kernel-fxtec-pro1x/drivers/media/platform/omap/omap_vout_vrfb.c
Tony Lindgren 45c3eb7d3a ARM: OMAP: Move plat-omap/dma-omap.h to include/linux/omap-dma.h
Based on earlier discussions[1] we attempted to find a suitable
location for the omap DMA header in commit 2b6c4e73 (ARM: OMAP:
DMA: Move plat/dma.h to plat-omap/dma-omap.h) until the conversion
to dmaengine is complete.

Unfortunately that was before I was able to try to test compile
of the ARM multiplatform builds for omap2+, and the end result
was not very good.

So I'm creating yet another all over the place patch to cut the
last dependency for building omap2+ for ARM multiplatform. After
this, we have finally removed the driver dependencies to the
arch/arm code, except for few drivers that are being worked on.

The other option was to make the <plat-omap/dma-omap.h> path
to work, but we'd have to add some new header directory to for
multiplatform builds.

Or we would have to manually include arch/arm/plat-omap/include
again from arch/arm/Makefile for omap2+.

Neither of these alternatives sound appealing as they will
likely lead addition of various other headers exposed to the
drivers, which we want to avoid for the multiplatform kernels.

Since we already have a minimal include/linux/omap-dma.h,
let's just use that instead and add a note to it to not
use the custom omap DMA functions any longer where possible.

Note that converting omap DMA to dmaengine depends on
dmaengine supporting automatically incrementing the FIFO
address at the device end, and converting all the remaining
legacy drivers. So it's going to be few more merge windows.

[1] https://patchwork.kernel.org/patch/1519591/#

cc: Russell King <linux@arm.linux.org.uk>
cc: Kevin Hilman <khilman@ti.com>
cc: "Benoît Cousson" <b-cousson@ti.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Vinod Koul <vinod.koul@intel.com>
cc: Dan Williams <djbw@fb.com>
cc: Mauro Carvalho Chehab <mchehab@infradead.org>
cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
cc: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
cc: David Woodhouse <dwmw2@infradead.org>
cc: Kyungmin Park <kyungmin.park@samsung.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
cc: Hans Verkuil <hans.verkuil@cisco.com>
cc: Vaibhav Hiremath <hvaibhav@ti.com>
cc: Lokesh Vutla <lokeshvutla@ti.com>
cc: Rusty Russell <rusty@rustcorp.com.au>
cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
cc: Afzal Mohammed <afzal@ti.com>
cc: linux-crypto@vger.kernel.org
cc: linux-media@vger.kernel.org
cc: linux-mtd@lists.infradead.org
cc: linux-usb@vger.kernel.org
cc: linux-fbdev@vger.kernel.org
Acked-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-11-30 08:41:50 -08:00

