e9bb18c7b9
Alex Thorlton noticed that some massively threaded workloads work poorly, if THP enabled. This patchset fixes this by introducing split page table lock for PMD tables. hugetlbfs is not covered yet. This patchset is based on work by Naoya Horiguchi. : akpm result summary: : : THP off, v3.12-rc2: 18.059261877 seconds time elapsed : THP off, patched: 16.768027318 seconds time elapsed : : THP on, v3.12-rc2: 42.162306788 seconds time elapsed : THP on, patched: 8.397885779 seconds time elapsed : : HUGETLB, v3.12-rc2: 47.574936948 seconds time elapsed : HUGETLB, patched: 19.447481153 seconds time elapsed THP off, v3.12-rc2: ------------------- Performance counter stats for './thp_memscale -c 80 -b 512m' (5 runs): 1037072.835207 task-clock # 57.426 CPUs utilized ( +- 3.59% ) 95,093 context-switches # 0.092 K/sec ( +- 3.93% ) 140 cpu-migrations # 0.000 K/sec ( +- 5.28% ) 10,000,550 page-faults # 0.010 M/sec ( +- 0.00% ) 2,455,210,400,261 cycles # 2.367 GHz ( +- 3.62% ) [83.33%] 2,429,281,882,056 stalled-cycles-frontend # 98.94% frontend cycles idle ( +- 3.67% ) [83.33%] 1,975,960,019,659 stalled-cycles-backend # 80.48% backend cycles idle ( +- 3.88% ) [66.68%] 46,503,296,013 instructions # 0.02 insns per cycle # 52.24 stalled cycles per insn ( +- 3.21% ) [83.34%] 9,278,997,542 branches # 8.947 M/sec ( +- 4.00% ) [83.34%] 89,881,640 branch-misses # 0.97% of all branches ( +- 1.17% ) [83.33%] 18.059261877 seconds time elapsed ( +- 2.65% ) THP on, v3.12-rc2: ------------------ Performance counter stats for './thp_memscale -c 80 -b 512m' (5 runs): 3114745.395974 task-clock # 73.875 CPUs utilized ( +- 1.84% ) 267,356 context-switches # 0.086 K/sec ( +- 1.84% ) 99 cpu-migrations # 0.000 K/sec ( +- 1.40% ) 58,313 page-faults # 0.019 K/sec ( +- 0.28% ) 7,416,635,817,510 cycles # 2.381 GHz ( +- 1.83% ) [83.33%] 7,342,619,196,993 stalled-cycles-frontend # 99.00% frontend cycles idle ( +- 1.88% ) [83.33%] 6,267,671,641,967 stalled-cycles-backend # 84.51% backend cycles idle ( +- 2.03% ) [66.67%] 117,819,935,165 instructions # 0.02 insns per cycle # 62.32 stalled cycles per insn ( +- 4.39% ) [83.34%] 28,899,314,777 branches # 9.278 M/sec ( +- 4.48% ) [83.34%] 71,787,032 branch-misses # 0.25% of all branches ( +- 1.03% ) [83.33%] 42.162306788 seconds time elapsed ( +- 1.73% ) HUGETLB, v3.12-rc2: ------------------- Performance counter stats for './thp_memscale_hugetlbfs -c 80 -b 512M' (5 runs): 2588052.787264 task-clock # 54.400 CPUs utilized ( +- 3.69% ) 246,831 context-switches # 0.095 K/sec ( +- 4.15% ) 138 cpu-migrations # 0.000 K/sec ( +- 5.30% ) 21,027 page-faults # 0.008 K/sec ( +- 0.01% ) 6,166,666,307,263 cycles # 2.383 GHz ( +- 3.68% ) [83.33%] 6,086,008,929,407 stalled-cycles-frontend # 98.69% frontend cycles idle ( +- 3.77% ) [83.33%] 5,087,874,435,481 stalled-cycles-backend # 82.51% backend cycles idle ( +- 4.41% ) [66.67%] 133,782,831,249 instructions # 0.02 insns per cycle # 45.49 stalled cycles per insn ( +- 4.30% ) [83.34%] 34,026,870,541 branches # 13.148 M/sec ( +- 4.24% ) [83.34%] 68,670,942 branch-misses # 0.20% of all branches ( +- 3.26% ) [83.33%] 47.574936948 seconds time elapsed ( +- 2.09% ) THP off, patched: ----------------- Performance counter stats for './thp_memscale -c 80 -b 512m' (5 runs): 943301.957892 task-clock # 56.256 CPUs utilized ( +- 3.01% ) 86,218 context-switches # 0.091 K/sec ( +- 