kernel-fxtec-pro1x/drivers/net/sfc/tx.c
FUJITA Tomonori 8d8bb39b9e dma-mapping: add the device argument to dma_mapping_error()
Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER
architecture does:

This enables us to cleanly fix the Calgary IOMMU issue that some devices
are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423).

I think that per-device dma_mapping_ops support would be also helpful for
KVM people to support PCI passthrough but Andi thinks that this makes it
difficult to support the PCI passthrough (see the above thread).  So I
CC'ed this to KVM camp.  Comments are appreciated.

A pointer to dma_mapping_ops to struct dev_archdata is added.  If the
pointer is non NULL, DMA operations in asm/dma-mapping.h use it.  If it's
NULL, the system-wide dma_ops pointer is used as before.

If it's useful for KVM people, I plan to implement a mechanism to register
a hook called when a new pci (or dma capable) device is created (it works
with hot plugging).  It enables IOMMUs to set up an appropriate
dma_mapping_ops per device.

The major obstacle is that dma_mapping_error doesn't take a pointer to the
device unlike other DMA operations.  So x86 can't have dma_mapping_ops per
device.  Note all the POWER IOMMUs use the same dma_mapping_error function
so this is not a problem for POWER but x86 IOMMUs use different
dma_mapping_error functions.

The first patch adds the device argument to dma_mapping_error.  The patch
is trivial but large since it touches lots of drivers and dma-mapping.h in
all the architecture.

This patch:

dma_mapping_error() doesn't take a pointer to the device unlike other DMA
operations.  So we can't have dma_mapping_ops per device.

Note that POWER already has dma_mapping_ops per device but all the POWER
IOMMUs use the same dma_mapping_error function.  x86 IOMMUs use device
argument.

[akpm@linux-foundation.org: fix sge]
[akpm@linux-foundation.org: fix svc_rdma]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix bnx2x]
[akpm@linux-foundation.org: fix s2io]
[akpm@linux-foundation.org: fix pasemi_mac]
[akpm@linux-foundation.org: fix sdhci]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix sparc]
[akpm@linux-foundation.org: fix ibmvscsi]
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:03 -07:00

1120 lines
30 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "tx.h"
#include "efx.h"
#include "falcon.h"
#include "workarounds.h"
/*
* TX descriptor ring full threshold
*
* The tx_queue descriptor ring fill-level must fall below this value
* before we restart the netif queue
*/
#define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \
(_tx_queue->efx->type->txd_ring_mask / 2u)
/* We want to be able to nest calls to netif_stop_queue(), since each
* channel can have an individual stop on the queue.
*/
void efx_stop_queue(struct efx_nic *efx)
{
spin_lock_bh(&efx->netif_stop_lock);
EFX_TRACE(efx, "stop TX queue\n");
atomic_inc(&efx->netif_stop_count);
netif_stop_queue(efx->net_dev);
spin_unlock_bh(&efx->netif_stop_lock);
}
/* Wake netif's TX queue
* We want to be able to nest calls to netif_stop_queue(), since each
* channel can have an individual stop on the queue.
*/
inline void efx_wake_queue(struct efx_nic *efx)
{
local_bh_disable();
if (atomic_dec_and_lock(&efx->netif_stop_count,
&efx->netif_stop_lock)) {
EFX_TRACE(efx, "waking TX queue\n");
netif_wake_queue(efx->net_dev);
spin_unlock(&efx->netif_stop_lock);
}
local_bh_enable();
}
static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
if (buffer->unmap_len) {
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
if (buffer->unmap_single)
pci_unmap_single(pci_dev, buffer->unmap_addr,
buffer->unmap_len, PCI_DMA_TODEVICE);
else
pci_unmap_page(pci_dev, buffer->unmap_addr,
buffer->unmap_len, PCI_DMA_TODEVICE);
buffer->unmap_len = 0;
buffer->unmap_single = 0;
}
if (buffer->skb) {
dev_kfree_skb_any((struct sk_buff *) buffer->skb);
buffer->skb = NULL;
EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
"complete\n", tx_queue->queue, read_ptr);
}
}
/**
* struct efx_tso_header - a DMA mapped buffer for packet headers
* @next: Linked list of free ones.
