e9df17eb14
Much of the xHCI driver code assumes that endpoints only have one ring. Now an endpoint can have one ring per enabled stream ID, so correct that assumption. Use functions that translate the stream_id field in the URB or the DMA address of a TRB into the correct stream ring. Correct the polling loop to print out all enabled stream rings. Make the URB cancellation routine find the correct stream ring if the URB has stream_id set. Make sure the URB enqueueing routine does the same. Also correct the code that handles stalled/halted endpoints. Check that commands and registers that can take stream IDs handle them properly. That includes ringing an endpoint doorbell, resetting a stalled/halted endpoint, and setting a transfer ring dequeue pointer (since that command can set the dequeue pointer in a stream context or an endpoint context). Correct the transfer event handler to translate a TRB DMA address into the stream ring it was enqueued to. Make the code to allocate and prepare TD structures adds the TD to the right td_list for the stream ring. Make sure the code to give the first TRB in a TD to the hardware manipulates the correct stream ring. When an endpoint stalls, store the stream ID of the stream ring that stalled in the xhci_virt_ep structure. Use that instead of the stream ID in the URB, since an URB may be re-used after it is given back after a non-control endpoint stall. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
1793 lines
54 KiB
C
1793 lines
54 KiB
C
/*
|
|
* xHCI host controller driver
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
*
|
|
* Author: Sarah Sharp
|
|
* Some code borrowed from the Linux EHCI driver.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/usb.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmapool.h>
|
|
|
|
#include "xhci.h"
|
|
|
|
/*
|
|
* Allocates a generic ring segment from the ring pool, sets the dma address,
|
|
* initializes the segment to zero, and sets the private next pointer to NULL.
|
|
*
|
|
* Section 4.11.1.1:
|
|
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
|
|
*/
|
|
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
|
{
|
|
struct xhci_segment *seg;
|
|
dma_addr_t dma;
|
|
|
|
seg = kzalloc(sizeof *seg, flags);
|
|
if (!seg)
|
|
return 0;
|
|
xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
|
|
|
|
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
|
|
if (!seg->trbs) {
|
|
kfree(seg);
|
|
return 0;
|
|
}
|
|
xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
|
|
seg->trbs, (unsigned long long)dma);
|
|
|
|
memset(seg->trbs, 0, SEGMENT_SIZE);
|
|
seg->dma = dma;
|
|
seg->next = NULL;
|
|
|
|
return seg;
|
|
}
|
|
|
|
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
|
|
{
|
|
if (!seg)
|
|
return;
|
|
if (seg->trbs) {
|
|
xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
|
|
seg->trbs, (unsigned long long)seg->dma);
|
|
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
|
|
seg->trbs = NULL;
|
|
}
|
|
xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
|
|
kfree(seg);
|
|
}
|
|
|
|
/*
|
|
* Make the prev segment point to the next segment.
|
|
*
|
|
* Change the last TRB in the prev segment to be a Link TRB which points to the
|
|
* DMA address of the next segment. The caller needs to set any Link TRB
|
|
* related flags, such as End TRB, Toggle Cycle, and no snoop.
|
|
*/
|
|
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
|
|
struct xhci_segment *next, bool link_trbs)
|
|
{
|
|
u32 val;
|
|
|
|
if (!prev || !next)
|
|
return;
|
|
prev->next = next;
|
|
if (link_trbs) {
|
|
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
|
|
|
|
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
|
|
val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
|
|
val &= ~TRB_TYPE_BITMASK;
|
|
val |= TRB_TYPE(TRB_LINK);
|
|
/* Always set the chain bit with 0.95 hardware */
|
|
if (xhci_link_trb_quirk(xhci))
|
|
val |= TRB_CHAIN;
|
|
prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
|
|
}
|
|
xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
|
|
(unsigned long long)prev->dma,
|
|
(unsigned long long)next->dma);
|
|
}
|
|
|
|
/* XXX: Do we need the hcd structure in all these functions? */
|
|
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
|
{
|
|
struct xhci_segment *seg;
|
|
struct xhci_segment *first_seg;
|
|
|
|
if (!ring || !ring->first_seg)
|
|
return;
|
|
first_seg = ring->first_seg;
|
|
seg = first_seg->next;
|
|
xhci_dbg(xhci, "Freeing ring at %p\n", ring);
|
|
while (seg != first_seg) {
|
|
struct xhci_segment *next = seg->next;
|
|
xhci_segment_free(xhci, seg);
|
|
seg = next;
|
|
}
|
|
xhci_segment_free(xhci, first_seg);
|
|
ring->first_seg = NULL;
|
|
kfree(ring);
|
|
}
|
|
|
|
static void xhci_initialize_ring_info(struct xhci_ring *ring)
|
|
{
|
|
/* The ring is empty, so the enqueue pointer == dequeue pointer */
|
|
ring->enqueue = ring->first_seg->trbs;
|
|
ring->enq_seg = ring->first_seg;
|
|
ring->dequeue = ring->enqueue;
|
|
ring->deq_seg = ring->first_seg;
|
|
/* The ring is initialized to 0. The producer must write 1 to the cycle
|
|
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
|
|
* compare CCS to the cycle bit to check ownership, so CCS = 1.
|
|
*/
|
|
ring->cycle_state = 1;
|
|
/* Not necessary for new rings, but needed for re-initialized rings */
|
|
ring->enq_updates = 0;
|
|
ring->deq_updates = 0;
|
|
}
|
|
|
|
/**
|
|
* Create a new ring with zero or more segments.
|
|
*
|
|
* Link each segment together into a ring.
|
|
* Set the end flag and the cycle toggle bit on the last segment.
|
|
* See section 4.9.1 and figures 15 and 16.
|
|
*/
|
|
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
|
|
unsigned int num_segs, bool link_trbs, gfp_t flags)
|
|
{
|
|
struct xhci_ring *ring;
|
|
struct xhci_segment *prev;
|
|
|
|
ring = kzalloc(sizeof *(ring), flags);
|
|
xhci_dbg(xhci, "Allocating ring at %p\n", ring);
|
|
if (!ring)
|
|
return 0;
|
|
|
|
INIT_LIST_HEAD(&ring->td_list);
|
|
if (num_segs == 0)
|
|
return ring;
|
|
|
|
ring->first_seg = xhci_segment_alloc(xhci, flags);
|
|
if (!ring->first_seg)
|
|
goto fail;
|
|
num_segs--;
|
|
|
|
prev = ring->first_seg;
|
|
while (num_segs > 0) {
|
|
struct xhci_segment *next;
|
|
|
|
next = xhci_segment_alloc(xhci, flags);
|
|
if (!next)
|
|
goto fail;
|
|
xhci_link_segments(xhci, prev, next, link_trbs);
|
|
|
|
prev = next;
|
|
num_segs--;
|
|
}
|
|
xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
|
|
|
|
if (link_trbs) {
|
|
/* See section 4.9.2.1 and 6.4.4.1 */
|
|
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
|
|
xhci_dbg(xhci, "Wrote link toggle flag to"
|
|
" segment %p (virtual), 0x%llx (DMA)\n",
|
|
prev, (unsigned long long)prev->dma);
|
|
}
|
|
xhci_initialize_ring_info(ring);
|
|
return ring;
|
|
|
|
fail:
|
|
xhci_ring_free(xhci, ring);
|
|
return 0;
|
|
}
|
|
|
|
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
unsigned int ep_index)
|
|
{
|
|
int rings_cached;
|
|
|
|
rings_cached = virt_dev->num_rings_cached;
|
|
if (rings_cached < XHCI_MAX_RINGS_CACHED) {
|
|
virt_dev->num_rings_cached++;
|
|
rings_cached = virt_dev->num_rings_cached;
|
|
virt_dev->ring_cache[rings_cached] =
|
|
virt_dev->eps[ep_index].ring;
|
|
xhci_dbg(xhci, "Cached old ring, "
|
|
"%d ring%s cached\n",
|
|
rings_cached,
|
|
(rings_cached > 1) ? "s" : "");
|
|
} else {
|
|
xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
|
|
xhci_dbg(xhci, "Ring cache full (%d rings), "
|
|
"freeing ring\n",
|
|
virt_dev->num_rings_cached);
|
|
}
|
|
virt_dev->eps[ep_index].ring = NULL;
|
|
}
|
|
|
|
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
|
|
* pointers to the beginning of the ring.