3.17% ) 121 cpu-migrations # 0.000 K/sec ( +- 6.64% ) 10,000,551 page-faults # 0.011 M/sec ( +- 0.00% ) 2,230,462,457,654 cycles # 2.365 GHz ( +- 3.04% ) [83.32%] 2,204,616,385,805 stalled-cycles-frontend # 98.84% frontend cycles idle ( +- 3.09% ) [83.32%] 1,778,640,046,926 stalled-cycles-backend # 79.74% backend cycles idle ( +- 3.47% ) [66.69%] 45,995,472,617 instructions # 0.02 insns per cycle # 47.93 stalled cycles per insn ( +- 2.51% ) [83.34%] 9,179,700,174 branches # 9.731 M/sec ( +- 3.04% ) [83.35%] 89,166,529 branch-misses # 0.97% of all branches ( +- 1.45% ) [83.33%] 16.768027318 seconds time elapsed ( +- 2.47% ) THP on, patched: ---------------- Performance counter stats for './thp_memscale -c 80 -b 512m' (5 runs): 458793.837905 task-clock # 54.632 CPUs utilized ( +- 0.79% ) 41,831 context-switches # 0.091 K/sec ( +- 0.97% ) 98 cpu-migrations # 0.000 K/sec ( +- 1.66% ) 57,829 page-faults # 0.126 K/sec ( +- 0.62% ) 1,077,543,336,716 cycles # 2.349 GHz ( +- 0.81% ) [83.33%] 1,067,403,802,964 stalled-cycles-frontend # 99.06% frontend cycles idle ( +- 0.87% ) [83.33%] 864,764,616,143 stalled-cycles-backend # 80.25% backend cycles idle ( +- 0.73% ) [66.68%] 16,129,177,440 instructions # 0.01 insns per cycle # 66.18 stalled cycles per insn ( +- 7.94% ) [83.35%] 3,618,938,569 branches # 7.888 M/sec ( +- 8.46% ) [83.36%] 33,242,032 branch-misses # 0.92% of all branches ( +- 2.02% ) [83.32%] 8.397885779 seconds time elapsed ( +- 0.18% ) HUGETLB, patched: ----------------- Performance counter stats for './thp_memscale_hugetlbfs -c 80 -b 512M' (5 runs): 395353.076837 task-clock # 20.329 CPUs utilized ( +- 8.16% ) 55,730 context-switches # 0.141 K/sec ( +- 5.31% ) 138 cpu-migrations # 0.000 K/sec ( +- 4.24% ) 21,027 page-faults # 0.053 K/sec ( +- 0.00% ) 930,219,717,244 cycles # 2.353 GHz ( +- 8.21% ) [83.32%] 914,295,694,103 stalled-cycles-frontend # 98.29% frontend cycles idle ( +- 8.35% ) [83.33%] 704,137,950,187 stalled-cycles-backend # 75.70% backend cycles idle ( +- 9.16% ) [66.69%] 30,541,538,385 instructions # 0.03 insns per cycle # 29.94 stalled cycles per insn ( +- 3.98% ) [83.35%] 8,415,376,631 branches # 21.286 M/sec ( +- 3.61% ) [83.36%] 32,645,478 branch-misses # 0.39% of all branches ( +- 3.41% ) [83.32%] 19.447481153 seconds time elapsed ( +- 2.00% ) This patch (of 11): CONFIG_GENERIC_LOCKBREAK increases sizeof(spinlock_t) to 8 bytes. It leads to increase sizeof(struct page) by 4 bytes on 32-bit system if split page table lock is in use, since page->ptl shares space in union with longs and pointers. Let's disable split page table lock on 32-bit systems with GENERIC_LOCKBREAK enabled. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
553 lines
19 KiB
Text
553 lines
19 KiB
Text
config SELECT_MEMORY_MODEL
|
|
def_bool y
|
|
depends on ARCH_SELECT_MEMORY_MODEL
|
|
|
|
choice
|
|
prompt "Memory model"
|
|
depends on SELECT_MEMORY_MODEL
|
|
default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT
|
|
default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT
|
|
default FLATMEM_MANUAL
|
|
|
|
config FLATMEM_MANUAL
|
|
bool "Flat Memory"
|
|
depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE
|
|
help
|
|
This option allows you to change some of the ways that
|
|
Linux manages its memory internally. Most users will
|
|
only have one option here: FLATMEM. This is normal
|
|
and a correct option.
