kernel-fxtec-pro1x/drivers/mtd/ubi/wl.c
Artem Bityutskiy e88d6e10e5 UBI: do not use vmalloc on I/O path
Similar reason as in case of the previous patch: it causes
deadlocks if a filesystem with writeback support works on top
of UBI. So pre-allocate needed buffers when attaching MTD device.
We also need mutexes to protect the buffers, but they do not
cause much contantion because they are used in recovery, torture,
and WL copy routines, which are called seldom.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-10-14 13:10:21 +03:00

1680 lines
44 KiB
C

/*
* Copyright (c) International Business Machines Corp., 2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
*/
/*
* UBI wear-leveling unit.
*
* This unit is responsible for wear-leveling. It works in terms of physical
* eraseblocks and erase counters and knows nothing about logical eraseblocks,
* volumes, etc. From this unit's perspective all physical eraseblocks are of
* two types - used and free. Used physical eraseblocks are those that were
* "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
* those that were put by the 'ubi_wl_put_peb()' function.
*
* Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
* header. The rest of the physical eraseblock contains only 0xFF bytes.
*
* When physical eraseblocks are returned to the WL unit by means of the
* 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
* done asynchronously in context of the per-UBI device background thread,
* which is also managed by the WL unit.
*
* The wear-leveling is ensured by means of moving the contents of used
* physical eraseblocks with low erase counter to free physical eraseblocks
* with high erase counter.
*
* The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
* an "optimal" physical eraseblock. For example, when it is known that the
* physical eraseblock will be "put" soon because it contains short-term data,
* the WL unit may pick a free physical eraseblock with low erase counter, and
* so forth.
*
* If the WL unit fails to erase a physical eraseblock, it marks it as bad.
*
* This unit is also responsible for scrubbing. If a bit-flip is detected in a
* physical eraseblock, it has to be moved. Technically this is the same as
* moving it for wear-leveling reasons.
*
* As it was said, for the UBI unit all physical eraseblocks are either "free"
* or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
* eraseblocks are kept in a set of different RB-trees: @wl->used,
* @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
*
* Note, in this implementation, we keep a small in-RAM object for each physical
* eraseblock. This is surely not a scalable solution. But it appears to be good
* enough for moderately large flashes and it is simple. In future, one may
* re-work this unit and make it more scalable.
*
* At the moment this unit does not utilize the sequence number, which was
* introduced relatively recently. But it would be wise to do this because the
* sequence number of a logical eraseblock characterizes how old is it. For
* example, when we move a PEB with low erase counter, and we need to pick the
* target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
* pick target PEB with an average EC if our PEB is not very "old". This is a
* room for future re-works of the WL unit.
*
* FIXME: looks too complex, should be simplified (later).
*/
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include "ubi.h"
/* Number of physical eraseblocks reserved for wear-leveling purposes */
#define WL_RESERVED_PEBS 1
/*
* How many erase cycles are short term, unknown, and long term physical
* eraseblocks protected.
*/
#define ST_PROTECTION 16
#define U_PROTECTION 10
#define LT_PROTECTION 4
/*
* Maximum difference between two erase counters. If this threshold is
* exceeded, the WL unit starts moving data from used physical eraseblocks with
* low erase counter to free physical eraseblocks with high erase counter.
*/
#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
/*
* When a physical eraseblock is moved, the WL unit has to pick the target
* physical eraseblock to move to. The simplest way would be just to pick the
* one with the highest erase counter. But in certain workloads this could lead
* to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
* situation when the picked physical eraseblock is constantly erased after the
* data is written to it. So, we have a constant which limits the highest erase
* counter of the free physical eraseblock to pick. Namely, the WL unit does
* not pick eraseblocks with erase counter greater then the lowest erase
* counter plus %WL_FREE_MAX_DIFF.
*/
#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
/*
* Maximum number of consecutive background thread failures which is enough to
* switch to read-only mode.
*/
#define WL_MAX_FAILURES 32
/**
* struct ubi_wl_entry - wear-leveling entry.
* @rb: link in the corresponding RB-tree
* @ec: erase counter
* @pnum: physical eraseblock number
*
* Each physical eraseblock has a corresponding &struct wl_entry object which
* may be kept in different RB-trees.
*/
struct ubi_wl_entry {
struct rb_node rb;
int ec;
int pnum;
};
/**
* struct ubi_wl_prot_entry - PEB protection entry.
* @rb_pnum: link in the @wl->prot.pnum RB-tree
* @rb_aec: link in the @wl->prot.aec RB-tree
* @abs_ec: the absolute erase counter value when the protection ends
* @e: the wear-leveling entry of the physical eraseblock under protection
*
* When the WL unit returns a physical eraseblock, the physical eraseblock is
* protected from being moved for some "time". For this reason, the physical
* eraseblock is not directly moved from the @wl->free tree to the @wl->used
* tree. There is one more tree in between where this physical eraseblock is
* temporarily stored (@wl->prot).
*
* All this protection stuff is needed because:
* o we don't want to move physical eraseblocks just after we have given them
* to the user; instead, we first want to let users fill them up with data;
*
* o there is a chance that the user will put the physical eraseblock very
* soon, so it makes sense not to move it for some time, but wait; this is
* especially important in case of "short term" physical eraseblocks.
*
* Physical eraseblocks stay protected only for limited time. But the "time" is
* measured in erase cycles in this case. This is implemented with help of the
* absolute erase counter (@wl->abs_ec). When it reaches certain value, the
* physical eraseblocks are moved from the protection trees (@wl->prot.*) to
* the @wl->used tree.
