register - make a workqueue visible in sysfs
|
|
* @wq: the workqueue to register
|
|
*
|
|
* Expose @wq in sysfs under /sys/bus/workqueue/devices.
|
|
* alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
|
|
* which is the preferred method.
|
|
*
|
|
* Workqueue user should use this function directly iff it wants to apply
|
|
* workqueue_attrs before making the workqueue visible in sysfs; otherwise,
|
|
* apply_workqueue_attrs() may race against userland updating the
|
|
* attributes.
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int workqueue_sysfs_register(struct workqueue_struct *wq)
|
|
{
|
|
struct wq_device *wq_dev;
|
|
int ret;
|
|
|
|
/*
|
|
* Adjusting max_active or creating new pwqs by applying
|
|
* attributes breaks ordering guarantee. Disallow exposing ordered
|
|
* workqueues.
|
|
*/
|
|
if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
|
|
return -EINVAL;
|
|
|
|
wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
|
|
if (!wq_dev)
|
|
return -ENOMEM;
|
|
|
|
wq_dev->wq = wq;
|
|
wq_dev->dev.bus = &wq_subsys;
|
|
wq_dev->dev.release = wq_device_release;
|
|
dev_set_name(&wq_dev->dev, "%s", wq->name);
|
|
|
|
/*
|
|
* unbound_attrs are created separately. Suppress uevent until
|
|
* everything is ready.
|
|
*/
|
|
dev_set_uevent_suppress(&wq_dev->dev, true);
|
|
|
|
ret = device_register(&wq_dev->dev);
|
|
if (ret) {
|
|
put_device(&wq_dev->dev);
|
|
wq->wq_dev = NULL;
|
|
return ret;
|
|
}
|
|
|
|
if (wq->flags & WQ_UNBOUND) {
|
|
struct device_attribute *attr;
|
|
|
|
for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
|
|
ret = device_create_file(&wq_dev->dev, attr);
|
|
if (ret) {
|
|
device_unregister(&wq_dev->dev);
|
|
wq->wq_dev = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
dev_set_uevent_suppress(&wq_dev->dev, false);
|
|
kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* workqueue_sysfs_unregister - undo workqueue_sysfs_register()
|
|
* @wq: the workqueue to unregister
|
|
*
|
|
* If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
|
|
*/
|
|
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
|
|
{
|
|
struct wq_device *wq_dev = wq->wq_dev;
|
|
|
|
if (!wq->wq_dev)
|
|
return;
|
|
|
|
wq->wq_dev = NULL;
|
|
device_unregister(&wq_dev->dev);
|
|
}
|
|
#else /* CONFIG_SYSFS */
|
|
static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
/*
|
|
* Workqueue watchdog.
|
|
*
|
|
* Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
|
|
* flush dependency, a concurrency managed work item which stays RUNNING
|
|
* indefinitely. Workqueue stalls can be very difficult to debug as the
|
|
* usual warning mechanisms don't trigger and internal workqueue state is
|
|
* largely opaque.
|
|
*
|
|
* Workqueue watchdog monitors all worker pools periodically and dumps
|
|
* state if some pools failed to make forward progress for a while where
|
|
* forward progress is defined as the first item on ->worklist changing.
|
|
*
|
|
* This mechanism is controlled through the kernel parameter
|
|
* "workqueue.watchdog_thresh" which can be updated at runtime through the
|
|
* corresponding sysfs parameter file.