|
|
|
|
Some users of more advanced features like NUMA and
|
|
memory hotplug may have different options here.
|
|
DISCONTIGMEM is an more mature, better tested system,
|
|
but is incompatible with memory hotplug and may suffer
|
|
decreased performance over SPARSEMEM. If unsure between
|
|
"Sparse Memory" and "Discontiguous Memory", choose
|
|
"Discontiguous Memory".
|
|
|
|
If unsure, choose this option (Flat Memory) over any other.
|
|
|
|
config DISCONTIGMEM_MANUAL
|
|
bool "Discontiguous Memory"
|
|
depends on ARCH_DISCONTIGMEM_ENABLE
|
|
help
|
|
This option provides enhanced support for discontiguous
|
|
memory systems, over FLATMEM. These systems have holes
|
|
in their physical address spaces, and this option provides
|
|
more efficient handling of these holes. However, the vast
|
|
majority of hardware has quite flat address spaces, and
|
|
can have degraded performance from the extra overhead that
|
|
this option imposes.
|
|
|
|
Many NUMA configurations will have this as the only option.
|
|
|
|
If unsure, choose "Flat Memory" over this option.
|
|
|
|
config SPARSEMEM_MANUAL
|
|
bool "Sparse Memory"
|
|
depends on ARCH_SPARSEMEM_ENABLE
|
|
help
|
|
This will be the only option for some systems, including
|
|
memory hotplug systems. This is normal.
|
|
|
|
For many other systems, this will be an alternative to
|
|
"Discontiguous Memory". This option provides some potential
|
|
performance benefits, along with decreased code complexity,
|
|
but it is newer, and more experimental.
|
|
|
|
If unsure, choose "Discontiguous Memory" or "Flat Memory"
|
|
over this option.
|
|
|
|
endchoice
|
|
|
|
config DISCONTIGMEM
|
|
def_bool y
|
|
depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL
|
|
|
|
config SPARSEMEM
|
|
def_bool y
|
|
depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL
|
|
|
|
config FLATMEM
|
|
def_bool y
|
|
depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL
|
|
|
|
config FLAT_NODE_MEM_MAP
|
|
def_bool y
|
|
depends on !SPARSEMEM
|
|
|
|
#
|
|
# Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's
|
|
# to represent different areas of memory. This variable allows
|
|
# those dependencies to exist individually.
|
|
#
|
|
config NEED_MULTIPLE_NODES
|
|
def_bool y
|
|
depends on DISCONTIGMEM || NUMA
|
|
|
|
config HAVE_MEMORY_PRESENT
|
|
def_bool y
|
|
depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM
|
|
|
|
#
|
|
# SPARSEMEM_EXTREME (which is the default) does some bootmem
|
|
# allocations when memory_present() is called. If this cannot
|
|
# be done on your architecture, select this option. However,
|
|
# statically allocating the mem_section[] array can potentially
|
|
# consume vast quantities of .bss, so be careful.
|
|
#
|
|
# This option will also potentially produce smaller runtime code
|
|
# with gcc 3.4 and later.
|
|
#
|
|
config SPARSEMEM_STATIC
|
|
bool
|
|
|
|
#
|
|
# Architecture platforms which require a two level mem_section in SPARSEMEM
|
|
# must select this option. This is usually for architecture platforms with
|
|
# an extremely sparse physical address space.
|
|
#
|
|
config SPARSEMEM_EXTREME
|
|
def_bool y
|
|
depends on SPARSEMEM && !SPARSEMEM_STATIC
|
|
|
|
config SPARSEMEM_VMEMMAP_ENABLE
|
|
bool
|
|
|
|
config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
def_bool y
|
|
depends on SPARSEMEM && X86_64
|
|
|
|
config SPARSEMEM_VMEMMAP
|
|
bool "Sparse Memory virtual memmap"
|
|
depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
|
|
default y
|
|
help
|
|
SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise
|
|
pfn_to_page and page_to_pfn operations. This is the most
|
|
efficient option when sufficient kernel resources are available.