*
* Protected physical eraseblocks are searched by physical eraseblock number
* (when they are put) and by the absolute erase counter (to check if it is
* time to move them to the @wl->used tree). So there are actually 2 RB-trees
* storing the protected physical eraseblocks: @wl->prot.pnum and
* @wl->prot.aec. They are referred to as the "protection" trees. The
* first one is indexed by the physical eraseblock number. The second one is
* indexed by the absolute erase counter. Both trees store
* &struct ubi_wl_prot_entry objects.
*
* Each physical eraseblock has 2 main states: free and used. The former state
* corresponds to the @wl->free tree. The latter state is split up on several
* sub-states:
* o the WL movement is allowed (@wl->used tree);
* o the WL movement is temporarily prohibited (@wl->prot.pnum and
* @wl->prot.aec trees);
* o scrubbing is needed (@wl->scrub tree).
*
* Depending on the sub-state, wear-leveling entries of the used physical
* eraseblocks may be kept in one of those trees.
*/
struct ubi_wl_prot_entry {
struct rb_node rb_pnum;
struct rb_node rb_aec;
unsigned long long abs_ec;
struct ubi_wl_entry *e;
};
/**
* struct ubi_work - UBI work description data structure.
* @list: a link in the list of pending works
* @func: worker function
* @priv: private data of the worker function
*
* @e: physical eraseblock to erase
* @torture: if the physical eraseblock has to be tortured
*
* The @func pointer points to the worker function. If the @cancel argument is
* not zero, the worker has to free the resources and exit immediately. The
* worker has to return zero in case of success and a negative error code in
* case of failure.
*/
struct ubi_work {
struct list_head list;
int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
/* The below fields are only relevant to erasure works */
struct ubi_wl_entry *e;
int torture;
};
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
struct rb_root *root);
#else
#define paranoid_check_ec(ubi, pnum, ec) 0
#define paranoid_check_in_wl_tree(e, root)
#endif
/* Slab cache for wear-leveling entries */
static struct kmem_cache *wl_entries_slab;
/**
* tree_empty - a helper function to check if an RB-tree is empty.
* @root: the root of the tree
*
* This function returns non-zero if the RB-tree is empty and zero if not.
*/
static inline int tree_empty(struct rb_root *root)
{
return root->rb_node == NULL;
}
/**
* wl_tree_add - add a wear-leveling entry to a WL RB-tree.
* @e: the wear-leveling entry to add
* @root: the root of the tree
*
* Note, we use (erase counter, physical eraseblock number) pairs as keys in
* the @ubi->used and @ubi->free RB-trees.
*/
static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
{
struct rb_node **p, *parent = NULL;
p = &root->rb_node;
while (*p) {
struct ubi_wl_entry *e1;
parent = *p;
e1 = rb_entry(parent, struct ubi_wl_entry, rb);
if (e->ec < e1->ec)
p = &(*p)->rb_left;
else if (e->ec > e1->ec)
p = &(*p)->rb_right;
else {
ubi_assert(e->pnum != e1->pnum);
if (e->pnum < e1->pnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
}
rb_link_node(&e->rb, parent, p);
rb_insert_color(&e->rb, root);
}
/*
* Helper functions to add and delete wear-leveling entries from different
* trees.
*/
static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
{
wl_tree_add(e, &ubi->free);
}
static inline void used_tree_add(struct ubi_device *ubi,
struct ubi_wl_entry *e)
{
wl_tree_add(e, &ubi->used);
}
static inline void scrub_tree_add(struct ubi_device *ubi,
struct ubi_wl_entry *e)
{
wl_tree_add(e, &ubi->scrub);
}
static inline void free_tree_del(struct ubi_device *ubi,
struct ubi_wl_entry *e)
{
paranoid_check_in_wl_tree(e, &ubi->free);
rb_erase(&e->rb, &ubi->free);
}
static inline void used_tree_del(struct ubi_device *ubi,
struct ubi_wl_entry *e)
{
paranoid_check_in_wl_tree(e, &ubi->used);
rb_erase(&e->rb, &ubi->used);
}
static inline void scrub_tree_del(struct ubi_device *ubi,
struct ubi_wl_entry *e)
{
paranoid_check_in_wl_tree(e, &ubi->scrub);
rb_erase(&e->rb, &ubi->scrub);
}
/**
* do_work - do one pending work.
* @ubi: UBI device description object
*
* This function returns zero in case of success and a negative error code in
* case of failure.
*/
static int do_work(struct ubi_device *ubi)
{
int err;
struct ubi_work *wrk;
spin_lock(&ubi->wl_lock);
if (list_empty(&ubi->works)) {
spin_unlock(&ubi->wl_lock);
return 0;
}
wrk = list_entry(ubi->works.next, struct ubi_work, list);
list_del(&wrk->list);
spin_unlock(&ubi->wl_lock);
/*
* Call the worker function. Do not touch the work structure
* after this call as it will have been freed or reused by that
* time by the worker function.
*/
err = wrk->func(ubi, wrk, 0);
if (err)
ubi_err("work failed with error code %d", err);
spin_lock(&ubi->wl_lock);
ubi->works_count -= 1;
ubi_assert(ubi->works_count >= 0);
spin_unlock(&ubi->wl_lock);
return err;
}
/**
* produce_free_peb - produce a free physical eraseblock.