|
|
*/
|
|
#ifdef CONFIG_WQ_WATCHDOG
|
|
|
|
static unsigned long wq_watchdog_thresh = 30;
|
|
static struct timer_list wq_watchdog_timer;
|
|
|
|
static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
|
|
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
|
|
|
|
static void wq_watchdog_reset_touched(void)
|
|
{
|
|
int cpu;
|
|
|
|
wq_watchdog_touched = jiffies;
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
|
|
}
|
|
|
|
static void wq_watchdog_timer_fn(struct timer_list *unused)
|
|
{
|
|
unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
|
|
bool lockup_detected = false;
|
|
struct worker_pool *pool;
|
|
int pi;
|
|
|
|
if (!thresh)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
for_each_pool(pool, pi) {
|
|
unsigned long pool_ts, touched, ts;
|
|
|
|
if (list_empty(&pool->worklist))
|
|
continue;
|
|
|
|
/* get the latest of pool and touched timestamps */
|
|
pool_ts = READ_ONCE(pool->watchdog_ts);
|
|
touched = READ_ONCE(wq_watchdog_touched);
|
|
|
|
if (time_after(pool_ts, touched))
|
|
ts = pool_ts;
|
|
else
|
|
ts = touched;
|
|
|
|
if (pool->cpu >= 0) {
|
|
unsigned long cpu_touched =
|
|
READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
|
|
pool->cpu));
|
|
if (time_after(cpu_touched, ts))
|
|
ts = cpu_touched;
|
|
}
|
|
|
|
/* did we stall? */
|
|
if (time_after(jiffies, ts + thresh)) {
|
|
lockup_detected = true;
|
|
pr_emerg("BUG: workqueue lockup - pool");
|
|
pr_cont_pool_info(pool);
|
|
pr_cont(" stuck for %us!\n",
|
|
jiffies_to_msecs(jiffies - pool_ts) / 1000);
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (lockup_detected)
|
|
show_workqueue_state();
|
|
|
|
wq_watchdog_reset_touched();
|
|
mod_timer(&wq_watchdog_timer, jiffies + thresh);
|
|
}
|
|
|
|
notrace void wq_watchdog_touch(int cpu)
|
|
{
|
|
if (cpu >= 0)
|
|
per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
|
|
else
|
|
wq_watchdog_touched = jiffies;
|
|
}
|
|
|
|
static void wq_watchdog_set_thresh(unsigned long thresh)
|
|
{
|
|
wq_watchdog_thresh = 0;
|
|
del_timer_sync(&wq_watchdog_timer);
|
|
|
|
if (thresh) {
|
|
wq_watchdog_thresh = thresh;
|
|
wq_watchdog_reset_touched();
|
|
mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
|
|
}
|
|
}
|
|
|
|
static int wq_watchdog_param_set_thresh(const char *val,
|
|
const struct kernel_param *kp)
|
|
{
|
|
unsigned long thresh;
|
|
int ret;
|
|
|
|
ret = kstrtoul(val, 0, &thresh);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (system_wq)
|
|
wq_watchdog_set_thresh(thresh);
|
|
else
|
|
wq_watchdog_thresh = thresh;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct kernel_param_ops wq_watchdog_thresh_ops = {
|
|
.set = wq_watchdog_param_set_thresh,
|
|
.get = param_get_ulong,
|
|
};
|
|
|
|
module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
|
|
0644);
|
|
|
|
static void wq_watchdog_init(void)
|
|
{
|
|
timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
|
|
wq_watchdog_set_thresh(wq_watchdog_thresh);
|
|
}
|
|
|
|
#else /* CONFIG_WQ_WATCHDOG */
|
|
|
|
static inline void wq_watchdog_init(void) { }
|
|
|
|
#endif /* CONFIG_WQ_WATCHDOG */
|
|
|
|
static void __init wq_numa_init(void)
|
|
{
|
|
cpumask_var_t *tbl;
|
|
int node, cpu;
|
|
|
|
if (num_possible_nodes() <= 1)
|
|
return;
|
|
|
|
if (wq_disable_numa) {
|
|
pr_info("workqueue: NUMA affinity support disabled\n");
|
|
return;
|
|
}
|
|
|
|
wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
|
|
BUG_ON(!wq_update_unbound_numa_attrs_buf);
|
|
|
|
/*
|
|
* We want masks of possible CPUs of each node which isn't readily
|
|
* available. Build one from cpu_to_node() which should have been
|
|
* fully initialized by now.
|
|
*/
|
|
tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
|
|
BUG_ON(!tbl);
|
|
|
|
for_each_node(node)
|
|
BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
|
|
node_online(node) ? node : NUMA_NO_NODE));
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
node = cpu_to_node(cpu);
|
|
if (WARN_ON(node == NUMA_NO_NODE)) {
|
|
pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
|
|
/* happens iff arch is bonkers, let's just proceed */
|
|
return;
|
|
}
|
|
cpumask_set_cpu(cpu, tbl[node]);
|
|
}
|
|
|
|
wq_numa_possible_cpumask = tbl;
|
|
wq_numa_enabled = true;
|
|
}
|
|
|
|
/**
|
|
* workqueue_init_early - early init for workqueue subsystem
|
|
*
|
|
* This is the first half of two-staged workqueue subsystem initialization
|
|
* and invoked as soon as the bare basics - memory allocation, cpumasks and
|
|
* idr are up. It sets up all the data structures and system workqueues
|
|
* and allows early boot code to create workqueues and queue/cancel work
|
|
* items. Actual work item execution starts only after kthreads can be
|
|
* created and scheduled right before early initcalls.