|
|
|
|
config HAVE_MEMBLOCK
|
|
boolean
|
|
|
|
config HAVE_MEMBLOCK_NODE_MAP
|
|
boolean
|
|
|
|
config ARCH_DISCARD_MEMBLOCK
|
|
boolean
|
|
|
|
config NO_BOOTMEM
|
|
boolean
|
|
|
|
config MEMORY_ISOLATION
|
|
boolean
|
|
|
|
config MOVABLE_NODE
|
|
boolean "Enable to assign a node which has only movable memory"
|
|
depends on HAVE_MEMBLOCK
|
|
depends on NO_BOOTMEM
|
|
depends on X86_64
|
|
depends on NUMA
|
|
default n
|
|
help
|
|
Allow a node to have only movable memory. Pages used by the kernel,
|
|
such as direct mapping pages cannot be migrated. So the corresponding
|
|
memory device cannot be hotplugged. This option allows the following
|
|
two things:
|
|
- When the system is booting, node full of hotpluggable memory can
|
|
be arranged to have only movable memory so that the whole node can
|
|
be hot-removed. (need movable_node boot option specified).
|
|
- After the system is up, the option allows users to online all the
|
|
memory of a node as movable memory so that the whole node can be
|
|
hot-removed.
|
|
|
|
Users who don't use the memory hotplug feature are fine with this
|
|
option on since they don't specify movable_node boot option or they
|
|
don't online memory as movable.
|
|
|
|
Say Y here if you want to hotplug a whole node.
|
|
Say N here if you want kernel to use memory on all nodes evenly.
|
|
|
|
#
|
|
# Only be set on architectures that have completely implemented memory hotplug
|
|
# feature. If you are not sure, don't touch it.
|
|
#
|
|
config HAVE_BOOTMEM_INFO_NODE
|
|
def_bool n
|
|
|
|
# eventually, we can have this option just 'select SPARSEMEM'
|
|
config MEMORY_HOTPLUG
|
|
bool "Allow for memory hot-add"
|
|
depends on SPARSEMEM || X86_64_ACPI_NUMA
|
|
depends on ARCH_ENABLE_MEMORY_HOTPLUG
|
|
depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390)
|
|
|
|
config MEMORY_HOTPLUG_SPARSE
|
|
def_bool y
|
|
depends on SPARSEMEM && MEMORY_HOTPLUG
|
|
|
|
config MEMORY_HOTREMOVE
|
|
bool "Allow for memory hot remove"
|
|
select MEMORY_ISOLATION
|
|
select HAVE_BOOTMEM_INFO_NODE if (X86_64 || PPC64)
|
|
depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
|
|
depends on MIGRATION
|
|
|
|
#
|
|
# If we have space for more page flags then we can enable additional
|
|
# optimizations and functionality.
|
|
#
|
|
# Regular Sparsemem takes page flag bits for the sectionid if it does not
|
|
# use a virtual memmap. Disable extended page flags for 32 bit platforms
|
|
# that require the use of a sectionid in the page flags.
|
|
#
|
|
config PAGEFLAGS_EXTENDED
|
|
def_bool y
|
|
depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM
|
|
|
|
# Heavily threaded applications may benefit from splitting the mm-wide
|
|
# page_table_lock, so that faults on different parts of the user address
|
|
# space can be handled with less contention: split it at this NR_CPUS.
|
|
# Default to 4 for wider testing, though 8 might be more appropriate.
|
|
# ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock.
|
|
# PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes.
|
|
# DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page.
|
|
#
|
|
config SPLIT_PTLOCK_CPUS
|
|
int
|
|
default "999999" if ARM && !CPU_CACHE_VIPT
|
|
default "999999" if PARISC && !PA20
|
|
default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
|
|
default "999999" if !64BIT && GENERIC_LOCKBREAK
|
|
default "4"
|
|
|
|
#
|
|
# support for memory balloon compaction
|
|
config BALLOON_COMPACTION
|
|
bool "Allow for balloon memory compaction/migration"
|
|
def_bool y
|
|
depends on COMPACTION && VIRTIO_BALLOON
|
|
help
|
|
Memory fragmentation introduced by ballooning might reduce
|
|
significantly the number of 2MB contiguous memory blocks that can be
|
|
used within a guest, thus imposing performance penalties associated
|
|
with the reduced number of transparent huge pages that could be used
|
|
by the guest workload. Allowing the compaction & migration for memory
|
|
pages enlisted as being part of memory balloon devices avoids the
|
|
scenario aforementioned and helps improving memory defragmentation.