* The list is protected by the TX queue lock.
* @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
* @dma_addr: The DMA address of the header below.
*
* This controls the memory used for a TSO header. Use TSOH_DATA()
* to find the packet header data. Use TSOH_SIZE() to calculate the
* total size required for a given packet header length. TSO headers
* in the free list are exactly %TSOH_STD_SIZE bytes in size.
*/
struct efx_tso_header {
union {
struct efx_tso_header *next;
size_t unmap_len;
};
dma_addr_t dma_addr;
};
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb);
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh);
static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
if (buffer->tsoh) {
if (likely(!buffer->tsoh->unmap_len)) {
buffer->tsoh->next = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = buffer->tsoh;
} else {
efx_tsoh_heap_free(tx_queue, buffer->tsoh);
}
buffer->tsoh = NULL;
}
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* Returns NETDEV_TX_OK or NETDEV_TX_BUSY
* You must hold netif_tx_lock() to call this function.
*/
static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
struct pci_dev *pci_dev = efx->pci_dev;
struct efx_tx_buffer *buffer;
skb_frag_t *fragment;
struct page *page;
int page_offset;
unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
dma_addr_t dma_addr, unmap_addr = 0;
unsigned int dma_len;
unsigned unmap_single;
int q_space, i = 0;
int rc = NETDEV_TX_OK;
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
if (skb_shinfo((struct sk_buff *)skb)->gso_size)
return efx_enqueue_skb_tso(tx_queue, skb);
/* Get size of the initial fragment */
len = skb_headlen(skb);
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
q_space = efx->type->txd_ring_mask - 1 - fill_level;
/* Map for DMA. Use pci_map_single rather than pci_map_page
* since this is more efficient on machines with sparse
* memory.
*/
unmap_single = 1;
dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
/* Process all fragments */
while (1) {
if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
goto pci_err;
/* Store fields for marking in the per-fragment final
* descriptor */
unmap_len = len;
unmap_addr = dma_addr;
/* Add to TX queue, splitting across DMA boundaries */
do {
if (unlikely(q_space-- <= 0)) {
/* It might be that completions have
* happened since the xmit path last
* checked. Update the xmit path's
* copy of read_count.
*/
++tx_queue->stopped;
/* This memory barrier protects the
* change of stopped from the access
* of read_count. */
smp_mb();
tx_queue->old_read_count =
*(volatile unsigned *)
&tx_queue->read_count;
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = (efx->type->txd_ring_mask - 1 -
fill_level);
if (unlikely(q_space-- <= 0))
goto stop;
smp_mb();
--tx_queue->stopped;
}
insert_ptr = (tx_queue->insert_count &
efx->type->txd_ring_mask);
buffer = &tx_queue->buffer[insert_ptr];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->tsoh);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
if (likely(dma_len > len))
dma_len = len;
misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
if (misalign && dma_len + misalign > 512)
dma_len = 512 - misalign;
/* Fill out per descriptor fields */
buffer->len = dma_len;
buffer->dma_addr = dma_addr;
len -= dma_len;
dma_addr += dma_len;
++tx_queue->insert_count;
} while (len);
/* Transfer ownership of the unmapping to the final buffer */
buffer->unmap_addr = unmap_addr;
buffer->unmap_single = unmap_single;
buffer->unmap_len = unmap_len;
unmap_len = 0;
/* Get address and size of next fragment */
if (i >= skb_shinfo(skb)->nr_frags)
break;
fragment = &skb_shinfo(skb)->frags[i];
len = fragment->size;
page = fragment->page;
page_offset = fragment->page_offset;
i++;
/* Map for DMA */
unmap_single = 0;
dma_addr = pci_map_page(pci_dev, page, page_offset, len,
PCI_DMA_TODEVICE);
}
/* Transfer ownership of the skb to the final buffer */
buffer->skb = skb;
buffer->continuation = 0;
/* Pass off to hardware */
falcon_push_buffers(tx_queue);
return NETDEV_TX_OK;
pci_err:
EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
"fragments for DMA\n", tx_queue->queue, skb->len,
skb_shinfo(skb)->nr_frags + 1);
/* Mark the packet as transmitted, and free the SKB ourselves */
dev_kfree_skb_any((struct sk_buff *)skb);
goto unwind;
stop:
rc = NETDEV_TX_BUSY;
if (tx_queue->stopped == 1)
efx_stop_queue(efx);
unwind:
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != tx_queue->write_count) {
--tx_queue->insert_count;
insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
buffer = &tx_queue->buffer[insert_ptr];
efx_dequeue_buffer(tx_queue, buffer);
buffer->len = 0;
}
/* Free the fragment we were mid-way through pushing */
if (unmap_len)
pci_unmap_page(pci_dev, unmap_addr, unmap_len,
PCI_DMA_TODEVICE);
return rc;
}
/* Remove packets from the TX queue
*
* This removes packets from the TX queue, up to and including the
* specified index.