* @ubi: UBI device description object
*
* This function tries to make a free PEB by means of synchronous execution of
* pending works. This may be needed if, for example the background thread is
* disabled. Returns zero in case of success and a negative error code in case
* of failure.
*/
static int produce_free_peb(struct ubi_device *ubi)
{
int err;
spin_lock(&ubi->wl_lock);
while (tree_empty(&ubi->free)) {
spin_unlock(&ubi->wl_lock);
dbg_wl("do one work synchronously");
err = do_work(ubi);
if (err)
return err;
spin_lock(&ubi->wl_lock);
}
spin_unlock(&ubi->wl_lock);
return 0;
}
/**
* in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
* @e: the wear-leveling entry to check
* @root: the root of the tree
*
* This function returns non-zero if @e is in the @root RB-tree and zero if it
* is not.
*/
static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
{
struct rb_node *p;
p = root->rb_node;
while (p) {
struct ubi_wl_entry *e1;
e1 = rb_entry(p, struct ubi_wl_entry, rb);
if (e->pnum == e1->pnum) {
ubi_assert(e == e1);
return 1;
}
if (e->ec < e1->ec)
p = p->rb_left;
else if (e->ec > e1->ec)
p = p->rb_right;
else {
ubi_assert(e->pnum != e1->pnum);
if (e->pnum < e1->pnum)
p = p->rb_left;
else
p = p->rb_right;
}
}
return 0;
}
/**
* prot_tree_add - add physical eraseblock to protection trees.
* @ubi: UBI device description object
* @e: the physical eraseblock to add
* @pe: protection entry object to use
* @abs_ec: absolute erase counter value when this physical eraseblock has
* to be removed from the protection trees.
*
* @wl->lock has to be locked.
*/
static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
struct ubi_wl_prot_entry *pe, int abs_ec)
{
struct rb_node **p, *parent = NULL;
struct ubi_wl_prot_entry *pe1;
pe->e = e;
pe->abs_ec = ubi->abs_ec + abs_ec;
p = &ubi->prot.pnum.rb_node;
while (*p) {
parent = *p;
pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
if (e->pnum < pe1->e->pnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&pe->rb_pnum, parent, p);
rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
p = &ubi->prot.aec.rb_node;
parent = NULL;
while (*p) {
parent = *p;
pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
if (pe->abs_ec < pe1->abs_ec)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&pe->rb_aec, parent, p);
rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
}
/**
* find_wl_entry - find wear-leveling entry closest to certain erase counter.
* @root: the RB-tree where to look for
* @max: highest possible erase counter
*
* This function looks for a wear leveling entry with erase counter closest to
* @max and less then @max.
*/
static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
{
struct rb_node *p;
struct ubi_wl_entry *e;
e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
max += e->ec;
p = root->rb_node;
while (p) {
struct ubi_wl_entry *e1;
e1 = rb_entry(p, struct ubi_wl_entry, rb);
if (e1->ec >= max)
p = p->rb_left;
else {
p = p->rb_right;
e = e1;
}
}
return e;
}
/**
* ubi_wl_get_peb - get a physical eraseblock.
* @ubi: UBI device description object
* @dtype: type of data which will be stored in this physical eraseblock
*
* This function returns a physical eraseblock in case of success and a
* negative error code in case of failure. Might sleep.
*/
int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
{
int err, protect, medium_ec;
struct ubi_wl_entry *e, *first, *last;
struct ubi_wl_prot_entry *pe;
ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
dtype == UBI_UNKNOWN);
pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
if (!pe)
return -ENOMEM;
retry:
spin_lock(&ubi->wl_lock);
if (tree_empty(&ubi->free)) {
if (ubi->works_count == 0) {
ubi_assert(list_empty(&ubi->works));
ubi_err("no free eraseblocks");
spin_unlock(&ubi->wl_lock);
kfree(pe);
return -ENOSPC;
}
spin_unlock(&ubi->wl_lock);
err = produce_free_peb(ubi);
if (err < 0) {
kfree(pe);
return err;
}
goto retry;
}
switch (dtype) {
case UBI_LONGTERM:
/*
* For long term data we pick a physical eraseblock
* with high erase counter. But the highest erase
* counter we can pick is bounded by the the lowest
* erase counter plus %WL_FREE_MAX_DIFF.
*/
e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
protect = LT_PROTECTION;
break;
case UBI_UNKNOWN:
/*
* For unknown data we pick a physical eraseblock with
* medium erase counter. But we by no means can pick a
* physical eraseblock with erase counter greater or
* equivalent than the lowest erase counter plus
* %WL_FREE_MAX_DIFF.
*/
first = rb_entry(rb_first(&ubi->free),
struct ubi_wl_entry, rb);
last = rb_entry(rb_last(&ubi->free),
struct ubi_wl_entry, rb);
if (last->ec - first->ec < WL_FREE_MAX_DIFF)
e = rb_entry(ubi->free.rb_node,
struct ubi_wl_entry, rb);
else {
medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
e = find_wl_entry(&ubi->free, medium_ec);
}
protect = U_PROTECTION;
break;
case UBI_SHORTTERM:
/*
* For short term data we pick a physical eraseblock
* with the lowest erase counter as we expect it will
* be erased soon.
*/
e = rb_entry(rb_first(&ubi->free),
struct ubi_wl_entry, rb);
protect = ST_PROTECTION;
break;
default:
protect = 0;
e = NULL;
BUG();
}
/*
* Move the physical eraseblock to the protection trees where it will
* be protected from being moved for some time.