|
|
|
|
#
|
|
# support for memory compaction
|
|
config COMPACTION
|
|
bool "Allow for memory compaction"
|
|
def_bool y
|
|
select MIGRATION
|
|
depends on MMU
|
|
help
|
|
Allows the compaction of memory for the allocation of huge pages.
|
|
|
|
#
|
|
# support for page migration
|
|
#
|
|
config MIGRATION
|
|
bool "Page migration"
|
|
def_bool y
|
|
depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
|
|
help
|
|
Allows the migration of the physical location of pages of processes
|
|
while the virtual addresses are not changed. This is useful in
|
|
two situations. The first is on NUMA systems to put pages nearer
|
|
to the processors accessing. The second is when allocating huge
|
|
pages as migration can relocate pages to satisfy a huge page
|
|
allocation instead of reclaiming.
|
|
|
|
config PHYS_ADDR_T_64BIT
|
|
def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
|
|
|
|
config ZONE_DMA_FLAG
|
|
int
|
|
default "0" if !ZONE_DMA
|
|
default "1"
|
|
|
|
config BOUNCE
|
|
bool "Enable bounce buffers"
|
|
default y
|
|
depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM)
|
|
help
|
|
Enable bounce buffers for devices that cannot access
|
|
the full range of memory available to the CPU. Enabled
|
|
by default when ZONE_DMA or HIGHMEM is selected, but you
|
|
may say n to override this.
|
|
|
|
# On the 'tile' arch, USB OHCI needs the bounce pool since tilegx will often
|
|
# have more than 4GB of memory, but we don't currently use the IOTLB to present
|
|
# a 32-bit address to OHCI. So we need to use a bounce pool instead.
|
|
#
|
|
# We also use the bounce pool to provide stable page writes for jbd. jbd
|
|
# initiates buffer writeback without locking the page or setting PG_writeback,
|
|
# and fixing that behavior (a second time; jbd2 doesn't have this problem) is
|
|
# a major rework effort. Instead, use the bounce buffer to snapshot pages
|
|
# (until jbd goes away). The only jbd user is ext3.
|
|
config NEED_BOUNCE_POOL
|
|
bool
|
|
default y if (TILE && USB_OHCI_HCD) || (BLK_DEV_INTEGRITY && JBD)
|
|
|
|
config NR_QUICK
|
|
int
|
|
depends on QUICKLIST
|
|
default "2" if AVR32
|
|
default "1"
|
|
|
|
config VIRT_TO_BUS
|
|
bool
|
|
help
|
|
An architecture should select this if it implements the
|
|
deprecated interface virt_to_bus(). All new architectures
|
|
should probably not select this.
|
|
|
|
|
|
config MMU_NOTIFIER
|
|
bool
|
|
|
|
config KSM
|
|
bool "Enable KSM for page merging"
|
|
depends on MMU
|
|
help
|
|
Enable Kernel Samepage Merging: KSM periodically scans those areas
|
|
of an application's address space that an app has advised may be
|
|
mergeable. When it finds pages of identical content, it replaces
|
|
the many instances by a single page with that content, so
|
|
saving memory until one or another app needs to modify the content.
|
|
Recommended for use with KVM, or with other duplicative applications.
|
|
See Documentation/vm/ksm.txt for more information: KSM is inactive
|
|
until a program has madvised that an area is MADV_MERGEABLE, and
|
|
root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set).
|
|
|
|
config DEFAULT_MMAP_MIN_ADDR
|
|
int "Low address space to protect from user allocation"
|
|
depends on MMU
|
|
default 4096
|
|
help
|
|
This is the portion of low virtual memory which should be protected
|
|
from userspace allocation. Keeping a user from writing to low pages
|
|
can help reduce the impact of kernel NULL pointer bugs.
|
|
|
|
For most ia64, ppc64 and x86 users with lots of address space
|
|
a value of 65536 is reasonable and should cause no problems.
|
|
On arm and other archs it should not be higher than 32768.
|
|
Programs which use vm86 functionality or have some need to map
|
|
this low address space will need CAP_SYS_RAWIO or disable this
|
|
protection by setting the value to 0.
|
|
|
|
This value can be changed after boot using the
|
|
/proc/sys/vm/mmap_min_addr tunable.