*/
static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
unsigned int index)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int stop_index, read_ptr;
unsigned int mask = tx_queue->efx->type->txd_ring_mask;
stop_index = (index + 1) & mask;
read_ptr = tx_queue->read_count & mask;
while (read_ptr != stop_index) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (unlikely(buffer->len == 0)) {
EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
"completion id %x\n", tx_queue->queue,
read_ptr);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = 1;
buffer->len = 0;
++tx_queue->read_count;
read_ptr = tx_queue->read_count & mask;
}
}
/* Initiate a packet transmission on the specified TX queue.
* Note that returning anything other than NETDEV_TX_OK will cause the
* OS to free the skb.
*
* This function is split out from efx_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues. It is
* therefore a non-static inline, so as not to penalise performance
* for non-loopback transmissions.
*
* Context: netif_tx_lock held
*/
inline int efx_xmit(struct efx_nic *efx,
struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
int rc;
/* Map fragments for DMA and add to TX queue */
rc = efx_enqueue_skb(tx_queue, skb);
if (unlikely(rc != NETDEV_TX_OK))
goto out;
/* Update last TX timer */
efx->net_dev->trans_start = jiffies;
out:
return rc;
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels). On Falcon, the TX
* completion events will be directed back to the CPU that transmitted
* the packet, which should be cache-efficient.
*
* Context: non-blocking.
* Note that returning anything other than NETDEV_TX_OK will cause the
* OS to free the skb.
*/
int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
return efx_xmit(efx, &efx->tx_queue[0], skb);
}
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
unsigned fill_level;
struct efx_nic *efx = tx_queue->efx;
EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
efx_dequeue_buffers(tx_queue, index);
/* See if we need to restart the netif queue. This barrier
* separates the update of read_count from the test of
* stopped. */
smp_mb();
if (unlikely(tx_queue->stopped)) {
fill_level = tx_queue->insert_count - tx_queue->read_count;
if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
/* Do this under netif_tx_lock(), to avoid racing
* with efx_xmit(). */
netif_tx_lock(efx->net_dev);
if (tx_queue->stopped) {
tx_queue->stopped = 0;
efx_wake_queue(efx);
}
netif_tx_unlock(efx->net_dev);
}
}
}
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int txq_size;
int i, rc;
EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
/* Allocate software ring */
txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
if (!tx_queue->buffer) {
rc = -ENOMEM;
goto fail1;
}
for (i = 0; i <= efx->type->txd_ring_mask; ++i)
tx_queue->buffer[i].continuation = 1;
/* Allocate hardware ring */
rc = falcon_probe_tx(tx_queue);
if (rc)
goto fail2;
return 0;
fail2:
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
fail1:
tx_queue->used = 0;
return rc;
}
int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0;
tx_queue->write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
BUG_ON(tx_queue->stopped);
/* Set up TX descriptor ring */
return falcon_init_tx(tx_queue);
}
void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
if (!tx_queue->buffer)
return;
/* Free any buffers left in the ring */
while (tx_queue->read_count != tx_queue->write_count) {
buffer = &tx_queue->buffer[tx_queue->read_count &
tx_queue->efx->type->txd_ring_mask];
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = 1;
buffer->len = 0;
++tx_queue->read_count;
}
}
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
/* Flush TX queue, remove descriptor ring */
falcon_fini_tx(tx_queue);
efx_release_tx_buffers(tx_queue);
/* Free up TSO header cache */
efx_fini_tso(tx_queue);
/* Release queue's stop on port, if any */
if (tx_queue->stopped) {
tx_queue->stopped = 0;
efx_wake_queue(tx_queue->efx);
}
}
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
falcon_remove_tx(tx_queue);
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
tx_queue->used = 0;
}
/* Efx TCP segmentation acceleration.