|
|
*/
|
|
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
|
|
struct xhci_ring *ring)
|
|
{
|
|
struct xhci_segment *seg = ring->first_seg;
|
|
do {
|
|
memset(seg->trbs, 0,
|
|
sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
|
|
/* All endpoint rings have link TRBs */
|
|
xhci_link_segments(xhci, seg, seg->next, 1);
|
|
seg = seg->next;
|
|
} while (seg != ring->first_seg);
|
|
xhci_initialize_ring_info(ring);
|
|
/* td list should be empty since all URBs have been cancelled,
|
|
* but just in case...
|
|
*/
|
|
INIT_LIST_HEAD(&ring->td_list);
|
|
}
|
|
|
|
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
|
|
|
|
struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
|
|
int type, gfp_t flags)
|
|
{
|
|
struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
|
|
if (!ctx)
|
|
return NULL;
|
|
|
|
BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
|
|
ctx->type = type;
|
|
ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
|
|
if (type == XHCI_CTX_TYPE_INPUT)
|
|
ctx->size += CTX_SIZE(xhci->hcc_params);
|
|
|
|
ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
|
|
memset(ctx->bytes, 0, ctx->size);
|
|
return ctx;
|
|
}
|
|
|
|
void xhci_free_container_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
|
|
kfree(ctx);
|
|
}
|
|
|
|
struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *ctx)
|
|
{
|
|
BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
|
|
return (struct xhci_input_control_ctx *)ctx->bytes;
|
|
}
|
|
|
|
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *ctx)
|
|
{
|
|
if (ctx->type == XHCI_CTX_TYPE_DEVICE)
|
|
return (struct xhci_slot_ctx *)ctx->bytes;
|
|
|
|
return (struct xhci_slot_ctx *)
|
|
(ctx->bytes + CTX_SIZE(xhci->hcc_params));
|
|
}
|
|
|
|
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *ctx,
|
|
unsigned int ep_index)
|
|
{
|
|
/* increment ep index by offset of start of ep ctx array */
|
|
ep_index++;
|
|
if (ctx->type == XHCI_CTX_TYPE_INPUT)
|
|
ep_index++;
|
|
|
|
return (struct xhci_ep_ctx *)
|
|
(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
|
|
}
|
|
|
|
|
|
/***************** Streams structures manipulation *************************/
|
|
|
|
void xhci_free_stream_ctx(struct xhci_hcd *xhci,
|
|
unsigned int num_stream_ctxs,
|
|
struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
|
|
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
|
|
pci_free_consistent(pdev,
|
|
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
|
|
stream_ctx, dma);
|
|
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
|
|
return dma_pool_free(xhci->small_streams_pool,
|
|
stream_ctx, dma);
|
|
else
|
|
return dma_pool_free(xhci->medium_streams_pool,
|
|
stream_ctx, dma);
|
|
}
|
|
|
|
/*
|
|
* The stream context array for each endpoint with bulk streams enabled can
|
|
* vary in size, based on:
|
|
* - how many streams the endpoint supports,
|
|
* - the maximum primary stream array size the host controller supports,
|
|
* - and how many streams the device driver asks for.
|
|
*
|
|
* The stream context array must be a power of 2, and can be as small as
|
|
* 64 bytes or as large as 1MB.
|
|
*/
|
|
struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
|
|
unsigned int num_stream_ctxs, dma_addr_t *dma,
|
|
gfp_t mem_flags)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
|
|
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
|
|
return pci_alloc_consistent(pdev,
|
|
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
|
|
dma);
|
|
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
|
|
return dma_pool_alloc(xhci->small_streams_pool,
|
|
mem_flags, dma);
|
|
else
|
|
return dma_pool_alloc(xhci->medium_streams_pool,
|
|
mem_flags, dma);
|
|
}
|
|
|
|
struct xhci_ring *xhci_dma_to_transfer_ring(
|
|
struct xhci_virt_ep *ep,
|
|
u64 address)
|
|
{
|
|
if (ep->ep_state & EP_HAS_STREAMS)
|
|
return radix_tree_lookup(&ep->stream_info->trb_address_map,
|
|
address >> SEGMENT_SHIFT);
|
|
return ep->ring;
|
|
}
|
|
|
|
/* Only use this when you know stream_info is valid */
|
|
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
|
static struct xhci_ring *dma_to_stream_ring(
|
|
struct xhci_stream_info *stream_info,
|
|
u64 address)
|
|
{
|
|
return radix_tree_lookup(&stream_info->trb_address_map,
|
|
address >> SEGMENT_SHIFT);
|
|
}
|
|
#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
|
|
|
|
struct xhci_ring *xhci_stream_id_to_ring(
|
|
struct xhci_virt_device *dev,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
struct xhci_virt_ep *ep = &dev->eps[ep_index];
|
|
|
|
if (stream_id == 0)
|
|
return ep->ring;
|
|
if (!ep->stream_info)
|
|
return NULL;
|
|
|
|
if (stream_id > ep->stream_info->num_streams)
|
|
return NULL;
|
|
return ep->stream_info->stream_rings[stream_id];
|
|
}
|
|
|
|
struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
/* Common case: no streams */
|
|
if (!(ep->ep_state & EP_HAS_STREAMS))
|
|
return ep->ring;
|
|
|
|
if (stream_id == 0) {
|
|
xhci_warn(xhci,
|
|
"WARN: Slot ID %u, ep index %u has streams, "
|
|
"but URB has no stream ID.\n",
|
|
slot_id, ep_index);
|
|
return NULL;
|
|
}
|
|
|
|
if (stream_id < ep->stream_info->num_streams)
|
|
return ep->stream_info->stream_rings[stream_id];
|
|
|
|
xhci_warn(xhci,
|
|
"WARN: Slot ID %u, ep index %u has "
|
|
"stream IDs 1 to %u allocated, "
|
|
"but stream ID %u is requested.\n",
|
|
slot_id, ep_index,
|
|
ep->stream_info->num_streams - 1,
|
|
stream_id);
|
|
return NULL;
|
|
}
|
|
|
|
/* Get the right ring for the given URB.
|
|
* If the endpoint supports streams, boundary check the URB's stream ID.
|
|
* If the endpoint doesn't support streams, return the singular endpoint ring.
|
|
*/
|
|
struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
|
|
struct urb *urb)
|
|
{
|
|
return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
|
|
xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
|
|
}
|
|
|
|
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
|
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
|
|
unsigned int num_streams,
|
|
struct xhci_stream_info *stream_info)
|
|
{
|
|
u32 cur_stream;
|
|
struct xhci_ring *cur_ring;
|
|
u64 addr;
|
|
|
|
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
|
struct xhci_ring *mapped_ring;
|
|
int trb_size = sizeof(union xhci_trb);
|
|
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
for (addr = cur_ring->first_seg->dma;
|
|
addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
|
|
addr += trb_size) {
|
|
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
|
if (cur_ring != mapped_ring) {
|
|
xhci_warn(xhci, "WARN: DMA address 0x%08llx "
|
|
"didn't map to stream ID %u; "
|
|
"mapped to ring %p\n",
|
|
(unsigned long long) addr,
|
|
cur_stream,
|
|
mapped_ring);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
/* One TRB after the end of the ring segment shouldn't return a
|
|
* pointer to the current ring (although it may be a part of a
|
|
* different ring).