*/
free_tree_del(ubi, e);
prot_tree_add(ubi, e, pe, protect);
dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
spin_unlock(&ubi->wl_lock);
return e->pnum;
}
/**
* prot_tree_del - remove a physical eraseblock from the protection trees
* @ubi: UBI device description object
* @pnum: the physical eraseblock to remove
*/
static void prot_tree_del(struct ubi_device *ubi, int pnum)
{
struct rb_node *p;
struct ubi_wl_prot_entry *pe = NULL;
p = ubi->prot.pnum.rb_node;
while (p) {
pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
if (pnum == pe->e->pnum)
break;
if (pnum < pe->e->pnum)
p = p->rb_left;
else
p = p->rb_right;
}
ubi_assert(pe->e->pnum == pnum);
rb_erase(&pe->rb_aec, &ubi->prot.aec);
rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
kfree(pe);
}
/**
* sync_erase - synchronously erase a physical eraseblock.
* @ubi: UBI device description object
* @e: the the physical eraseblock to erase
* @torture: if the physical eraseblock has to be tortured
*
* This function returns zero in case of success and a negative error code in
* case of failure.
*/
static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
{
int err;
struct ubi_ec_hdr *ec_hdr;
unsigned long long ec = e->ec;
dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
err = paranoid_check_ec(ubi, e->pnum, e->ec);
if (err > 0)
return -EINVAL;
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
if (!ec_hdr)
return -ENOMEM;
err = ubi_io_sync_erase(ubi, e->pnum, torture);
if (err < 0)
goto out_free;
ec += err;
if (ec > UBI_MAX_ERASECOUNTER) {
/*
* Erase counter overflow. Upgrade UBI and use 64-bit
* erase counters internally.
*/
ubi_err("erase counter overflow at PEB %d, EC %llu",
e->pnum, ec);
err = -EINVAL;
goto out_free;
}
dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
ec_hdr->ec = cpu_to_be64(ec);
err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
if (err)
goto out_free;
e->ec = ec;
spin_lock(&ubi->wl_lock);
if (e->ec > ubi->max_ec)
ubi->max_ec = e->ec;
spin_unlock(&ubi->wl_lock);
out_free:
kfree(ec_hdr);
return err;
}
/**
* check_protection_over - check if it is time to stop protecting some
* physical eraseblocks.
* @ubi: UBI device description object
*
* This function is called after each erase operation, when the absolute erase
* counter is incremented, to check if some physical eraseblock have not to be
* protected any longer. These physical eraseblocks are moved from the
* protection trees to the used tree.
*/
static void check_protection_over(struct ubi_device *ubi)
{
struct ubi_wl_prot_entry *pe;
/*
* There may be several protected physical eraseblock to remove,
* process them all.
*/
while (1) {
spin_lock(&ubi->wl_lock);
if (tree_empty(&ubi->prot.aec)) {
spin_unlock(&ubi->wl_lock);
break;
}
pe = rb_entry(rb_first(&ubi->prot.aec),
struct ubi_wl_prot_entry, rb_aec);
if (pe->abs_ec > ubi->abs_ec) {
spin_unlock(&ubi->wl_lock);
break;
}
dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
pe->e->pnum, ubi->abs_ec, pe->abs_ec);
rb_erase(&pe->rb_aec, &ubi->prot.aec);
rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
used_tree_add(ubi, pe->e);
spin_unlock(&ubi->wl_lock);
kfree(pe);
cond_resched();
}
}
/**
* schedule_ubi_work - schedule a work.
* @ubi: UBI device description object
* @wrk: the work to schedule
*
* This function enqueues a work defined by @wrk to the tail of the pending
* works list.
*/
static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
{
spin_lock(&ubi->wl_lock);
list_add_tail(&wrk->list, &ubi->works);
ubi_assert(ubi->works_count >= 0);
ubi->works_count += 1;
if (ubi->thread_enabled)
wake_up_process(ubi->bgt_thread);
spin_unlock(&ubi->wl_lock);
}
static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
int cancel);
/**
* schedule_erase - schedule an erase work.
* @ubi: UBI device description object
* @e: the WL entry of the physical eraseblock to erase
* @torture: if the physical eraseblock has to be tortured
*
* This function returns zero in case of success and a %-ENOMEM in case of
* failure.
*/
static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
int torture)
{
struct ubi_work *wl_wrk;
dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
e->pnum, e->ec, torture);
wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
if (!wl_wrk)
return -ENOMEM;
wl_wrk->func = &erase_worker;
wl_wrk->e = e;
wl_wrk->torture = torture;
schedule_ubi_work(ubi, wl_wrk);
return 0;
}
/**
* wear_leveling_worker - wear-leveling worker function.
* @ubi: UBI device description object
* @wrk: the work object
* @cancel: non-zero if the worker has to free memory and exit
*
* This function copies a more worn out physical eraseblock to a less worn out
* one. Returns zero in case of success and a negative error code in case of
* failure.
*/
static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
int cancel)
{
int err, put = 0;
struct ubi_wl_entry *e1, *e2;
struct ubi_vid_hdr *vid_hdr;
kfree(wrk);
if (cancel)
return 0;
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
if (!vid_hdr)
return -ENOMEM;
spin_lock(&ubi->wl_lock);
/*
* Only one WL worker at a time is supported at this implementation, so
* make sure a PEB is not being moved already.
*/
if (ubi->move_to || tree_empty(&ubi->free) ||
(tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) {
/*
* Only one WL worker at a time is supported at this
* implementation, so if a LEB is already being moved, cancel.