*
* Why? Because by doing it here in the driver we can go significantly
* faster than the GSO.
*
* Requires TX checksum offload support.
*/
/* Number of bytes inserted at the start of a TSO header buffer,
* similar to NET_IP_ALIGN.
*/
#if defined(__i386__) || defined(__x86_64__)
#define TSOH_OFFSET 0
#else
#define TSOH_OFFSET NET_IP_ALIGN
#endif
#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
/* Total size of struct efx_tso_header, buffer and padding */
#define TSOH_SIZE(hdr_len) \
(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
/* Size of blocks on free list. Larger blocks must be allocated from
* the heap.
*/
#define TSOH_STD_SIZE 128
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
/**
* struct tso_state - TSO state for an SKB
* @remaining_len: Bytes of data we've yet to segment
* @seqnum: Current sequence number
* @packet_space: Remaining space in current packet
* @ifc: Input fragment cursor.
* Where we are in the current fragment of the incoming SKB. These
* values get updated in place when we split a fragment over
* multiple packets.
* @p: Parameters.
* These values are set once at the start of the TSO send and do
* not get changed as the routine progresses.
*
* The state used during segmentation. It is put into this data structure
* just to make it easy to pass into inline functions.
*/
struct tso_state {
unsigned remaining_len;
unsigned seqnum;
unsigned packet_space;
struct {
/* DMA address of current position */
dma_addr_t dma_addr;
/* Remaining length */
unsigned int len;
/* DMA address and length of the whole fragment */
unsigned int unmap_len;
dma_addr_t unmap_addr;
struct page *page;
unsigned page_off;
} ifc;
struct {
/* The number of bytes of header */
unsigned int header_length;
/* The number of bytes to put in each outgoing segment. */
int full_packet_size;
/* Current IPv4 ID, host endian. */
unsigned ipv4_id;
} p;
};
/*
* Verify that our various assumptions about sk_buffs and the conditions
* under which TSO will be attempted hold true.
*/
static inline void efx_tso_check_safe(const struct sk_buff *skb)
{
EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP));
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
skb->protocol);
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
+ (tcp_hdr(skb)->doff << 2u)) >
skb_headlen(skb));
}
/*
* Allocate a page worth of efx_tso_header structures, and string them
* into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
*/
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
{
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
struct efx_tso_header *tsoh;
dma_addr_t dma_addr;
u8 *base_kva, *kva;
base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
if (base_kva == NULL) {
EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
" headers\n");
return -ENOMEM;
}
/* pci_alloc_consistent() allocates pages. */
EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
tsoh = (struct efx_tso_header *)kva;
tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
tsoh->next = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = tsoh;
}
return 0;
}
/* Free up a TSO header, and all others in the same page. */
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh,
struct pci_dev *pci_dev)
{
struct efx_tso_header **p;
unsigned long base_kva;
dma_addr_t base_dma;
base_kva = (unsigned long)tsoh & PAGE_MASK;
base_dma = tsoh->dma_addr & PAGE_MASK;
p = &tx_queue->tso_headers_free;
while (*p != NULL) {
if (((unsigned long)*p & PAGE_MASK) == base_kva)
*p = (*p)->next;
else
p = &(*p)->next;
}
pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
}
static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
{
struct efx_tso_header *tsoh;
tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
if (unlikely(!tsoh))
return NULL;
tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
TSOH_BUFFER(tsoh), header_len,
PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
tsoh->dma_addr))) {
kfree(tsoh);
return NULL;
}
tsoh->unmap_len = header_len;
return tsoh;
}
static void
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
{
pci_unmap_single(tx_queue->efx->pci_dev,
tsoh->dma_addr, tsoh->unmap_len,
PCI_DMA_TODEVICE);
kfree(tsoh);
}
/**
* efx_tx_queue_insert - push descriptors onto the TX queue
* @tx_queue: Efx TX queue
* @dma_addr: DMA address of fragment
* @len: Length of fragment
* @skb: Only non-null for end of last segment
* @end_of_packet: True if last fragment in a packet
* @unmap_addr: DMA address of fragment for unmapping
* @unmap_len: Only set this in last segment of a fragment
*
* Push descriptors onto the TX queue. Return 0 on success or 1 if
* @tx_queue full.