|
|
*/
|
|
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
|
if (mapped_ring != cur_ring) {
|
|
/* One TRB before should also fail */
|
|
addr = cur_ring->first_seg->dma - trb_size;
|
|
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
|
}
|
|
if (mapped_ring == cur_ring) {
|
|
xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
|
|
"mapped to valid stream ID %u; "
|
|
"mapped ring = %p\n",
|
|
(unsigned long long) addr,
|
|
cur_stream,
|
|
mapped_ring);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
|
|
|
|
/*
|
|
* Change an endpoint's internal structure so it supports stream IDs. The
|
|
* number of requested streams includes stream 0, which cannot be used by device
|
|
* drivers.
|
|
*
|
|
* The number of stream contexts in the stream context array may be bigger than
|
|
* the number of streams the driver wants to use. This is because the number of
|
|
* stream context array entries must be a power of two.
|
|
*
|
|
* We need a radix tree for mapping physical addresses of TRBs to which stream
|
|
* ID they belong to. We need to do this because the host controller won't tell
|
|
* us which stream ring the TRB came from. We could store the stream ID in an
|
|
* event data TRB, but that doesn't help us for the cancellation case, since the
|
|
* endpoint may stop before it reaches that event data TRB.
|
|
*
|
|
* The radix tree maps the upper portion of the TRB DMA address to a ring
|
|
* segment that has the same upper portion of DMA addresses. For example, say I
|
|
* have segments of size 1KB, that are always 64-byte aligned. A segment may
|
|
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
|
|
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
|
|
* pass the radix tree a key to get the right stream ID:
|
|
*
|
|
* 0x10c90fff >> 10 = 0x43243
|
|
* 0x10c912c0 >> 10 = 0x43244
|
|
* 0x10c91400 >> 10 = 0x43245
|
|
*
|
|
* Obviously, only those TRBs with DMA addresses that are within the segment
|
|
* will make the radix tree return the stream ID for that ring.
|
|
*
|
|
* Caveats for the radix tree:
|
|
*
|
|
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
|
|
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
|
|
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
|
|
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
|
|
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
|
|
* extended systems (where the DMA address can be bigger than 32-bits),
|
|
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
|
|
*/
|
|
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
|
|
unsigned int num_stream_ctxs,
|
|
unsigned int num_streams, gfp_t mem_flags)
|
|
{
|
|
struct xhci_stream_info *stream_info;
|
|
u32 cur_stream;
|
|
struct xhci_ring *cur_ring;
|
|
unsigned long key;
|
|
u64 addr;
|
|
int ret;
|
|
|
|
xhci_dbg(xhci, "Allocating %u streams and %u "
|
|
"stream context array entries.\n",
|
|
num_streams, num_stream_ctxs);
|
|
if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
|
|
xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
|
|
return NULL;
|
|
}
|
|
xhci->cmd_ring_reserved_trbs++;
|
|
|
|
stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
|
|
if (!stream_info)
|
|
goto cleanup_trbs;
|
|
|
|
stream_info->num_streams = num_streams;
|
|
stream_info->num_stream_ctxs = num_stream_ctxs;
|
|
|
|
/* Initialize the array of virtual pointers to stream rings. */
|
|
stream_info->stream_rings = kzalloc(
|
|
sizeof(struct xhci_ring *)*num_streams,
|
|
mem_flags);
|
|
if (!stream_info->stream_rings)
|
|
goto cleanup_info;
|
|
|
|
/* Initialize the array of DMA addresses for stream rings for the HW. */
|
|
stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
|
|
num_stream_ctxs, &stream_info->ctx_array_dma,
|
|
mem_flags);
|
|
if (!stream_info->stream_ctx_array)
|
|
goto cleanup_ctx;
|
|
memset(stream_info->stream_ctx_array, 0,
|
|
sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
|
|
|
|
/* Allocate everything needed to free the stream rings later */
|
|
stream_info->free_streams_command =
|
|
xhci_alloc_command(xhci, true, true, mem_flags);
|
|
if (!stream_info->free_streams_command)
|
|
goto cleanup_ctx;
|
|
|
|
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
|
|
|
|
/* Allocate rings for all the streams that the driver will use,
|
|
* and add their segment DMA addresses to the radix tree.
|
|
* Stream 0 is reserved.
|
|
*/
|
|
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
|
stream_info->stream_rings[cur_stream] =
|
|
xhci_ring_alloc(xhci, 1, true, mem_flags);
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
if (!cur_ring)
|
|
goto cleanup_rings;
|
|
cur_ring->stream_id = cur_stream;
|
|
/* Set deq ptr, cycle bit, and stream context type */
|
|
addr = cur_ring->first_seg->dma |
|
|
SCT_FOR_CTX(SCT_PRI_TR) |
|
|
cur_ring->cycle_state;
|
|
stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
|
|
xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
|
|
cur_stream, (unsigned long long) addr);
|
|
|
|
key = (unsigned long)
|
|
(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
|
|
ret = radix_tree_insert(&stream_info->trb_address_map,
|
|
key, cur_ring);
|
|
if (ret) {
|
|
xhci_ring_free(xhci, cur_ring);
|
|
stream_info->stream_rings[cur_stream] = NULL;
|
|
goto cleanup_rings;
|
|
}
|
|
}
|
|
/* Leave the other unused stream ring pointers in the stream context
|
|
* array initialized to zero. This will cause the xHC to give us an
|
|
* error if the device asks for a stream ID we don't have setup (if it
|
|
* was any other way, the host controller would assume the ring is
|
|
* "empty" and wait forever for data to be queued to that stream ID).
|
|
*/
|
|
#if XHCI_DEBUG
|
|
/* Do a little test on the radix tree to make sure it returns the
|
|
* correct values.
|
|
*/
|
|
if (xhci_test_radix_tree(xhci, num_streams, stream_info))
|
|
goto cleanup_rings;
|
|
#endif
|
|
|
|
return stream_info;
|
|
|
|
cleanup_rings:
|
|
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
if (cur_ring) {
|
|
addr = cur_ring->first_seg->dma;
|
|
radix_tree_delete(&stream_info->trb_address_map,
|
|
addr >> SEGMENT_SHIFT);
|
|
xhci_ring_free(xhci, cur_ring);
|
|
stream_info->stream_rings[cur_stream] = NULL;
|
|
}
|
|
}
|
|
xhci_free_command(xhci, stream_info->free_streams_command);
|
|
cleanup_ctx:
|
|
kfree(stream_info->stream_rings);
|
|
cleanup_info:
|
|
kfree(stream_info);
|
|
cleanup_trbs:
|
|
xhci->cmd_ring_reserved_trbs--;
|
|
return NULL;
|
|
}
|
|
/*
|
|
* Sets the MaxPStreams field and the Linear Stream Array field.
|
|
* Sets the dequeue pointer to the stream context array.
|
|
*/
|
|
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_ep_ctx *ep_ctx,
|
|
struct xhci_stream_info *stream_info)
|
|
{
|
|
u32 max_primary_streams;
|
|
/* MaxPStreams is the number of stream context array entries, not the
|
|
* number we're actually using. Must be in 2^(MaxPstreams + 1) format.