*
* No free physical eraseblocks? Well, we cancel wear-leveling
* then. It will be triggered again when a free physical
* eraseblock appears.
*
* No used physical eraseblocks? They must be temporarily
* protected from being moved. They will be moved to the
* @ubi->used tree later and the wear-leveling will be
* triggered again.
*/
dbg_wl("cancel WL, a list is empty: free %d, used %d",
tree_empty(&ubi->free), tree_empty(&ubi->used));
ubi->wl_scheduled = 0;
spin_unlock(&ubi->wl_lock);
ubi_free_vid_hdr(ubi, vid_hdr);
return 0;
}
if (tree_empty(&ubi->scrub)) {
/*
* Now pick the least worn-out used physical eraseblock and a
* highly worn-out free physical eraseblock. If the erase
* counters differ much enough, start wear-leveling.
*/
e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
dbg_wl("no WL needed: min used EC %d, max free EC %d",
e1->ec, e2->ec);
ubi->wl_scheduled = 0;
spin_unlock(&ubi->wl_lock);
ubi_free_vid_hdr(ubi, vid_hdr);
return 0;
}
used_tree_del(ubi, e1);
dbg_wl("move PEB %d EC %d to PEB %d EC %d",
e1->pnum, e1->ec, e2->pnum, e2->ec);
} else {
e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
scrub_tree_del(ubi, e1);
dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
}
free_tree_del(ubi, e2);
ubi_assert(!ubi->move_from && !ubi->move_to);
ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
ubi->move_from = e1;
ubi->move_to = e2;
spin_unlock(&ubi->wl_lock);
/*
* Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
* We so far do not know which logical eraseblock our physical
* eraseblock (@e1) belongs to. We have to read the volume identifier
* header first.
*/
err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
if (err && err != UBI_IO_BITFLIPS) {
if (err == UBI_IO_PEB_FREE) {
/*
* We are trying to move PEB without a VID header. UBI
* always write VID headers shortly after the PEB was
* given, so we have a situation when it did not have
* chance to write it down because it was preempted.
* Just re-schedule the work, so that next time it will
* likely have the VID header in place.
*/
dbg_wl("PEB %d has no VID header", e1->pnum);
err = 0;
} else {
ubi_err("error %d while reading VID header from PEB %d",
err, e1->pnum);
if (err > 0)
err = -EIO;
}
goto error;
}
err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
if (err) {
if (err == UBI_IO_BITFLIPS)
err = 0;
goto error;
}
ubi_free_vid_hdr(ubi, vid_hdr);
spin_lock(&ubi->wl_lock);
if (!ubi->move_to_put)
used_tree_add(ubi, e2);
else
put = 1;
ubi->move_from = ubi->move_to = NULL;
ubi->move_from_put = ubi->move_to_put = 0;
ubi->wl_scheduled = 0;
spin_unlock(&ubi->wl_lock);
if (put) {
/*
* Well, the target PEB was put meanwhile, schedule it for
* erasure.
*/
dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
err = schedule_erase(ubi, e2, 0);
if (err) {
kmem_cache_free(wl_entries_slab, e2);
ubi_ro_mode(ubi);
}
}
err = schedule_erase(ubi, e1, 0);
if (err) {
kmem_cache_free(wl_entries_slab, e1);
ubi_ro_mode(ubi);
}
dbg_wl("done");
return err;
/*
* Some error occurred. @e1 was not changed, so return it back. @e2
* might be changed, schedule it for erasure.
*/
error:
if (err)
dbg_wl("error %d occurred, cancel operation", err);
ubi_assert(err <= 0);
ubi_free_vid_hdr(ubi, vid_hdr);
spin_lock(&ubi->wl_lock);
ubi->wl_scheduled = 0;
if (ubi->move_from_put)
put = 1;
else
used_tree_add(ubi, e1);
ubi->move_from = ubi->move_to = NULL;
ubi->move_from_put = ubi->move_to_put = 0;
spin_unlock(&ubi->wl_lock);
if (put) {
/*
* Well, the target PEB was put meanwhile, schedule it for
* erasure.
*/
dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
err = schedule_erase(ubi, e1, 0);
if (err) {
kmem_cache_free(wl_entries_slab, e1);
ubi_ro_mode(ubi);
}
}
err = schedule_erase(ubi, e2, 0);
if (err) {
kmem_cache_free(wl_entries_slab, e2);
ubi_ro_mode(ubi);
}
yield();
return err;
}
/**
* ensure_wear_leveling - schedule wear-leveling if it is needed.
* @ubi: UBI device description object
*
* This function checks if it is time to start wear-leveling and schedules it
* if yes. This function returns zero in case of success and a negative error
* code in case of failure.
*/
static int ensure_wear_leveling(struct ubi_device *ubi)
{
int err = 0;
struct ubi_wl_entry *e1;
struct ubi_wl_entry *e2;
struct ubi_work *wrk;
spin_lock(&ubi->wl_lock);
if (ubi->wl_scheduled)
/* Wear-leveling is already in the work queue */
goto out_unlock;
/*
* If the ubi->scrub tree is not empty, scrubbing is needed, and the
* the WL worker has to be scheduled anyway.
*/
if (tree_empty(&ubi->scrub)) {
if (tree_empty(&ubi->used) || tree_empty(&ubi->free))
/* No physical eraseblocks - no deal */
goto out_unlock;
/*
* We schedule wear-leveling only if the difference between the
* lowest erase counter of used physical eraseblocks and a high
* erase counter of free physical eraseblocks is greater then
* %UBI_WL_THRESHOLD.