*/
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned len,
const struct sk_buff *skb, int end_of_packet,
dma_addr_t unmap_addr, unsigned unmap_len)
{
struct efx_tx_buffer *buffer;
struct efx_nic *efx = tx_queue->efx;
unsigned dma_len, fill_level, insert_ptr, misalign;
int q_space;
EFX_BUG_ON_PARANOID(len <= 0);
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
/* -1 as there is no way to represent all descriptors used */
q_space = efx->type->txd_ring_mask - 1 - fill_level;
while (1) {
if (unlikely(q_space-- <= 0)) {
/* It might be that completions have happened
* since the xmit path last checked. Update
* the xmit path's copy of read_count.
*/
++tx_queue->stopped;
/* This memory barrier protects the change of
* stopped from the access of read_count. */
smp_mb();
tx_queue->old_read_count =
*(volatile unsigned *)&tx_queue->read_count;
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = efx->type->txd_ring_mask - 1 - fill_level;
if (unlikely(q_space-- <= 0))
return 1;
smp_mb();
--tx_queue->stopped;
}
insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
buffer = &tx_queue->buffer[insert_ptr];
++tx_queue->insert_count;
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
tx_queue->read_count >
efx->type->txd_ring_mask);
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
EFX_BUG_ON_PARANOID(buffer->tsoh);
buffer->dma_addr = dma_addr;
/* Ensure we do not cross a boundary unsupported by H/W */
dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;
misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
if (misalign && dma_len + misalign > 512)
dma_len = 512 - misalign;
/* If there is enough space to send then do so */
if (dma_len >= len)
break;
buffer->len = dma_len; /* Don't set the other members */
dma_addr += dma_len;
len -= dma_len;
}
EFX_BUG_ON_PARANOID(!len);
buffer->len = len;
buffer->skb = skb;
buffer->continuation = !end_of_packet;
buffer->unmap_addr = unmap_addr;
buffer->unmap_len = unmap_len;
return 0;
}
/*
* Put a TSO header into the TX queue.
*
* This is special-cased because we know that it is small enough to fit in
* a single fragment, and we know it doesn't cross a page boundary. It
* also allows us to not worry about end-of-packet etc.
*/
static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh, unsigned len)
{
struct efx_tx_buffer *buffer;
buffer = &tx_queue->buffer[tx_queue->insert_count &
tx_queue->efx->type->txd_ring_mask];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
EFX_BUG_ON_PARANOID(buffer->tsoh);
buffer->len = len;
buffer->dma_addr = tsoh->dma_addr;
buffer->tsoh = tsoh;
++tx_queue->insert_count;
}
/* Remove descriptors put into a tx_queue. */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != tx_queue->write_count) {
--tx_queue->insert_count;
buffer = &tx_queue->buffer[tx_queue->insert_count &
tx_queue->efx->type->txd_ring_mask];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->skb);
buffer->len = 0;
buffer->continuation = 1;
if (buffer->unmap_len) {
pci_unmap_page(tx_queue->efx->pci_dev,
buffer->unmap_addr,
buffer->unmap_len, PCI_DMA_TODEVICE);
buffer->unmap_len = 0;
}
}
}
/* Parse the SKB header and initialise state. */
static inline void tso_start(struct tso_state *st, const struct sk_buff *skb)
{
/* All ethernet/IP/TCP headers combined size is TCP header size
* plus offset of TCP header relative to start of packet.