|
|
* fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
|
|
*/
|
|
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
|
|
xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
|
|
1 << (max_primary_streams + 1));
|
|
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
|
|
ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
|
|
ep_ctx->ep_info |= EP_HAS_LSA;
|
|
ep_ctx->deq = stream_info->ctx_array_dma;
|
|
}
|
|
|
|
/*
|
|
* Sets the MaxPStreams field and the Linear Stream Array field to 0.
|
|
* Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
|
|
* not at the beginning of the ring).
|
|
*/
|
|
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
|
|
struct xhci_ep_ctx *ep_ctx,
|
|
struct xhci_virt_ep *ep)
|
|
{
|
|
dma_addr_t addr;
|
|
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
|
|
ep_ctx->ep_info &= ~EP_HAS_LSA;
|
|
addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
|
|
ep_ctx->deq = addr | ep->ring->cycle_state;
|
|
}
|
|
|
|
/* Frees all stream contexts associated with the endpoint,
|
|
*
|
|
* Caller should fix the endpoint context streams fields.
|
|
*/
|
|
void xhci_free_stream_info(struct xhci_hcd *xhci,
|
|
struct xhci_stream_info *stream_info)
|
|
{
|
|
int cur_stream;
|
|
struct xhci_ring *cur_ring;
|
|
dma_addr_t addr;
|
|
|
|
if (!stream_info)
|
|
return;
|
|
|
|
for (cur_stream = 1; cur_stream < stream_info->num_streams;
|
|
cur_stream++) {
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
if (cur_ring) {
|
|
addr = cur_ring->first_seg->dma;
|
|
radix_tree_delete(&stream_info->trb_address_map,
|
|
addr >> SEGMENT_SHIFT);
|
|
xhci_ring_free(xhci, cur_ring);
|
|
stream_info->stream_rings[cur_stream] = NULL;
|
|
}
|
|
}
|
|
xhci_free_command(xhci, stream_info->free_streams_command);
|
|
xhci->cmd_ring_reserved_trbs--;
|
|
if (stream_info->stream_ctx_array)
|
|
xhci_free_stream_ctx(xhci,
|
|
stream_info->num_stream_ctxs,
|
|
stream_info->stream_ctx_array,
|
|
stream_info->ctx_array_dma);
|
|
|
|
if (stream_info)
|
|
kfree(stream_info->stream_rings);
|
|
kfree(stream_info);
|
|
}
|
|
|
|
|
|
/***************** Device context manipulation *************************/
|
|
|
|
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
|
|
struct xhci_virt_ep *ep)
|
|
{
|
|
init_timer(&ep->stop_cmd_timer);
|
|
ep->stop_cmd_timer.data = (unsigned long) ep;
|
|
ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
|
|
ep->xhci = xhci;
|
|
}
|
|
|
|
/* All the xhci_tds in the ring's TD list should be freed at this point */
|
|
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *dev;
|
|
int i;
|
|
|
|
/* Slot ID 0 is reserved */
|
|
if (slot_id == 0 || !xhci->devs[slot_id])
|
|
return;
|
|
|
|
dev = xhci->devs[slot_id];
|
|
xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
|
|
if (!dev)
|
|
return;
|
|
|
|
for (i = 0; i < 31; ++i) {
|
|
if (dev->eps[i].ring)
|
|
xhci_ring_free(xhci, dev->eps[i].ring);
|
|
if (dev->eps[i].stream_info)
|
|
xhci_free_stream_info(xhci,
|
|
dev->eps[i].stream_info);
|
|
}
|
|
|
|
if (dev->ring_cache) {
|
|
for (i = 0; i < dev->num_rings_cached; i++)
|
|
xhci_ring_free(xhci, dev->ring_cache[i]);
|
|
kfree(dev->ring_cache);
|
|
}
|
|
|
|
if (dev->in_ctx)
|
|
xhci_free_container_ctx(xhci, dev->in_ctx);
|
|
if (dev->out_ctx)
|
|
xhci_free_container_ctx(xhci, dev->out_ctx);
|
|
|
|
kfree(xhci->devs[slot_id]);
|
|
xhci->devs[slot_id] = 0;
|
|
}
|
|
|
|
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
|
|
struct usb_device *udev, gfp_t flags)
|
|
{
|
|
struct xhci_virt_device *dev;
|
|
int i;
|
|
|
|
/* Slot ID 0 is reserved */
|
|
if (slot_id == 0 || xhci->devs[slot_id]) {
|
|
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
|
|
return 0;
|
|
}
|
|
|
|
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
|
|
if (!xhci->devs[slot_id])
|
|
return 0;
|
|
dev = xhci->devs[slot_id];
|
|
|
|
/* Allocate the (output) device context that will be used in the HC. */
|
|
dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
|
|
if (!dev->out_ctx)
|
|
goto fail;
|
|
|
|
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
|
|
(unsigned long long)dev->out_ctx->dma);
|
|
|
|
/* Allocate the (input) device context for address device command */
|
|
dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
|
|
if (!dev->in_ctx)
|
|
goto fail;
|
|
|
|
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
|
|
(unsigned long long)dev->in_ctx->dma);
|
|
|
|
/* Initialize the cancellation list and watchdog timers for each ep */
|
|
for (i = 0; i < 31; i++) {
|
|
xhci_init_endpoint_timer(xhci, &dev->eps[i]);
|
|
INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
|
|
}
|
|
|
|
/* Allocate endpoint 0 ring */
|
|
dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
|
|
if (!dev->eps[0].ring)
|
|
goto fail;
|
|
|
|
/* Allocate pointers to the ring cache */
|
|
dev->ring_cache = kzalloc(
|
|
sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
|
|
flags);
|
|
if (!dev->ring_cache)
|
|
goto fail;
|
|
dev->num_rings_cached = 0;
|
|
|
|
init_completion(&dev->cmd_completion);
|
|
INIT_LIST_HEAD(&dev->cmd_list);
|
|
|
|
/* Point to output device context in dcbaa. */
|
|
xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
|
|
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
|
|
slot_id,
|
|
&xhci->dcbaa->dev_context_ptrs[slot_id],
|
|
(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
|
|
|
|
return 1;
|
|
fail:
|
|
xhci_free_virt_device(xhci, slot_id);
|
|
return 0;
|
|
}
|
|
|
|
/* Setup an xHCI virtual device for a Set Address command */
|
|
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
|
|
{
|
|
struct xhci_virt_device *dev;
|
|
struct xhci_ep_ctx *ep0_ctx;
|
|
struct usb_device *top_dev;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
|
|
dev = xhci->devs[udev->slot_id];
|
|
/* Slot ID 0 is reserved */
|
|
if (udev->slot_id == 0 || !dev) {
|
|
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
|
|
udev->slot_id);
|
|
return -EINVAL;
|
|
}
|
|
ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
|
|
|
|
/* 2) New slot context and endpoint 0 context are valid*/
|
|
ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
|
|
|
|
/* 3) Only the control endpoint is valid - one endpoint context */
|
|
slot_ctx->dev_info |= LAST_CTX(1);
|
|
|
|
slot_ctx->dev_info |= (u32) udev->route;
|
|
switch (udev->speed) {
|
|
case USB_SPEED_SUPER:
|
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
|
|
break;
|
|
case USB_SPEED_LOW:
|
|
slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
|
|
break;
|
|
case USB_SPEED_WIRELESS:
|
|
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
/* Speed was set earlier, this shouldn't happen. */
|
|
BUG();
|
|
}
|
|
/* Find the root hub port this device is under */
|
|
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
|
|
top_dev = top_dev->parent)
|
|
/* Found device below root hub */;
|
|
slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
|
|
xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
|
|
|
|
/* Is this a LS/FS device under a HS hub? */
|
|
if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
|
|
udev->tt) {
|
|
slot_ctx->tt_info = udev->tt->hub->slot_id;
|
|
slot_ctx->tt_info |= udev->ttport << 8;
|
|
if (udev->tt->multi)
|
|
slot_ctx->dev_info |= DEV_MTT;
|
|
}
|
|
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
|
|
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
|
|
|
|
/* Step 4 - ring already allocated */
|
|
/* Step 5 */
|
|
ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
|
|
/*
|
|
* XXX: Not sure about wireless USB devices.