|
|
*/
|
|
int __init workqueue_init_early(void)
|
|
{
|
|
int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
|
|
int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
|
|
int i, cpu;
|
|
|
|
WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
|
|
|
|
BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
|
|
cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
|
|
|
|
pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
|
|
|
|
/* initialize CPU pools */
|
|
for_each_possible_cpu(cpu) {
|
|
struct worker_pool *pool;
|
|
|
|
i = 0;
|
|
for_each_cpu_worker_pool(pool, cpu) {
|
|
BUG_ON(init_worker_pool(pool));
|
|
pool->cpu = cpu;
|
|
cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
|
|
pool->attrs->nice = std_nice[i++];
|
|
pool->node = cpu_to_node(cpu);
|
|
|
|
/* alloc pool ID */
|
|
mutex_lock(&wq_pool_mutex);
|
|
BUG_ON(worker_pool_assign_id(pool));
|
|
mutex_unlock(&wq_pool_mutex);
|
|
}
|
|
}
|
|
|
|
/* create default unbound and ordered wq attrs */
|
|
for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
|
|
struct workqueue_attrs *attrs;
|
|
|
|
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
|
|
attrs->nice = std_nice[i];
|
|
unbound_std_wq_attrs[i] = attrs;
|
|
|
|
/*
|
|
* An ordered wq should have only one pwq as ordering is
|
|
* guaranteed by max_active which is enforced by pwqs.
|
|
* Turn off NUMA so that dfl_pwq is used for all nodes.
|
|
*/
|
|
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
|
|
attrs->nice = std_nice[i];
|
|
attrs->no_numa = true;
|
|
ordered_wq_attrs[i] = attrs;
|
|
}
|
|
|
|
system_wq = alloc_workqueue("events", 0, 0);
|
|
system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
|
|
system_long_wq = alloc_workqueue("events_long", 0, 0);
|
|
system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
|
|
WQ_UNBOUND_MAX_ACTIVE);
|
|
system_freezable_wq = alloc_workqueue("events_freezable",
|
|
WQ_FREEZABLE, 0);
|
|
system_power_efficient_wq = alloc_workqueue("events_power_efficient",
|
|
WQ_POWER_EFFICIENT, 0);
|
|
system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
|
|
WQ_FREEZABLE | WQ_POWER_EFFICIENT,
|
|
0);
|
|
BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
|
|
!system_unbound_wq || !system_freezable_wq ||
|
|
!system_power_efficient_wq ||
|
|
!system_freezable_power_efficient_wq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* workqueue_init - bring workqueue subsystem fully online
|
|
*
|
|
* This is the latter half of two-staged workqueue subsystem initialization
|
|
* and invoked as soon as kthreads can be created and scheduled.
|
|
* Workqueues have been created and work items queued on them, but there
|
|
* are no kworkers executing the work items yet. Populate the worker pools
|
|
* with the initial workers and enable future kworker creations.
|
|
*/
|
|
int __init workqueue_init(void)
|
|
{
|
|
struct workqueue_struct *wq;
|
|
struct worker_pool *pool;
|
|
int cpu, bkt;
|
|
|
|
/*
|
|
* It'd be simpler to initialize NUMA in workqueue_init_early() but
|
|
* CPU to node mapping may not be available that early on some
|
|
* archs such as power and arm64. As per-cpu pools created
|
|
* previously could be missing node hint and unbound pools NUMA
|
|
* affinity, fix them up.
|
|
*
|
|
* Also, while iterating workqueues, create rescuers if requested.
|
|
*/
|
|
wq_numa_init();
|
|
|
|
mutex_lock(&wq_pool_mutex);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
for_each_cpu_worker_pool(pool, cpu) {
|
|
pool->node = cpu_to_node(cpu);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
wq_update_unbound_numa(wq, smp_processor_id(), true);
|
|
WARN(init_rescuer(wq),
|
|
"workqueue: failed to create early rescuer for %s",
|
|
wq->name);
|
|
}
|
|
|
|
mutex_unlock(&wq_pool_mutex);
|
|
|
|
/* create the initial workers */
|
|
for_each_online_cpu(cpu) {
|
|
for_each_cpu_worker_pool(pool, cpu) {
|
|
pool->flags &= ~POOL_DISASSOCIATED;
|
|
BUG_ON(!create_worker(pool));
|
|
}
|
|
}
|
|
|
|
hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
|
|
BUG_ON(!create_worker(pool));
|
|
|
|
wq_online = true;
|
|
wq_watchdog_init();
|
|
|
|
return 0;
|
|
}
|