*/
st->p.header_length = ((tcp_hdr(skb)->doff << 2u)
+ PTR_DIFF(tcp_hdr(skb), skb->data));
st->p.full_packet_size = (st->p.header_length
+ skb_shinfo(skb)->gso_size);
st->p.ipv4_id = ntohs(ip_hdr(skb)->id);
st->seqnum = ntohl(tcp_hdr(skb)->seq);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
st->packet_space = st->p.full_packet_size;
st->remaining_len = skb->len - st->p.header_length;
}
/**
* tso_get_fragment - record fragment details and map for DMA
* @st: TSO state
* @efx: Efx NIC
* @data: Pointer to fragment data
* @len: Length of fragment
*
* Record fragment details and map for DMA. Return 0 on success, or
* -%ENOMEM if DMA mapping fails.
*/
static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
int len, struct page *page, int page_off)
{
st->ifc.unmap_addr = pci_map_page(efx->pci_dev, page, page_off,
len, PCI_DMA_TODEVICE);
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) {
st->ifc.unmap_len = len;
st->ifc.len = len;
st->ifc.dma_addr = st->ifc.unmap_addr;
st->ifc.page = page;
st->ifc.page_off = page_off;
return 0;
}
return -ENOMEM;
}
/**
* tso_fill_packet_with_fragment - form descriptors for the current fragment
* @tx_queue: Efx TX queue
* @skb: Socket buffer
* @st: TSO state
*
* Form descriptors for the current fragment, until we reach the end
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
* space in @tx_queue.
*/
static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
struct tso_state *st)
{
int n, end_of_packet, rc;
if (st->ifc.len == 0)
return 0;
if (st->packet_space == 0)
return 0;
EFX_BUG_ON_PARANOID(st->ifc.len <= 0);
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
n = min(st->ifc.len, st->packet_space);
st->packet_space -= n;
st->remaining_len -= n;
st->ifc.len -= n;
st->ifc.page_off += n;
end_of_packet = st->remaining_len == 0 || st->packet_space == 0;
rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n,
st->remaining_len ? NULL : skb,
end_of_packet, st->ifc.unmap_addr,
st->ifc.len ? 0 : st->ifc.unmap_len);
st->ifc.dma_addr += n;
return rc;
}
/**
* tso_start_new_packet - generate a new header and prepare for the new packet
* @tx_queue: Efx TX queue
* @skb: Socket buffer
* @st: TSO state
*
* Generate a new header and prepare for the new packet. Return 0 on
* success, or -1 if failed to alloc header.
*/
static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
struct tso_state *st)
{
struct efx_tso_header *tsoh;
struct iphdr *tsoh_iph;
struct tcphdr *tsoh_th;
unsigned ip_length;
u8 *header;
/* Allocate a DMA-mapped header buffer. */
if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) {
if (tx_queue->tso_headers_free == NULL) {
if (efx_tsoh_block_alloc(tx_queue))
return -1;
}
EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
tsoh = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = tsoh->next;
tsoh->unmap_len = 0;
} else {
tx_queue->tso_long_headers++;
tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length);
if (unlikely(!tsoh))
return -1;
}
header = TSOH_BUFFER(tsoh);
tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
/* Copy and update the headers. */
memcpy(header, skb->data, st->p.header_length);
tsoh_th->seq = htonl(st->seqnum);
st->seqnum += skb_shinfo(skb)->gso_size;
if (st->remaining_len > skb_shinfo(skb)->gso_size) {
/* This packet will not finish the TSO burst. */
ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb);
tsoh_th->fin = 0;
tsoh_th->psh = 0;
} else {
/* This packet will be the last in the TSO burst. */
ip_length = (st->p.header_length - ETH_HDR_LEN(skb)
+ st->remaining_len);
tsoh_th->fin = tcp_hdr(skb)->fin;
tsoh_th->psh = tcp_hdr(skb)->psh;
}
tsoh_iph->tot_len = htons(ip_length);
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
tsoh_iph->id = htons(st->p.ipv4_id);
st->p.ipv4_id++;
st->packet_space = skb_shinfo(skb)->gso_size;
++tx_queue->tso_packets;
/* Form a descriptor for this header. */
efx_tso_put_header(tx_queue, tsoh, st->p.header_length);
return 0;
}
/**
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
* @tx_queue: Efx TX queue
* @skb: Socket buffer
*
* Context: You must hold netif_tx_lock() to call this function.