|
|
|
|
config ARCH_SUPPORTS_MEMORY_FAILURE
|
|
bool
|
|
|
|
config MEMORY_FAILURE
|
|
depends on MMU
|
|
depends on ARCH_SUPPORTS_MEMORY_FAILURE
|
|
bool "Enable recovery from hardware memory errors"
|
|
select MEMORY_ISOLATION
|
|
help
|
|
Enables code to recover from some memory failures on systems
|
|
with MCA recovery. This allows a system to continue running
|
|
even when some of its memory has uncorrected errors. This requires
|
|
special hardware support and typically ECC memory.
|
|
|
|
config HWPOISON_INJECT
|
|
tristate "HWPoison pages injector"
|
|
depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS
|
|
select PROC_PAGE_MONITOR
|
|
|
|
config NOMMU_INITIAL_TRIM_EXCESS
|
|
int "Turn on mmap() excess space trimming before booting"
|
|
depends on !MMU
|
|
default 1
|
|
help
|
|
The NOMMU mmap() frequently needs to allocate large contiguous chunks
|
|
of memory on which to store mappings, but it can only ask the system
|
|
allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
|
|
more than it requires. To deal with this, mmap() is able to trim off
|
|
the excess and return it to the allocator.
|
|
|
|
If trimming is enabled, the excess is trimmed off and returned to the
|
|
system allocator, which can cause extra fragmentation, particularly
|
|
if there are a lot of transient processes.
|
|
|
|
If trimming is disabled, the excess is kept, but not used, which for
|
|
long-term mappings means that the space is wasted.
|
|
|
|
Trimming can be dynamically controlled through a sysctl option
|
|
(/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
|
|
excess pages there must be before trimming should occur, or zero if
|
|
no trimming is to occur.
|
|
|
|
This option specifies the initial value of this option. The default
|
|
of 1 says that all excess pages should be trimmed.
|
|
|
|
See Documentation/nommu-mmap.txt for more information.
|
|
|
|
config TRANSPARENT_HUGEPAGE
|
|
bool "Transparent Hugepage Support"
|
|
depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE
|
|
select COMPACTION
|
|
help
|
|
Transparent Hugepages allows the kernel to use huge pages and
|
|
huge tlb transparently to the applications whenever possible.
|
|
This feature can improve computing performance to certain
|
|
applications by speeding up page faults during memory
|
|
allocation, by reducing the number of tlb misses and by speeding
|
|
up the pagetable walking.
|
|
|
|
If memory constrained on embedded, you may want to say N.
|
|
|
|
choice
|
|
prompt "Transparent Hugepage Support sysfs defaults"
|
|
depends on TRANSPARENT_HUGEPAGE
|
|
default TRANSPARENT_HUGEPAGE_ALWAYS
|
|
help
|
|
Selects the sysfs defaults for Transparent Hugepage Support.
|
|
|
|
config TRANSPARENT_HUGEPAGE_ALWAYS
|
|
bool "always"
|
|
help
|
|
Enabling Transparent Hugepage always, can increase the
|
|
memory footprint of applications without a guaranteed
|
|
benefit but it will work automatically for all applications.
|
|
|
|
config TRANSPARENT_HUGEPAGE_MADVISE
|
|
bool "madvise"
|
|
help
|
|
Enabling Transparent Hugepage madvise, will only provide a
|
|
performance improvement benefit to the applications using
|
|
madvise(MADV_HUGEPAGE) but it won't risk to increase the
|
|
memory footprint of applications without a guaranteed
|
|
benefit.
|
|
endchoice
|
|
|
|
config CROSS_MEMORY_ATTACH
|
|
bool "Cross Memory Support"
|
|
depends on MMU
|
|
default y
|
|
help
|
|
Enabling this option adds the system calls process_vm_readv and
|
|
process_vm_writev which allow a process with the correct privileges
|
|
to directly read from or write to to another process's address space.
|
|
See the man page for more details.
|
|
|
|
#
|
|
# UP and nommu archs use km based percpu allocator
|
|
#
|
|
config NEED_PER_CPU_KM
|
|
depends on !SMP
|
|
bool
|
|
default y
|
|
|
|
config CLEANCACHE
|
|
bool "Enable cleancache driver to cache clean pages if tmem is present"
|
|
default n
|
|
help
|
|
Cleancache can be thought of as a page-granularity victim cache
|
|
for clean pages that the kernel's pageframe replacement algorithm
|
|
(PFRA) would like to keep around, but can't since there isn't enough
|
|
memory. So when the PFRA "evicts" a page, it first attempts to use
|
|
cleancache code to put the data contained in that page into
|
|
"transcendent memory", memory that is not directly accessible or
|
|
addressable by the kernel and is of unknown and possibly
|
|
time-varying size. And when a cleancache-enabled
|
|
filesystem wishes to access a page in a file on disk, it first
|
|
checks cleancache to see if it already contains it; if it does,
|
|
the page is copied into the kernel and a disk access is avoided.