|
|
*/
|
|
switch (udev->speed) {
|
|
case USB_SPEED_SUPER:
|
|
ep0_ctx->ep_info2 |= MAX_PACKET(512);
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
/* USB core guesses at a 64-byte max packet first for FS devices */
|
|
case USB_SPEED_FULL:
|
|
ep0_ctx->ep_info2 |= MAX_PACKET(64);
|
|
break;
|
|
case USB_SPEED_LOW:
|
|
ep0_ctx->ep_info2 |= MAX_PACKET(8);
|
|
break;
|
|
case USB_SPEED_WIRELESS:
|
|
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
/* New speed? */
|
|
BUG();
|
|
}
|
|
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
|
|
ep0_ctx->ep_info2 |= MAX_BURST(0);
|
|
ep0_ctx->ep_info2 |= ERROR_COUNT(3);
|
|
|
|
ep0_ctx->deq =
|
|
dev->eps[0].ring->first_seg->dma;
|
|
ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
|
|
|
|
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the polling or NAK interval.
|
|
*
|
|
* The polling interval is expressed in "microframes". If xHCI's Interval field
|
|
* is set to N, it will service the endpoint every 2^(Interval)*125us.
|
|
*
|
|
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
|
|
* is set to 0.
|
|
*/
|
|
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
unsigned int interval = 0;
|
|
|
|
switch (udev->speed) {
|
|
case USB_SPEED_HIGH:
|
|
/* Max NAK rate */
|
|
if (usb_endpoint_xfer_control(&ep->desc) ||
|
|
usb_endpoint_xfer_bulk(&ep->desc))
|
|
interval = ep->desc.bInterval;
|
|
/* Fall through - SS and HS isoc/int have same decoding */
|
|
case USB_SPEED_SUPER:
|
|
if (usb_endpoint_xfer_int(&ep->desc) ||
|
|
usb_endpoint_xfer_isoc(&ep->desc)) {
|
|
if (ep->desc.bInterval == 0)
|
|
interval = 0;
|
|
else
|
|
interval = ep->desc.bInterval - 1;
|
|
if (interval > 15)
|
|
interval = 15;
|
|
if (interval != ep->desc.bInterval + 1)
|
|
dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
|
|
ep->desc.bEndpointAddress, 1 << interval);
|
|
}
|
|
break;
|
|
/* Convert bInterval (in 1-255 frames) to microframes and round down to
|
|
* nearest power of 2.
|
|
*/
|
|
case USB_SPEED_FULL:
|
|
case USB_SPEED_LOW:
|
|
if (usb_endpoint_xfer_int(&ep->desc) ||
|
|
usb_endpoint_xfer_isoc(&ep->desc)) {
|
|
interval = fls(8*ep->desc.bInterval) - 1;
|
|
if (interval > 10)
|
|
interval = 10;
|
|
if (interval < 3)
|
|
interval = 3;
|
|
if ((1 << interval) != 8*ep->desc.bInterval)
|
|
dev_warn(&udev->dev,
|
|
"ep %#x - rounding interval"
|
|
" to %d microframes, "
|
|
"ep desc says %d microframes\n",
|
|
ep->desc.bEndpointAddress,
|
|
1 << interval,
|
|
8*ep->desc.bInterval);
|
|
}
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
return EP_INTERVAL(interval);
|
|
}
|
|
|
|
/* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
|
|
* High speed endpoint descriptors can define "the number of additional
|
|
* transaction opportunities per microframe", but that goes in the Max Burst
|
|
* endpoint context field.
|
|
*/
|
|
static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
if (udev->speed != USB_SPEED_SUPER || !ep->ss_ep_comp)
|
|
return 0;
|
|
return ep->ss_ep_comp->desc.bmAttributes;
|
|
}
|
|
|
|
static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
int in;
|
|
u32 type;
|
|
|
|
in = usb_endpoint_dir_in(&ep->desc);
|
|
if (usb_endpoint_xfer_control(&ep->desc)) {
|
|
type = EP_TYPE(CTRL_EP);
|
|
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
|
|
if (in)
|
|
type = EP_TYPE(BULK_IN_EP);
|
|
else
|
|
type = EP_TYPE(BULK_OUT_EP);
|
|
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
|
|
if (in)
|
|
type = EP_TYPE(ISOC_IN_EP);
|
|
else
|
|
type = EP_TYPE(ISOC_OUT_EP);
|
|
} else if (usb_endpoint_xfer_int(&ep->desc)) {
|
|
if (in)
|
|
type = EP_TYPE(INT_IN_EP);
|
|
else
|
|
type = EP_TYPE(INT_OUT_EP);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/* Return the maximum endpoint service interval time (ESIT) payload.
|
|
* Basically, this is the maxpacket size, multiplied by the burst size
|
|
* and mult size.
|
|
*/
|
|
static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
int max_burst;
|
|
int max_packet;
|
|
|
|
/* Only applies for interrupt or isochronous endpoints */
|
|
if (usb_endpoint_xfer_control(&ep->desc) ||
|
|
usb_endpoint_xfer_bulk(&ep->desc))
|
|
return 0;
|
|
|
|
if (udev->speed == USB_SPEED_SUPER) {
|
|
if (ep->ss_ep_comp)
|
|
return ep->ss_ep_comp->desc.wBytesPerInterval;
|
|
xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
|
|
/* Assume no bursts, no multiple opportunities to send. */
|
|
return ep->desc.wMaxPacketSize;
|
|
}
|
|
|
|
max_packet = ep->desc.wMaxPacketSize & 0x3ff;
|
|
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
|
/* A 0 in max burst means 1 transfer per ESIT */
|
|
return max_packet * (max_burst + 1);
|
|
}
|
|
|
|
/* Set up an endpoint with one ring segment. Do not allocate stream rings.
|
|
* Drivers will have to call usb_alloc_streams() to do that.
|
|
*/
|
|
int xhci_endpoint_init(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
struct usb_device *udev,
|
|
struct usb_host_endpoint *ep,
|
|
gfp_t mem_flags)
|
|
{
|
|
unsigned int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int max_packet;
|
|
unsigned int max_burst;
|
|
u32 max_esit_payload;
|
|
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
|
|
|
/* Set up the endpoint ring */
|
|
virt_dev->eps[ep_index].new_ring =
|
|
xhci_ring_alloc(xhci, 1, true, mem_flags);
|
|
if (!virt_dev->eps[ep_index].new_ring) {
|
|
/* Attempt to use the ring cache */
|
|
if (virt_dev->num_rings_cached == 0)
|
|
return -ENOMEM;
|
|
virt_dev->eps[ep_index].new_ring =
|
|
virt_dev->ring_cache[virt_dev->num_rings_cached];
|
|
virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
|
|
virt_dev->num_rings_cached--;
|
|
xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
|
|
}
|
|
ep_ring = virt_dev->eps[ep_index].new_ring;
|
|
ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
|
|
|
|
ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
|
|
ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
|
|
|
|
/* FIXME dig Mult and streams info out of ep companion desc */
|
|
|
|
/* Allow 3 retries for everything but isoc;
|
|
* error count = 0 means infinite retries.