*/
e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
goto out_unlock;
dbg_wl("schedule wear-leveling");
} else
dbg_wl("schedule scrubbing");
ubi->wl_scheduled = 1;
spin_unlock(&ubi->wl_lock);
wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
if (!wrk) {
err = -ENOMEM;
goto out_cancel;
}
wrk->func = &wear_leveling_worker;
schedule_ubi_work(ubi, wrk);
return err;
out_cancel:
spin_lock(&ubi->wl_lock);
ubi->wl_scheduled = 0;
out_unlock:
spin_unlock(&ubi->wl_lock);
return err;
}
/**
* erase_worker - physical eraseblock erase worker function.
* @ubi: UBI device description object
* @wl_wrk: the work object
* @cancel: non-zero if the worker has to free memory and exit
*
* This function erases a physical eraseblock and perform torture testing if
* needed. It also takes care about marking the physical eraseblock bad if
* needed. Returns zero in case of success and a negative error code in case of
* failure.
*/
static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
int cancel)
{
struct ubi_wl_entry *e = wl_wrk->e;
int pnum = e->pnum, err, need;
if (cancel) {
dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
kfree(wl_wrk);
kmem_cache_free(wl_entries_slab, e);
return 0;
}
dbg_wl("erase PEB %d EC %d", pnum, e->ec);
err = sync_erase(ubi, e, wl_wrk->torture);
if (!err) {
/* Fine, we've erased it successfully */
kfree(wl_wrk);
spin_lock(&ubi->wl_lock);
ubi->abs_ec += 1;
free_tree_add(ubi, e);
spin_unlock(&ubi->wl_lock);
/*
* One more erase operation has happened, take care about protected
* physical eraseblocks.
*/
check_protection_over(ubi);
/* And take care about wear-leveling */
err = ensure_wear_leveling(ubi);
return err;
}
ubi_err("failed to erase PEB %d, error %d", pnum, err);
kfree(wl_wrk);
kmem_cache_free(wl_entries_slab, e);
if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
err == -EBUSY) {
int err1;
/* Re-schedule the LEB for erasure */
err1 = schedule_erase(ubi, e, 0);
if (err1) {
err = err1;
goto out_ro;
}
return err;
} else if (err != -EIO) {
/*
* If this is not %-EIO, we have no idea what to do. Scheduling
* this physical eraseblock for erasure again would cause
* errors again and again. Well, lets switch to RO mode.
*/
goto out_ro;
}
/* It is %-EIO, the PEB went bad */
if (!ubi->bad_allowed) {
ubi_err("bad physical eraseblock %d detected", pnum);
goto out_ro;
}
spin_lock(&ubi->volumes_lock);
need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
if (need > 0) {
need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
ubi->avail_pebs -= need;
ubi->rsvd_pebs += need;
ubi->beb_rsvd_pebs += need;
if (need > 0)
ubi_msg("reserve more %d PEBs", need);
}
if (ubi->beb_rsvd_pebs == 0) {
spin_unlock(&ubi->volumes_lock);
ubi_err("no reserved physical eraseblocks");
goto out_ro;
}
spin_unlock(&ubi->volumes_lock);
ubi_msg("mark PEB %d as bad", pnum);
err = ubi_io_mark_bad(ubi, pnum);
if (err)
goto out_ro;
spin_lock(&ubi->volumes_lock);
ubi->beb_rsvd_pebs -= 1;
ubi->bad_peb_count += 1;
ubi->good_peb_count -= 1;
ubi_calculate_reserved(ubi);
if (ubi->beb_rsvd_pebs == 0)
ubi_warn("last PEB from the reserved pool was used");
spin_unlock(&ubi->volumes_lock);
return err;
out_ro:
ubi_ro_mode(ubi);
return err;
}
/**
* ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
* unit.
* @ubi: UBI device description object
* @pnum: physical eraseblock to return
* @torture: if this physical eraseblock has to be tortured
*
* This function is called to return physical eraseblock @pnum to the pool of
* free physical eraseblocks. The @torture flag has to be set if an I/O error
* occurred to this @pnum and it has to be tested. This function returns zero
* in case of success and a negative error code in case of failure.
*/
int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
{
int err;
struct ubi_wl_entry *e;
dbg_wl("PEB %d", pnum);
ubi_assert(pnum >= 0);
ubi_assert(pnum < ubi->peb_count);
spin_lock(&ubi->wl_lock);
e = ubi->lookuptbl[pnum];
if (e == ubi->move_from) {
/*
* User is putting the physical eraseblock which was selected to
* be moved. It will be scheduled for erasure in the
* wear-leveling worker.
*/
dbg_wl("PEB %d is being moved", pnum);
ubi_assert(!ubi->move_from_put);
ubi->move_from_put = 1;
spin_unlock(&ubi->wl_lock);
return 0;
} else if (e == ubi->move_to) {
/*
* User is putting the physical eraseblock which was selected
* as the target the data is moved to. It may happen if the EBA
* unit already re-mapped the LEB but the WL unit did has not
* put the PEB to the "used" tree.