|
|
When a transcendent memory driver is available (such as zcache or
|
|
Xen transcendent memory), a significant I/O reduction
|
|
may be achieved. When none is available, all cleancache calls
|
|
are reduced to a single pointer-compare-against-NULL resulting
|
|
in a negligible performance hit.
|
|
|
|
If unsure, say Y to enable cleancache
|
|
|
|
config FRONTSWAP
|
|
bool "Enable frontswap to cache swap pages if tmem is present"
|
|
depends on SWAP
|
|
default n
|
|
help
|
|
Frontswap is so named because it can be thought of as the opposite
|
|
of a "backing" store for a swap device. The data is stored into
|
|
"transcendent memory", memory that is not directly accessible or
|
|
addressable by the kernel and is of unknown and possibly
|
|
time-varying size. When space in transcendent memory is available,
|
|
a significant swap I/O reduction may be achieved. When none is
|
|
available, all frontswap calls are reduced to a single pointer-
|
|
compare-against-NULL resulting in a negligible performance hit
|
|
and swap data is stored as normal on the matching swap device.
|
|
|
|
If unsure, say Y to enable frontswap.
|
|
|
|
config CMA
|
|
bool "Contiguous Memory Allocator"
|
|
depends on HAVE_MEMBLOCK && MMU
|
|
select MIGRATION
|
|
select MEMORY_ISOLATION
|
|
help
|
|
This enables the Contiguous Memory Allocator which allows other
|
|
subsystems to allocate big physically-contiguous blocks of memory.
|
|
CMA reserves a region of memory and allows only movable pages to
|
|
be allocated from it. This way, the kernel can use the memory for
|
|
pagecache and when a subsystem requests for contiguous area, the
|
|
allocated pages are migrated away to serve the contiguous request.
|
|
|
|
If unsure, say "n".
|
|
|
|
config CMA_DEBUG
|
|
bool "CMA debug messages (DEVELOPMENT)"
|
|
depends on DEBUG_KERNEL && CMA
|
|
help
|
|
Turns on debug messages in CMA. This produces KERN_DEBUG
|
|
messages for every CMA call as well as various messages while
|
|
processing calls such as dma_alloc_from_contiguous().
|
|
This option does not affect warning and error messages.
|
|
|
|
config ZBUD
|
|
tristate
|
|
default n
|
|
help
|
|
A special purpose allocator for storing compressed pages.
|
|
It is designed to store up to two compressed pages per physical
|
|
page. While this design limits storage density, it has simple and
|
|
deterministic reclaim properties that make it preferable to a higher
|
|
density approach when reclaim will be used.
|
|
|
|
config ZSWAP
|
|
bool "Compressed cache for swap pages (EXPERIMENTAL)"
|
|
depends on FRONTSWAP && CRYPTO=y
|
|
select CRYPTO_LZO
|
|
select ZBUD
|
|
default n
|
|
help
|
|
A lightweight compressed cache for swap pages. It takes
|
|
pages that are in the process of being swapped out and attempts to
|
|
compress them into a dynamically allocated RAM-based memory pool.
|
|
This can result in a significant I/O reduction on swap device and,
|
|
in the case where decompressing from RAM is faster that swap device
|
|
reads, can also improve workload performance.
|
|
|
|
This is marked experimental because it is a new feature (as of
|
|
v3.11) that interacts heavily with memory reclaim. While these
|
|
interactions don't cause any known issues on simple memory setups,
|
|
they have not be fully explored on the large set of potential
|
|
configurations and workloads that exist.
|
|
|
|
config MEM_SOFT_DIRTY
|
|
bool "Track memory changes"
|
|
depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY
|
|
select PROC_PAGE_MONITOR
|
|
help
|
|
This option enables memory changes tracking by introducing a
|
|
soft-dirty bit on pte-s. This bit it set when someone writes
|
|
into a page just as regular dirty bit, but unlike the latter
|
|
it can be cleared by hands.
|
|
|
|
See Documentation/vm/soft-dirty.txt for more details.
|