|
|
*/
|
|
if (!usb_endpoint_xfer_isoc(&ep->desc))
|
|
ep_ctx->ep_info2 = ERROR_COUNT(3);
|
|
else
|
|
ep_ctx->ep_info2 = ERROR_COUNT(1);
|
|
|
|
ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
|
|
|
|
/* Set the max packet size and max burst */
|
|
switch (udev->speed) {
|
|
case USB_SPEED_SUPER:
|
|
max_packet = ep->desc.wMaxPacketSize;
|
|
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
|
/* dig out max burst from ep companion desc */
|
|
if (!ep->ss_ep_comp) {
|
|
xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
|
|
max_packet = 0;
|
|
} else {
|
|
max_packet = ep->ss_ep_comp->desc.bMaxBurst;
|
|
}
|
|
ep_ctx->ep_info2 |= MAX_BURST(max_packet);
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
/* bits 11:12 specify the number of additional transaction
|
|
* opportunities per microframe (USB 2.0, section 9.6.6)
|
|
*/
|
|
if (usb_endpoint_xfer_isoc(&ep->desc) ||
|
|
usb_endpoint_xfer_int(&ep->desc)) {
|
|
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
|
ep_ctx->ep_info2 |= MAX_BURST(max_burst);
|
|
}
|
|
/* Fall through */
|
|
case USB_SPEED_FULL:
|
|
case USB_SPEED_LOW:
|
|
max_packet = ep->desc.wMaxPacketSize & 0x3ff;
|
|
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
|
|
ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
|
|
|
|
/*
|
|
* XXX no idea how to calculate the average TRB buffer length for bulk
|
|
* endpoints, as the driver gives us no clue how big each scatter gather
|
|
* list entry (or buffer) is going to be.
|
|
*
|
|
* For isochronous and interrupt endpoints, we set it to the max
|
|
* available, until we have new API in the USB core to allow drivers to
|
|
* declare how much bandwidth they actually need.
|
|
*
|
|
* Normally, it would be calculated by taking the total of the buffer
|
|
* lengths in the TD and then dividing by the number of TRBs in a TD,
|
|
* including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
|
|
* use Event Data TRBs, and we don't chain in a link TRB on short
|
|
* transfers, we're basically dividing by 1.
|
|
*/
|
|
ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
|
|
|
|
/* FIXME Debug endpoint context */
|
|
return 0;
|
|
}
|
|
|
|
void xhci_endpoint_zero(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
unsigned int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
|
|
|
ep_ctx->ep_info = 0;
|
|
ep_ctx->ep_info2 = 0;
|
|
ep_ctx->deq = 0;
|
|
ep_ctx->tx_info = 0;
|
|
/* Don't free the endpoint ring until the set interface or configuration
|
|
* request succeeds.
|
|
*/
|
|
}
|
|
|
|
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
|
|
* Useful when you want to change one particular aspect of the endpoint and then
|
|
* issue a configure endpoint command.
|
|
*/
|
|
void xhci_endpoint_copy(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *in_ctx,
|
|
struct xhci_container_ctx *out_ctx,
|
|
unsigned int ep_index)
|
|
{
|
|
struct xhci_ep_ctx *out_ep_ctx;
|
|
struct xhci_ep_ctx *in_ep_ctx;
|
|
|
|
out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
|
in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
|
|
|
|
in_ep_ctx->ep_info = out_ep_ctx->ep_info;
|
|
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
|
|
in_ep_ctx->deq = out_ep_ctx->deq;
|
|
in_ep_ctx->tx_info = out_ep_ctx->tx_info;
|
|
}
|
|
|
|
/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
|
|
* Useful when you want to change one particular aspect of the endpoint and then
|
|
* issue a configure endpoint command. Only the context entries field matters,
|
|
* but we'll copy the whole thing anyway.
|
|
*/
|
|
void xhci_slot_copy(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *in_ctx,
|
|
struct xhci_container_ctx *out_ctx)
|
|
{
|
|
struct xhci_slot_ctx *in_slot_ctx;
|
|
struct xhci_slot_ctx *out_slot_ctx;
|
|
|
|
in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
|
|
out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
|
|
|
|
in_slot_ctx->dev_info = out_slot_ctx->dev_info;
|
|
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
|
|
in_slot_ctx->tt_info = out_slot_ctx->tt_info;
|
|
in_slot_ctx->dev_state = out_slot_ctx->dev_state;
|
|
}
|
|
|
|
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
|
|
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
|
{
|
|
int i;
|
|
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
|
int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
|
|
|
xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
|
|
|
|
if (!num_sp)
|
|
return 0;
|
|
|
|
xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
|
|
if (!xhci->scratchpad)
|
|
goto fail_sp;
|
|
|
|
xhci->scratchpad->sp_array =
|
|
pci_alloc_consistent(to_pci_dev(dev),
|
|
num_sp * sizeof(u64),
|
|
&xhci->scratchpad->sp_dma);
|
|
if (!xhci->scratchpad->sp_array)
|
|
goto fail_sp2;
|
|
|
|
xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
|
|
if (!xhci->scratchpad->sp_buffers)
|
|
goto fail_sp3;
|
|
|
|
xhci->scratchpad->sp_dma_buffers =
|
|
kzalloc(sizeof(dma_addr_t) * num_sp, flags);
|
|
|
|
if (!xhci->scratchpad->sp_dma_buffers)
|
|
goto fail_sp4;
|
|
|
|
xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
|
|
for (i = 0; i < num_sp; i++) {
|
|
dma_addr_t dma;
|
|
void *buf = pci_alloc_consistent(to_pci_dev(dev),
|
|
xhci->page_size, &dma);
|
|
if (!buf)
|
|
goto fail_sp5;
|
|
|
|
xhci->scratchpad->sp_array[i] = dma;
|
|
xhci->scratchpad->sp_buffers[i] = buf;
|
|
xhci->scratchpad->sp_dma_buffers[i] = dma;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_sp5:
|
|
for (i = i - 1; i >= 0; i--) {
|
|
pci_free_consistent(to_pci_dev(dev), xhci->page_size,
|
|
xhci->scratchpad->sp_buffers[i],
|
|
xhci->scratchpad->sp_dma_buffers[i]);
|
|
}
|
|
kfree(xhci->scratchpad->sp_dma_buffers);
|
|
|
|
fail_sp4:
|
|
kfree(xhci->scratchpad->sp_buffers);
|
|
|
|
fail_sp3:
|
|
pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
|
|
xhci->scratchpad->sp_array,
|
|
xhci->scratchpad->sp_dma);
|
|
|
|
fail_sp2:
|
|
kfree(xhci->scratchpad);
|
|
xhci->scratchpad = NULL;
|
|
|
|
fail_sp:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void scratchpad_free(struct xhci_hcd *xhci)
|
|
{
|
|
int num_sp;
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
|
|
if (!xhci->scratchpad)
|
|
return;
|
|
|
|
num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
|
|
|
for (i = 0; i < num_sp; i++) {
|
|
pci_free_consistent(pdev, xhci->page_size,
|
|
xhci->scratchpad->sp_buffers[i],
|
|
xhci->scratchpad->sp_dma_buffers[i]);
|
|
}
|
|
kfree(xhci->scratchpad->sp_dma_buffers);
|
|
kfree(xhci->scratchpad->sp_buffers);
|
|
pci_free_consistent(pdev, num_sp * sizeof(u64),
|
|
xhci->scratchpad->sp_array,
|
|
xhci->scratchpad->sp_dma);
|
|
kfree(xhci->scratchpad);
|
|
xhci->scratchpad = NULL;
|
|
}
|
|
|
|
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
|
|
bool allocate_in_ctx, bool allocate_completion,
|
|
gfp_t mem_flags)
|
|
{
|
|
struct xhci_command *command;
|
|
|
|
command = kzalloc(sizeof(*command), mem_flags);
|
|
if (!command)
|
|
return NULL;
|
|
|
|
if (allocate_in_ctx) {
|
|
command->in_ctx =
|
|
xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
|
|
mem_flags);
|
|
if (!command->in_ctx) {
|
|
kfree(command);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (allocate_completion) {
|
|
command->completion =
|
|
kzalloc(sizeof(struct completion), mem_flags);
|
|
if (!command->completion) {
|
|
xhci_free_container_ctx(xhci, command->in_ctx);
|
|
kfree(command);
|
|
return NULL;
|
|
}
|
|
init_completion(command->completion);
|
|
}
|
|
|
|
command->status = 0;
|
|
INIT_LIST_HEAD(&command->cmd_list);
|
|
return command;
|
|
}
|
|
|
|
void xhci_free_command(struct xhci_hcd *xhci,
|
|
struct xhci_command *command)
|
|
{
|
|
xhci_free_container_ctx(xhci,
|
|
command->in_ctx);
|
|
kfree(command->completion);
|
|
kfree(command);
|
|
}
|
|
|
|
void xhci_mem_cleanup(struct xhci_hcd *xhci)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
int size;
|
|
int i;
|
|
|
|
/* Free the Event Ring Segment Table and the actual Event Ring */
|
|
if (xhci->ir_set) {
|
|
xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
|
|
xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
|
|
xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
|
|
}
|
|
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
|
|
if (xhci->erst.entries)
|
|
pci_free_consistent(pdev, size,
|
|
xhci->erst.entries, xhci->erst.erst_dma_addr);
|
|
xhci->erst.entries = NULL;
|
|
xhci_dbg(xhci, "Freed ERST\n");
|
|
if (xhci->event_ring)
|
|
xhci_ring_free(xhci, xhci->event_ring);
|
|
xhci->event_ring = NULL;
|
|
xhci_dbg(xhci, "Freed event ring\n");
|
|
|
|
xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
|
|
if (xhci->cmd_ring)
|
|
xhci_ring_free(xhci, xhci->cmd_ring);
|
|
xhci->cmd_ring = NULL;
|
|
xhci_dbg(xhci, "Freed command ring\n");
|
|
|
|
for (i = 1; i < MAX_HC_SLOTS; ++i)
|
|
xhci_free_virt_device(xhci, i);
|
|
|
|
if (xhci->segment_pool)
|
|
dma_pool_destroy(xhci->segment_pool);
|
|
xhci->segment_pool = NULL;
|
|
xhci_dbg(xhci, "Freed segment pool\n");
|
|
|
|
if (xhci->device_pool)
|
|
dma_pool_destroy(xhci->device_pool);
|
|
xhci->device_pool = NULL;
|
|
xhci_dbg(xhci, "Freed device context pool\n");
|
|
|
|
if (xhci->small_streams_pool)
|
|
dma_pool_destroy(xhci->small_streams_pool);
|
|
xhci->small_streams_pool = NULL;
|
|
xhci_dbg(xhci, "Freed small stream array pool\n");
|
|
|
|
if (xhci->medium_streams_pool)
|
|
dma_pool_destroy(xhci->medium_streams_pool);
|
|
xhci->medium_streams_pool = NULL;
|
|
xhci_dbg(xhci, "Freed medium stream array pool\n");
|
|
|
|
xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
|
|
if (xhci->dcbaa)
|
|
pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
|
|
xhci->dcbaa, xhci->dcbaa->dma);
|
|
xhci->dcbaa = NULL;
|
|
|
|
scratchpad_free(xhci);
|
|
xhci->page_size = 0;
|
|
xhci->page_shift = 0;
|
|
}
|
|
|
|
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
|
|
struct xhci_segment *input_seg,
|
|
union xhci_trb *start_trb,
|
|
union xhci_trb *end_trb,
|
|
dma_addr_t input_dma,
|
|
struct xhci_segment *result_seg,
|
|
char *test_name, int test_number)
|
|
{
|
|
unsigned long long start_dma;
|
|
unsigned long long end_dma;
|
|
struct xhci_segment *seg;
|
|
|
|
start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
|
|
end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
|
|
|
|
seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
|
|
if (seg != result_seg) {
|
|
xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
|
|
test_name, test_number);
|
|
xhci_warn(xhci, "Tested TRB math w/ seg %p and "
|
|
"input DMA 0x%llx\n",
|
|
input_seg,
|
|
(unsigned long long) input_dma);
|
|
xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
|
|
"ending TRB %p (0x%llx DMA)\n",
|
|
start_trb, start_dma,
|
|
end_trb, end_dma);
|
|
xhci_warn(xhci, "Expected seg %p, got seg %p\n",
|
|
result_seg, seg);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
|
|
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
|
|
{
|
|
struct {
|
|
dma_addr_t input_dma;
|
|
struct xhci_segment *result_seg;
|
|
} simple_test_vector [] = {
|
|
/* A zeroed DMA field should fail */
|
|
{ 0, NULL },
|
|
/* One TRB before the ring start should fail */
|
|
{ xhci->event_ring->first_seg->dma - 16, NULL },
|
|
/* One byte before the ring start should fail */
|
|
{ xhci->event_ring->first_seg->dma - 1, NULL },
|
|
/* Starting TRB should succeed */
|
|
{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
|
|
/* Ending TRB should succeed */
|
|
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
|
|
xhci->event_ring->first_seg },
|
|
/* One byte after the ring end should fail */
|
|
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
|
|
/* One TRB after the ring end should fail */
|
|
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
|
|
/* An address of all ones should fail */
|
|
{ (dma_addr_t) (~0), NULL },
|
|
};
|
|
struct {
|
|
struct xhci_segment *input_seg;
|
|
union xhci_trb *start_trb;
|
|
union xhci_trb *end_trb;
|
|
dma_addr_t input_dma;
|
|
struct xhci_segment *result_seg;
|
|
} complex_test_vector [] = {
|
|
/* Test feeding a valid DMA address from a different ring */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = xhci->event_ring->first_seg->trbs,
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
|
.input_dma = xhci->cmd_ring->first_seg->dma,
|
|
.result_seg = NULL,
|
|
},
|
|
/* Test feeding a valid end TRB from a different ring */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = xhci->event_ring->first_seg->trbs,
|
|
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
|
.input_dma = xhci->cmd_ring->first_seg->dma,
|
|
.result_seg = NULL,
|
|
},
|
|
/* Test feeding a valid start and end TRB from a different ring */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = xhci->cmd_ring->first_seg->trbs,
|
|
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
|
.input_dma = xhci->cmd_ring->first_seg->dma,
|
|
.result_seg = NULL,
|
|
},
|
|
/* TRB in this ring, but after this TD */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = &xhci->event_ring->first_seg->trbs[0],
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[3],
|
|
.input_dma = xhci->event_ring->first_seg->dma + 4*16,
|
|
.result_seg = NULL,
|
|
},
|
|
/* TRB in this ring, but before this TD */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = &xhci->event_ring->first_seg->trbs[3],
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[6],
|
|
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
|
|
.result_seg = NULL,
|
|
},
|
|
/* TRB in this ring, but after this wrapped TD */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
|
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
|
|
.result_seg = NULL,
|
|
},
|
|
/* TRB in this ring, but before this wrapped TD */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
|
.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
|
|
.result_seg = NULL,
|
|
},
|
|
/* TRB not in this ring, and we have a wrapped TD */
|
|
{ .input_seg = xhci->event_ring->first_seg,
|
|
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
|
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
|
.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
|
|
.result_seg = NULL,
|
|
},
|
|
};
|
|
|
|
unsigned int num_tests;
|
|
int i, ret;
|
|
|
|
num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
|
|
for (i = 0; i < num_tests; i++) {
|
|
ret = xhci_test_trb_in_td(xhci,
|
|
xhci->event_ring->first_seg,
|
|
xhci->event_ring->first_seg->trbs,
|
|
&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
|
simple_test_vector[i].input_dma,
|
|
simple_test_vector[i].result_seg,
|
|
"Simple", i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
|
|
for (i = 0; i < num_tests; i++) {
|
|
ret = xhci_test_trb_in_td(xhci,
|
|
complex_test_vector[i].input_seg,
|
|
complex_test_vector[i].start_trb,
|
|
complex_test_vector[i].end_trb,
|
|
complex_test_vector[i].input_dma,
|
|
complex_test_vector[i].result_seg,
|
|
"Complex", i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
xhci_dbg(xhci, "TRB math tests passed.\n");
|
|
return 0;
|
|
}
|
|
|
|
|
|
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
|
|
{
|
|
dma_addr_t dma;
|
|
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
|
unsigned int val, val2;
|
|
u64 val_64;
|
|
struct xhci_segment *seg;
|
|
u32 page_size;
|
|
int i;
|
|
|
|
page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
|
|
xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
|
|
for (i = 0; i < 16; i++) {
|
|
if ((0x1 & page_size) != 0)
|
|
break;
|
|
page_size = page_size >> 1;
|
|
}
|
|
if (i < 16)
|
|
xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
|
|
else
|
|
xhci_warn(xhci, "WARN: no supported page size\n");
|
|
/* Use 4K pages, since that's common and the minimum the HC supports */
|
|
xhci->page_shift = 12;
|
|
xhci->page_size = 1 << xhci->page_shift;
|
|
xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
|
|
|
|
/*
|
|
* Program the Number of Device Slots Enabled field in the CONFIG
|
|
* register with the max value of slots the HC can handle.
|
|
*/
|
|
val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
|
|
xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
|
|
(unsigned int) val);
|
|
val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
|
|
val |= (val2 & ~HCS_SLOTS_MASK);
|
|
xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
|
|
(unsigned int) val);
|
|
xhci_writel(xhci, val, &xhci->op_regs->config_reg);
|
|
|
|
/*
|
|
* Section 5.4.8 - doorbell array must be
|
|
* "physically contiguous and 64-byte (cache line) aligned".
|
|
*/
|
|
xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
|
|
sizeof(*xhci->dcbaa), &dma);
|
|
if (!xhci->dcbaa)
|
|
goto fail;
|
|
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
|
|
xhci->dcbaa->dma = dma;
|
|
xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
|
|
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
|
|
xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
|
|
|
|
/*
|
|
* Initialize the ring segment pool. The ring must be a contiguous
|
|
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
|
|
* however, the command ring segment needs 64-byte aligned segments,
|
|
* so we pick the greater alignment need.
|
|
*/
|
|
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
|
|
SEGMENT_SIZE, 64, xhci->page_size);
|
|
|
|
/* See Table 46 and Note on Figure 55 */
|
|
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
|
|
2112, 64, xhci->page_size);
|
|
if (!xhci->segment_pool || !xhci->device_pool)
|
|
goto fail;
|
|
|
|
/* Linear stream context arrays don't have any boundary restrictions,
|
|
* and only need to be 16-byte aligned.
|
|
*/
|
|
xhci->small_streams_pool =
|
|
dma_pool_create("xHCI 256 byte stream ctx arrays",
|
|
dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
|
|
xhci->medium_streams_pool =
|
|
dma_pool_create("xHCI 1KB stream ctx arrays",
|
|
dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
|
|
/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
|
|
* will be allocated with pci_alloc_consistent()
|
|
*/
|
|
|
|
if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
|
|
goto fail;
|
|
|
|
/* Set up the command ring to have one segments for now. */
|
|
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
|
|
if (!xhci->cmd_ring)
|
|
goto fail;
|
|
xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
|
|
xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
|
|
(unsigned long long)xhci->cmd_ring->first_seg->dma);
|
|
|
|
/* Set the address in the Command Ring Control register */
|
|
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
|
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
|
|
(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
|
|
xhci->cmd_ring->cycle_state;
|
|
xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
|
|
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
|
|
xhci_dbg_cmd_ptrs(xhci);
|
|
|
|
val = xhci_readl(xhci, &xhci->cap_regs->db_off);
|
|
val &= DBOFF_MASK;
|
|
xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
|
|
" from cap regs base addr\n", val);
|
|
xhci->dba = (void *) xhci->cap_regs + val;
|
|
xhci_dbg_regs(xhci);
|
|
xhci_print_run_regs(xhci);
|
|
/* Set ir_set to interrupt register set 0 */
|
|
xhci->ir_set = (void *) xhci->run_regs->ir_set;
|
|
|
|
/*
|
|
* Event ring setup: Allocate a normal ring, but also setup
|
|
* the event ring segment table (ERST). Section 4.9.3.
|
|
*/
|
|
xhci_dbg(xhci, "// Allocating event ring\n");
|
|
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
|
|
if (!xhci->event_ring)
|
|
goto fail;
|
|
if (xhci_check_trb_in_td_math(xhci, flags) < 0)
|
|
goto fail;
|
|
|
|
xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
|
|
sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
|
|
if (!xhci->erst.entries)
|
|
goto fail;
|
|
xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
|
|
(unsigned long long)dma);
|
|
|
|
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
|
|
xhci->erst.num_entries = ERST_NUM_SEGS;
|
|
xhci->erst.erst_dma_addr = dma;
|
|
xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
|
|
xhci->erst.num_entries,
|
|
xhci->erst.entries,
|
|
(unsigned long long)xhci->erst.erst_dma_addr);
|
|
|
|
/* set ring base address and size for each segment table entry */
|
|
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
|
|
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
|
|
entry->seg_addr = seg->dma;
|
|
entry->seg_size = TRBS_PER_SEGMENT;
|
|
entry->rsvd = 0;
|
|
seg = seg->next;
|
|
}
|
|
|
|
/* set ERST count with the number of entries in the segment table */
|
|
val = xhci_readl(xhci, &xhci->ir_set->erst_size);
|
|
val &= ERST_SIZE_MASK;
|
|
val |= ERST_NUM_SEGS;
|
|
xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
|
|
val);
|
|
xhci_writel(xhci, val, &xhci->ir_set->erst_size);
|
|
|
|
xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
|
|
/* set the segment table base address */
|
|
xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
|
|
(unsigned long long)xhci->erst.erst_dma_addr);
|
|
val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
|
|
val_64 &= ERST_PTR_MASK;
|
|
val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
|
|
xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
|
|
|
|
/* Set the event ring dequeue address */
|
|
xhci_set_hc_event_deq(xhci);
|
|
xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
|
|
xhci_print_ir_set(xhci, xhci->ir_set, 0);
|
|
|
|
/*
|
|
* XXX: Might need to set the Interrupter Moderation Register to
|
|
* something other than the default (~1ms minimum between interrupts).
|
|
* See section 5.5.1.2.
|
|
*/
|
|
init_completion(&xhci->addr_dev);
|
|
for (i = 0; i < MAX_HC_SLOTS; ++i)
|
|
xhci->devs[i] = 0;
|
|
|
|
if (scratchpad_alloc(xhci, flags))
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
xhci_warn(xhci, "Couldn't initialize memory\n");
|
|
xhci_mem_cleanup(xhci);
|
|
return -ENOMEM;
|
|
}
|