*/
dbg_wl("PEB %d is the target of data moving", pnum);
ubi_assert(!ubi->move_to_put);
ubi->move_to_put = 1;
spin_unlock(&ubi->wl_lock);
return 0;
} else {
if (in_wl_tree(e, &ubi->used))
used_tree_del(ubi, e);
else if (in_wl_tree(e, &ubi->scrub))
scrub_tree_del(ubi, e);
else
prot_tree_del(ubi, e->pnum);
}
spin_unlock(&ubi->wl_lock);
err = schedule_erase(ubi, e, torture);
if (err) {
spin_lock(&ubi->wl_lock);
used_tree_add(ubi, e);
spin_unlock(&ubi->wl_lock);
}
return err;
}
/**
* ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
* @ubi: UBI device description object
* @pnum: the physical eraseblock to schedule
*
* If a bit-flip in a physical eraseblock is detected, this physical eraseblock
* needs scrubbing. This function schedules a physical eraseblock for
* scrubbing which is done in background. This function returns zero in case of
* success and a negative error code in case of failure.
*/
int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
{
struct ubi_wl_entry *e;
ubi_msg("schedule PEB %d for scrubbing", pnum);
retry:
spin_lock(&ubi->wl_lock);
e = ubi->lookuptbl[pnum];
if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
spin_unlock(&ubi->wl_lock);
return 0;
}
if (e == ubi->move_to) {
/*
* This physical eraseblock was used to move data to. The data
* was moved but the PEB was not yet inserted to the proper
* tree. We should just wait a little and let the WL worker
* proceed.
*/
spin_unlock(&ubi->wl_lock);
dbg_wl("the PEB %d is not in proper tree, retry", pnum);
yield();
goto retry;
}
if (in_wl_tree(e, &ubi->used))
used_tree_del(ubi, e);
else
prot_tree_del(ubi, pnum);
scrub_tree_add(ubi, e);
spin_unlock(&ubi->wl_lock);
/*
* Technically scrubbing is the same as wear-leveling, so it is done
* by the WL worker.
*/
return ensure_wear_leveling(ubi);
}
/**
* ubi_wl_flush - flush all pending works.
* @ubi: UBI device description object
*
* This function returns zero in case of success and a negative error code in
* case of failure.
*/
int ubi_wl_flush(struct ubi_device *ubi)
{
int err, pending_count;
pending_count = ubi->works_count;
dbg_wl("flush (%d pending works)", pending_count);
/*
* Erase while the pending works queue is not empty, but not more then
* the number of currently pending works.
*/
while (pending_count-- > 0) {
err = do_work(ubi);
if (err)
return err;
}
return 0;
}
/**
* tree_destroy - destroy an RB-tree.
* @root: the root of the tree to destroy
*/
static void tree_destroy(struct rb_root *root)
{
struct rb_node *rb;
struct ubi_wl_entry *e;
rb = root->rb_node;
while (rb) {
if (rb->rb_left)
rb = rb->rb_left;
else if (rb->rb_right)
rb = rb->rb_right;
else {
e = rb_entry(rb, struct ubi_wl_entry, rb);
rb = rb_parent(rb);
if (rb) {
if (rb->rb_left == &e->rb)
rb->rb_left = NULL;
else
rb->rb_right = NULL;
}
kmem_cache_free(wl_entries_slab, e);
}
}
}
/**
* ubi_thread - UBI background thread.
* @u: the UBI device description object pointer
*/
static int ubi_thread(void *u)
{
int failures = 0;
struct ubi_device *ubi = u;
ubi_msg("background thread \"%s\" started, PID %d",
ubi->bgt_name, current->pid);
set_freezable();
for (;;) {
int err;
if (kthread_should_stop())
goto out;
if (try_to_freeze())
continue;
spin_lock(&ubi->wl_lock);
if (list_empty(&ubi->works) || ubi->ro_mode ||
!ubi->thread_enabled) {
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock(&ubi->wl_lock);
schedule();
continue;
}
spin_unlock(&ubi->wl_lock);
err = do_work(ubi);
if (err) {
ubi_err("%s: work failed with error code %d",
ubi->bgt_name, err);
if (failures++ > WL_MAX_FAILURES) {
/*
* Too many failures, disable the thread and
* switch to read-only mode.
*/
ubi_msg("%s: %d consecutive failures",
ubi->bgt_name, WL_MAX_FAILURES);
ubi_ro_mode(ubi);
break;
}
} else
failures = 0;
cond_resched();
}
out:
dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
return 0;
}
/**
* cancel_pending - cancel all pending works.
* @ubi: UBI device description object
*/
static void cancel_pending(struct ubi_device *ubi)
{
while (!list_empty(&ubi->works)) {
struct ubi_work *wrk;
wrk = list_entry(ubi->works.next, struct ubi_work, list);
list_del(&wrk->list);
wrk->func(ubi, wrk, 1);
ubi->works_count -= 1;
ubi_assert(ubi->works_count >= 0);
}
}
/**
* ubi_wl_init_scan - initialize the wear-leveling unit using scanning
* information.
* @ubi: UBI device description object
* @si: scanning information
*
* This function returns zero in case of success, and a negative error code in
* case of failure.