*
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
* @skb was not enqueued. In all cases @skb is consumed. Return
* %NETDEV_TX_OK or %NETDEV_TX_BUSY.
*/
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb)
{
int frag_i, rc, rc2 = NETDEV_TX_OK;
struct tso_state state;
skb_frag_t *f;
/* Verify TSO is safe - these checks should never fail. */
efx_tso_check_safe(skb);
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
tso_start(&state, skb);
/* Assume that skb header area contains exactly the headers, and
* all payload is in the frag list.
*/
if (skb_headlen(skb) == state.p.header_length) {
/* Grab the first payload fragment. */
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
frag_i = 0;
f = &skb_shinfo(skb)->frags[frag_i];
rc = tso_get_fragment(&state, tx_queue->efx,
f->size, f->page, f->page_offset);
if (rc)
goto mem_err;
} else {
/* It may look like this code fragment assumes that the
* skb->data portion does not cross a page boundary, but
* that is not the case. It is guaranteed to be direct
* mapped memory, and therefore is physically contiguous,
* and so DMA will work fine. kmap_atomic() on this region
* will just return the direct mapping, so that will work
* too.
*/
int page_off = (unsigned long)skb->data & (PAGE_SIZE - 1);
int hl = state.p.header_length;
rc = tso_get_fragment(&state, tx_queue->efx,
skb_headlen(skb) - hl,
virt_to_page(skb->data), page_off + hl);
if (rc)
goto mem_err;
frag_i = -1;
}
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
goto mem_err;
while (1) {
rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
if (unlikely(rc))
goto stop;
/* Move onto the next fragment? */
if (state.ifc.len == 0) {
if (++frag_i >= skb_shinfo(skb)->nr_frags)
/* End of payload reached. */
break;
f = &skb_shinfo(skb)->frags[frag_i];
rc = tso_get_fragment(&state, tx_queue->efx,
f->size, f->page, f->page_offset);
if (rc)
goto mem_err;
}
/* Start at new packet? */
if (state.packet_space == 0 &&
tso_start_new_packet(tx_queue, skb, &state) < 0)
goto mem_err;
}
/* Pass off to hardware */
falcon_push_buffers(tx_queue);
tx_queue->tso_bursts++;
return NETDEV_TX_OK;
mem_err:
EFX_ERR(tx_queue->efx, "Out of memory for TSO headers, or PCI mapping"
" error\n");
dev_kfree_skb_any((struct sk_buff *)skb);
goto unwind;
stop:
rc2 = NETDEV_TX_BUSY;
/* Stop the queue if it wasn't stopped before. */
if (tx_queue->stopped == 1)
efx_stop_queue(tx_queue->efx);
unwind:
efx_enqueue_unwind(tx_queue);
return rc2;
}
/*
* Free up all TSO datastructures associated with tx_queue. This
* routine should be called only once the tx_queue is both empty and
* will no longer be used.
*/
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
{
unsigned i;
if (tx_queue->buffer) {
for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
}
while (tx_queue->tso_headers_free != NULL)
efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
tx_queue->efx->pci_dev);
}