392 lines
11 KiB
C

/*
* omap_vout_vrfb.c
*
* Copyright (C) 2010 Texas Instruments.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/videodev2.h>
#include <media/videobuf-dma-contig.h>
#include <media/v4l2-device.h>
#include <linux/omap-dma.h>
#include <video/omapvrfb.h>
#include "omap_voutdef.h"
#include "omap_voutlib.h"
#define OMAP_DMA_NO_DEVICE 0
/*
* Function for allocating video buffers
*/
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
unsigned int *count, int startindex)
{
int i, j;
for (i = 0; i < *count; i++) {
if (!vout->smsshado_virt_addr[i]) {
vout->smsshado_virt_addr[i] =
omap_vout_alloc_buffer(vout->smsshado_size,
&vout->smsshado_phy_addr[i]);
}
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
break;
}
if (!vout->smsshado_virt_addr[i]) {
for (j = 0; j < i; j++) {
omap_vout_free_buffer(
vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
*count = 0;
return -ENOMEM;
}
memset((void *) vout->smsshado_virt_addr[i], 0,
vout->smsshado_size);
}
return 0;
}
/*
* Wakes up the application once the DMA transfer to VRFB space is completed.
*/
static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
{
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
t->tx_status = 1;
wake_up_interruptible(&t->wait);
}
/*
* Free VRFB buffers
*/
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
{
int j;
for (j = 0; j < VRFB_NUM_BUFS; j++) {
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
}
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
bool static_vrfb_allocation)
{
int ret = 0, i, j;
struct omap_vout_device *vout;
struct video_device *vfd;
int image_width, image_height;
int vrfb_num_bufs = VRFB_NUM_BUFS;
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
struct omap2video_device *vid_dev =
container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
vout = vid_dev->vouts[vid_num];
vfd = vout->vfd;
for (i = 0; i < VRFB_NUM_BUFS; i++) {
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
dev_info(&pdev->dev, ": VRFB allocation failed\n");
for (j = 0; j < i; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
ret = -ENOMEM;
goto free_buffers;
}
}
/* Calculate VRFB memory size */
/* allocate for worst case size */
image_width = VID_MAX_WIDTH / TILE_SIZE;
if (VID_MAX_WIDTH % TILE_SIZE)
image_width++;
image_width = image_width * TILE_SIZE;
image_height = VID_MAX_HEIGHT / TILE_SIZE;
if (VID_MAX_HEIGHT % TILE_SIZE)
image_height++;
image_height = image_height * TILE_SIZE;
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
/*
* Request and Initialize DMA, for DMA based VRFB transfer
*/
vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
vout->vrfb_dma_tx.dma_ch = -1;
vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
omap_vout_vrfb_dma_tx_callback,
(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
if (ret < 0) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
" video%d\n", vfd->minor);
}
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
/* statically allocated the VRFB buffer is done through
commands line aruments */
if (static_vrfb_allocation) {
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
ret = -ENOMEM;
goto release_vrfb_ctx;
}
vout->vrfb_static_allocation = 1;
}
return 0;
release_vrfb_ctx:
for (j = 0; j < VRFB_NUM_BUFS; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
free_buffers:
omap_vout_free_buffers(vout);
return ret;
}
/*
* Release the VRFB context once the module exits
*/
void omap_vout_release_vrfb(struct omap_vout_device *vout)
{
int i;
for (i = 0; i < VRFB_NUM_BUFS; i++)
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
omap_free_dma(vout->vrfb_dma_tx.dma_ch);
}
}
/*
* Allocate the buffers for the VRFB space. Data is copied from V4L2
* buffers to the VRFB buffers using the DMA engine.
*/
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex)
{
int i;
bool yuv_mode;
if (!is_rotation_enabled(vout))
return 0;
/* If rotation is enabled, allocate memory for VRFB space also */
*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
/* Allocate the VRFB buffers only if the buffers are not
* allocated during init time.
*/
if (!vout->vrfb_static_allocation)
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
return -ENOMEM;
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
yuv_mode = true;
else
yuv_mode = false;
for (i = 0; i < *count; i++)
omap_vrfb_setup(&vout->vrfb_context[i],
vout->smsshado_phy_addr[i], vout->pix.width,
vout->pix.height, vout->bpp, yuv_mode);
return 0;
}
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
struct videobuf_buffer *vb)
{
dma_addr_t dmabuf;
struct vid_vrfb_dma *tx;
enum dss_rotation rotation;
u32 dest_frame_index = 0, src_element_index = 0;
u32 dest_element_index = 0, src_frame_index = 0;
u32 elem_count = 0, frame_count = 0, pixsize = 2;
if (!is_rotation_enabled(vout))
return 0;
dmabuf = vout->buf_phy_addr[vb->i];
/* If rotation is enabled, copy input buffer into VRFB
* memory space using DMA. We are copying input buffer
* into VRFB memory space of desired angle and DSS will
* read image VRFB memory for 0 degree angle
*/
pixsize = vout->bpp * vout->vrfb_bpp;
/*
* DMA transfer in double index mode
*/
/* Frame index */
dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
(vout->pix.width * vout->bpp)) + 1;
/* Source and destination parameters */
src_element_index = 0;
src_frame_index = 0;
dest_element_index = 1;
/* Number of elements per frame */
elem_count = vout->pix.width * vout->bpp;
frame_count = vout->pix.height;
tx = &vout->vrfb_dma_tx;
tx->tx_status = 0;
omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
tx->dev_id, 0x0);
/* src_port required only for OMAP1 */
omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
dmabuf, src_element_index, src_frame_index);
/*set dma source burst mode for VRFB */
omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
rotation = calc_rotation(vout);
/* dest_port required only for OMAP1 */
omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
vout->vrfb_context[vb->i].paddr[0], dest_element_index,
dest_frame_index);
/*set dma dest burst mode for VRFB */
omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
omap_start_dma(tx->dma_ch);
interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
if (tx->tx_status == 0) {
omap_stop_dma(tx->dma_ch);
return -EINVAL;
}
/* Store buffers physical address into an array. Addresses
* from this array will be used to configure DSS */
vout->queued_buf_addr[vb->i] = (u8 *)
vout->vrfb_context[vb->i].paddr[rotation];
return 0;
}
/*
* Calculate the buffer offsets from which the streaming should
* start. This offset calculation is mainly required because of
* the VRFB 32 pixels alignment with rotation.
*/
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
{
enum dss_rotation rotation;
bool mirroring = vout->mirror;
struct v4l2_rect *crop = &vout->crop;
struct v4l2_pix_format *pix = &vout->pix;
int *cropped_offset = &vout->cropped_offset;
int vr_ps = 1, ps = 2, temp_ps = 2;
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
rotation = calc_rotation(vout);
if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
V4L2_PIX_FMT_UYVY == pix->pixelformat) {
if (is_rotation_enabled(vout)) {
/*
* ps - Actual pixel size for YUYV/UYVY for
* VRFB/Mirroring is 4 bytes
* vr_ps - Virtually pixel size for YUYV/UYVY is
* 2 bytes
*/
ps = 4;
vr_ps = 2;
} else {
ps = 2; /* otherwise the pixel size is 2 byte */
}
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
ps = 4;
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
ps = 3;
}
vout->ps = ps;
vout->vr_ps = vr_ps;
if (is_rotation_enabled(vout)) {
line_length = MAX_PIXELS_PER_LINE;
ctop = (pix->height - crop->height) - crop->top;
cleft = (pix->width - crop->width) - crop->left;
} else {
line_length = pix->width;
}
vout->line_length = line_length;
switch (rotation) {
case dss_rotation_90_degree:
offset = vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * cleft + crop->top * temp_ps;
} else {
*cropped_offset = offset + line_length * temp_ps *
cleft + crop->top * temp_ps + (line_length *
((crop->width / (vr_ps)) - 1) * ps);
}
break;
case dss_rotation_180_degree:
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp) +
(vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp));
if (mirroring == 0) {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps;
} else {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps + (line_length *
(crop->height - 1) * ps);
}
break;
case dss_rotation_270_degree:
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps;
} else {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps +
(line_length * ((crop->width / vr_ps) - 1) *
ps);
}
break;
case dss_rotation_0_degree:
if (mirroring == 0) {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps;
} else {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps +
(line_length * (crop->height - 1) * ps);
}
break;
default:
*cropped_offset = (line_length * ps * crop->top) /
vr_ps + (crop->left * ps) / vr_ps +
((crop->width / vr_ps) - 1) * ps;
break;
}
}