*/
int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
{
int err;
struct rb_node *rb1, *rb2;
struct ubi_scan_volume *sv;
struct ubi_scan_leb *seb, *tmp;
struct ubi_wl_entry *e;
ubi->used = ubi->free = ubi->scrub = RB_ROOT;
ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
spin_lock_init(&ubi->wl_lock);
ubi->max_ec = si->max_ec;
INIT_LIST_HEAD(&ubi->works);
sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
if (IS_ERR(ubi->bgt_thread)) {
err = PTR_ERR(ubi->bgt_thread);
ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
err);
return err;
}
if (ubi_devices_cnt == 0) {
wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
sizeof(struct ubi_wl_entry),
0, 0, NULL);
if (!wl_entries_slab)
return -ENOMEM;
}
err = -ENOMEM;
ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
if (!ubi->lookuptbl)
goto out_free;
list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
cond_resched();
e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
if (!e)
goto out_free;
e->pnum = seb->pnum;
e->ec = seb->ec;
ubi->lookuptbl[e->pnum] = e;
if (schedule_erase(ubi, e, 0)) {
kmem_cache_free(wl_entries_slab, e);
goto out_free;
}
}
list_for_each_entry(seb, &si->free, u.list) {
cond_resched();
e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
if (!e)
goto out_free;
e->pnum = seb->pnum;
e->ec = seb->ec;
ubi_assert(e->ec >= 0);
free_tree_add(ubi, e);
ubi->lookuptbl[e->pnum] = e;
}
list_for_each_entry(seb, &si->corr, u.list) {
cond_resched();
e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
if (!e)
goto out_free;
e->pnum = seb->pnum;
e->ec = seb->ec;
ubi->lookuptbl[e->pnum] = e;
if (schedule_erase(ubi, e, 0)) {
kmem_cache_free(wl_entries_slab, e);
goto out_free;
}
}
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
cond_resched();
e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
if (!e)
goto out_free;
e->pnum = seb->pnum;
e->ec = seb->ec;
ubi->lookuptbl[e->pnum] = e;
if (!seb->scrub) {
dbg_wl("add PEB %d EC %d to the used tree",
e->pnum, e->ec);
used_tree_add(ubi, e);
} else {
dbg_wl("add PEB %d EC %d to the scrub tree",
e->pnum, e->ec);
scrub_tree_add(ubi, e);
}
}
}
if (WL_RESERVED_PEBS > ubi->avail_pebs) {
ubi_err("no enough physical eraseblocks (%d, need %d)",
ubi->avail_pebs, WL_RESERVED_PEBS);
goto out_free;
}
ubi->avail_pebs -= WL_RESERVED_PEBS;
ubi->rsvd_pebs += WL_RESERVED_PEBS;
/* Schedule wear-leveling if needed */
err = ensure_wear_leveling(ubi);
if (err)
goto out_free;
return 0;
out_free:
cancel_pending(ubi);
tree_destroy(&ubi->used);
tree_destroy(&ubi->free);
tree_destroy(&ubi->scrub);
kfree(ubi->lookuptbl);
if (ubi_devices_cnt == 0)
kmem_cache_destroy(wl_entries_slab);
return err;
}
/**
* protection_trees_destroy - destroy the protection RB-trees.
* @ubi: UBI device description object
*/
static void protection_trees_destroy(struct ubi_device *ubi)
{
struct rb_node *rb;
struct ubi_wl_prot_entry *pe;
rb = ubi->prot.aec.rb_node;
while (rb) {
if (rb->rb_left)
rb = rb->rb_left;
else if (rb->rb_right)
rb = rb->rb_right;
else {
pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
rb = rb_parent(rb);
if (rb) {
if (rb->rb_left == &pe->rb_aec)
rb->rb_left = NULL;
else
rb->rb_right = NULL;
}
kmem_cache_free(wl_entries_slab, pe->e);
kfree(pe);
}
}
}
/**
* ubi_wl_close - close the wear-leveling unit.
* @ubi: UBI device description object
*/
void ubi_wl_close(struct ubi_device *ubi)
{
dbg_wl("disable \"%s\"", ubi->bgt_name);
if (ubi->bgt_thread)
kthread_stop(ubi->bgt_thread);
dbg_wl("close the UBI wear-leveling unit");
cancel_pending(ubi);
protection_trees_destroy(ubi);
tree_destroy(&ubi->used);
tree_destroy(&ubi->free);
tree_destroy(&ubi->scrub);
kfree(ubi->lookuptbl);
if (ubi_devices_cnt == 1)
kmem_cache_destroy(wl_entries_slab);
}
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
/**
* paranoid_check_ec - make sure that the erase counter of a physical eraseblock
* is correct.
* @ubi: UBI device description object
* @pnum: the physical eraseblock number to check
* @ec: the erase counter to check
*
* This function returns zero if the erase counter of physical eraseblock @pnum
* is equivalent to @ec, %1 if not, and a negative error code if an error
* occurred.
*/
static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
{
int err;
long long read_ec;
struct ubi_ec_hdr *ec_hdr;
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
if (!ec_hdr)
return -ENOMEM;
err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
if (err && err != UBI_IO_BITFLIPS) {
/* The header does not have to exist */
err = 0;
goto out_free;
}
read_ec = be64_to_cpu(ec_hdr->ec);
if (ec != read_ec) {
ubi_err("paranoid check failed for PEB %d", pnum);
ubi_err("read EC is %lld, should be %d", read_ec, ec);
ubi_dbg_dump_stack();
err = 1;
} else
err = 0;
out_free:
kfree(ec_hdr);
return err;
}
/**
* paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
* in a WL RB-tree.
* @e: the wear-leveling entry to check
* @root: the root of the tree
*
* This function returns zero if @e is in the @root RB-tree and %1 if it
* is not.
*/
static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
struct rb_root *root)
{
if (in_wl_tree(e, root))
return 0;
ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
e->pnum, e->ec, root);
ubi_dbg_dump_stack();
return 1;
}
#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */