kernel-fxtec-pro1x/kernel/irq/manage.c
Peter P Waskiewicz Jr e7a297b0d7 genirq: Add CPU mask affinity hint
This patch adds a cpumask affinity hint to the irq_desc structure,
along with a registration function and a read-only proc entry for each
interrupt.

This affinity_hint handle for each interrupt can be used by underlying
drivers that need a better mechanism to control interrupt affinity.
The underlying driver can register a cpumask for the interrupt, which
will allow the driver to provide the CPU mask for the interrupt to
anything that requests it.  The intent is to extend the userspace
daemon, irqbalance, to help hint to it a preferred CPU mask to balance
the interrupt into.

[ tglx: Fixed compile warnings, added WARN_ON, made SMP only ]

Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com>
Cc: davem@davemloft.net
Cc: arjan@linux.jf.intel.com
Cc: bhutchings@solarflare.com
LKML-Reference: <20100430214445.3992.41647.stgit@ppwaskie-hc2.jf.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-05-03 11:50:57 +02:00

1151 lines
29 KiB
C

/*
* linux/kernel/irq/manage.c
*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006 Thomas Gleixner
*
* This file contains driver APIs to the irq subsystem.
*/
#include <linux/irq.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include "internals.h"
/**
* synchronize_irq - wait for pending IRQ handlers (on other CPUs)
* @irq: interrupt number to wait for
*
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void synchronize_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned int status;
if (!desc)
return;
do {
unsigned long flags;
/*
* Wait until we're out of the critical section. This might
* give the wrong answer due to the lack of memory barriers.
*/
while (desc->status & IRQ_INPROGRESS)
cpu_relax();
/* Ok, that indicated we're done: double-check carefully. */
raw_spin_lock_irqsave(&desc->lock, flags);
status = desc->status;
raw_spin_unlock_irqrestore(&desc->lock, flags);
/* Oops, that failed? */
} while (status & IRQ_INPROGRESS);
/*
* We made sure that no hardirq handler is running. Now verify
* that no threaded handlers are active.
*/
wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
}
EXPORT_SYMBOL(synchronize_irq);
#ifdef CONFIG_SMP
cpumask_var_t irq_default_affinity;
/**
* irq_can_set_affinity - Check if the affinity of a given irq can be set
* @irq: Interrupt to check
*
*/
int irq_can_set_affinity(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
if (CHECK_IRQ_PER_CPU(desc->status) || !desc->chip ||
!desc->chip->set_affinity)
return 0;
return 1;
}
/**
* irq_set_thread_affinity - Notify irq threads to adjust affinity
* @desc: irq descriptor which has affitnity changed
*
* We just set IRQTF_AFFINITY and delegate the affinity setting
* to the interrupt thread itself. We can not call
* set_cpus_allowed_ptr() here as we hold desc->lock and this
* code can be called from hard interrupt context.
*/
void irq_set_thread_affinity(struct irq_desc *desc)
{
struct irqaction *action = desc->action;
while (action) {
if (action->thread)
set_bit(IRQTF_AFFINITY, &action->thread_flags);
action = action->next;
}
}
/**
* irq_set_affinity - Set the irq affinity of a given irq
* @irq: Interrupt to set affinity
* @cpumask: cpumask
*
*/
int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
if (!desc->chip->set_affinity)
return -EINVAL;
raw_spin_lock_irqsave(&desc->lock, flags);
#ifdef CONFIG_GENERIC_PENDING_IRQ
if (desc->status & IRQ_MOVE_PCNTXT) {
if (!desc->chip->set_affinity(irq, cpumask)) {
cpumask_copy(desc->affinity, cpumask);
irq_set_thread_affinity(desc);
}
}
else {
desc->status |= IRQ_MOVE_PENDING;
cpumask_copy(desc->pending_mask, cpumask);
}
#else
if (!desc->chip->set_affinity(irq, cpumask)) {
cpumask_copy(desc->affinity, cpumask);
irq_set_thread_affinity(desc);
}
#endif
desc->status |= IRQ_AFFINITY_SET;
raw_spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
if (!desc)
return -EINVAL;
raw_spin_lock_irqsave(&desc->lock, flags);
desc->affinity_hint = m;
raw_spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
#ifndef CONFIG_AUTO_IRQ_AFFINITY
/*
* Generic version of the affinity autoselector.
*/
static int setup_affinity(unsigned int irq, struct irq_desc *desc)
{
if (!irq_can_set_affinity(irq))
return 0;
/*
* Preserve an userspace affinity setup, but make sure that
* one of the targets is online.
*/
if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) {
if (cpumask_any_and(desc->affinity, cpu_online_mask)
< nr_cpu_ids)
goto set_affinity;
else
desc->status &= ~IRQ_AFFINITY_SET;
}
cpumask_and(desc->affinity, cpu_online_mask, irq_default_affinity);
set_affinity:
desc->chip->set_affinity(irq, desc->affinity);
return 0;
}
#else
static inline int setup_affinity(unsigned int irq, struct irq_desc *d)
{
return irq_select_affinity(irq);
}
#endif
/*
* Called when affinity is set via /proc/irq
*/
int irq_select_affinity_usr(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&desc->lock, flags);
ret = setup_affinity(irq, desc);
if (!ret)
irq_set_thread_affinity(desc);
raw_spin_unlock_irqrestore(&desc->lock, flags);
return ret;
}
#else
static inline int setup_affinity(unsigned int irq, struct irq_desc *desc)
{
return 0;
}
#endif
void __disable_irq(struct irq_desc *desc, unsigned int irq, bool suspend)
{
if (suspend) {
if (!desc->action || (desc->action->flags & IRQF_TIMER))
return;
desc->status |= IRQ_SUSPENDED;
}
if (!desc->depth++) {
desc->status |= IRQ_DISABLED;
desc->chip->disable(irq);
}
}
/**
* disable_irq_nosync - disable an irq without waiting
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Disables and Enables are
* nested.
* Unlike disable_irq(), this function does not ensure existing
* instances of the IRQ handler have completed before returning.
*
* This function may be called from IRQ context.
*/
void disable_irq_nosync(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
if (!desc)
return;
chip_bus_lock(irq, desc);
raw_spin_lock_irqsave(&desc->lock, flags);
__disable_irq(desc, irq, false);
raw_spin_unlock_irqrestore(&desc->lock, flags);
chip_bus_sync_unlock(irq, desc);
}
EXPORT_SYMBOL(disable_irq_nosync);
/**
* disable_irq - disable an irq and wait for completion
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Enables and Disables are
* nested.
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void disable_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
if (!desc)
return;
disable_irq_nosync(irq);
if (desc->action)
synchronize_irq(irq);
}
EXPORT_SYMBOL(disable_irq);
void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume)
{
if (resume)
desc->status &= ~IRQ_SUSPENDED;
switch (desc->depth) {
case 0:
err_out:
WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq);
break;
case 1: {
unsigned int status = desc->status & ~IRQ_DISABLED;
if (desc->status & IRQ_SUSPENDED)
goto err_out;
/* Prevent probing on this irq: */
desc->status = status | IRQ_NOPROBE;
check_irq_resend(desc, irq);
/* fall-through */
}
default:
desc->depth--;
}
}
/**
* enable_irq - enable handling of an irq
* @irq: Interrupt to enable
*
* Undoes the effect of one call to disable_irq(). If this
* matches the last disable, processing of interrupts on this
* IRQ line is re-enabled.
*
* This function may be called from IRQ context only when
* desc->chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
*/
void enable_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
if (!desc)
return;
chip_bus_lock(irq, desc);
raw_spin_lock_irqsave(&desc->lock, flags);
__enable_irq(desc, irq, false);
raw_spin_unlock_irqrestore(&desc->lock, flags);
chip_bus_sync_unlock(irq, desc);
}
EXPORT_SYMBOL(enable_irq);
static int set_irq_wake_real(unsigned int irq, unsigned int on)
{
struct irq_desc *desc = irq_to_desc(irq);
int ret = -ENXIO;
if (desc->chip->set_wake)
ret = desc->chip->set_wake(irq, on);
return ret;
}
/**
* set_irq_wake - control irq power management wakeup
* @irq: interrupt to control
* @on: enable/disable power management wakeup
*
* Enable/disable power management wakeup mode, which is
* disabled by default. Enables and disables must match,
* just as they match for non-wakeup mode support.
*
* Wakeup mode lets this IRQ wake the system from sleep
* states like "suspend to RAM".
*/
int set_irq_wake(unsigned int irq, unsigned int on)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
int ret = 0;
/* wakeup-capable irqs can be shared between drivers that
* don't need to have the same sleep mode behaviors.
*/
raw_spin_lock_irqsave(&desc->lock, flags);
if (on) {
if (desc->wake_depth++ == 0) {
ret = set_irq_wake_real(irq, on);
if (ret)
desc->wake_depth = 0;
else
desc->status |= IRQ_WAKEUP;
}
} else {
if (desc->wake_depth == 0) {
WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
} else if (--desc->wake_depth == 0) {
ret = set_irq_wake_real(irq, on);
if (ret)
desc->wake_depth = 1;
else
desc->status &= ~IRQ_WAKEUP;
}
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
return ret;
}
EXPORT_SYMBOL(set_irq_wake);
/*
* Internal function that tells the architecture code whether a
* particular irq has been exclusively allocated or is available
* for driver use.
*/
int can_request_irq(unsigned int irq, unsigned long irqflags)
{
struct irq_desc *desc = irq_to_desc(irq);
struct irqaction *action;
unsigned long flags;
if (!desc)
return 0;
if (desc->status & IRQ_NOREQUEST)
return 0;
raw_spin_lock_irqsave(&desc->lock, flags);
action = desc->action;
if (action)
if (irqflags & action->flags & IRQF_SHARED)
action = NULL;
raw_spin_unlock_irqrestore(&desc->lock, flags);
return !action;
}
void compat_irq_chip_set_default_handler(struct irq_desc *desc)
{
/*
* If the architecture still has not overriden
* the flow handler then zap the default. This
* should catch incorrect flow-type setting.
*/
if (desc->handle_irq == &handle_bad_irq)
desc->handle_irq = NULL;
}
int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
unsigned long flags)
{
int ret;
struct irq_chip *chip = desc->chip;
if (!chip || !chip->set_type) {
/*
* IRQF_TRIGGER_* but the PIC does not support multiple
* flow-types?
*/
pr_debug("No set_type function for IRQ %d (%s)\n", irq,
chip ? (chip->name ? : "unknown") : "unknown");
return 0;
}
/* caller masked out all except trigger mode flags */
ret = chip->set_type(irq, flags);
if (ret)
pr_err("setting trigger mode %d for irq %u failed (%pF)\n",
(int)flags, irq, chip->set_type);
else {
if (flags & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
flags |= IRQ_LEVEL;
/* note that IRQF_TRIGGER_MASK == IRQ_TYPE_SENSE_MASK */
desc->status &= ~(IRQ_LEVEL | IRQ_TYPE_SENSE_MASK);
desc->status |= flags;
}
return ret;
}
/*
* Default primary interrupt handler for threaded interrupts. Is
* assigned as primary handler when request_threaded_irq is called
* with handler == NULL. Useful for oneshot interrupts.
*/
static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
{
return IRQ_WAKE_THREAD;
}
/*
* Primary handler for nested threaded interrupts. Should never be
* called.
*/
static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
{
WARN(1, "Primary handler called for nested irq %d\n", irq);
return IRQ_NONE;
}
static int irq_wait_for_interrupt(struct irqaction *action)
{
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
if (test_and_clear_bit(IRQTF_RUNTHREAD,
&action->thread_flags)) {
__set_current_state(TASK_RUNNING);
return 0;
}
schedule();
}
return -1;
}
/*
* Oneshot interrupts keep the irq line masked until the threaded
* handler finished. unmask if the interrupt has not been disabled and
* is marked MASKED.
*/
static void irq_finalize_oneshot(unsigned int irq, struct irq_desc *desc)
{
again:
chip_bus_lock(irq, desc);
raw_spin_lock_irq(&desc->lock);
/*
* Implausible though it may be we need to protect us against
* the following scenario:
*
* The thread is faster done than the hard interrupt handler
* on the other CPU. If we unmask the irq line then the
* interrupt can come in again and masks the line, leaves due
* to IRQ_INPROGRESS and the irq line is masked forever.
*/
if (unlikely(desc->status & IRQ_INPROGRESS)) {
raw_spin_unlock_irq(&desc->lock);
chip_bus_sync_unlock(irq, desc);
cpu_relax();
goto again;
}
if (!(desc->status & IRQ_DISABLED) && (desc->status & IRQ_MASKED)) {
desc->status &= ~IRQ_MASKED;
desc->chip->unmask(irq);
}
raw_spin_unlock_irq(&desc->lock);
chip_bus_sync_unlock(irq, desc);
}
#ifdef CONFIG_SMP
/*
* Check whether we need to change the affinity of the interrupt thread.
*/
static void
irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
{
cpumask_var_t mask;
if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
return;
/*
* In case we are out of memory we set IRQTF_AFFINITY again and
* try again next time
*/
if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
set_bit(IRQTF_AFFINITY, &action->thread_flags);
return;
}
raw_spin_lock_irq(&desc->lock);
cpumask_copy(mask, desc->affinity);
raw_spin_unlock_irq(&desc->lock);
set_cpus_allowed_ptr(current, mask);
free_cpumask_var(mask);
}
#else
static inline void
irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
#endif
/*
* Interrupt handler thread
*/
static int irq_thread(void *data)
{
struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, };
struct irqaction *action = data;
struct irq_desc *desc = irq_to_desc(action->irq);
int wake, oneshot = desc->status & IRQ_ONESHOT;
sched_setscheduler(current, SCHED_FIFO, &param);
current->irqaction = action;
while (!irq_wait_for_interrupt(action)) {
irq_thread_check_affinity(desc, action);
atomic_inc(&desc->threads_active);
raw_spin_lock_irq(&desc->lock);
if (unlikely(desc->status & IRQ_DISABLED)) {
/*
* CHECKME: We might need a dedicated
* IRQ_THREAD_PENDING flag here, which
* retriggers the thread in check_irq_resend()
* but AFAICT IRQ_PENDING should be fine as it
* retriggers the interrupt itself --- tglx
*/
desc->status |= IRQ_PENDING;
raw_spin_unlock_irq(&desc->lock);
} else {
raw_spin_unlock_irq(&desc->lock);
action->thread_fn(action->irq, action->dev_id);
if (oneshot)
irq_finalize_oneshot(action->irq, desc);
}
wake = atomic_dec_and_test(&desc->threads_active);
if (wake && waitqueue_active(&desc->wait_for_threads))
wake_up(&desc->wait_for_threads);
}
/*
* Clear irqaction. Otherwise exit_irq_thread() would make
* fuzz about an active irq thread going into nirvana.
*/
current->irqaction = NULL;
return 0;
}
/*
* Called from do_exit()
*/
void exit_irq_thread(void)
{
struct task_struct *tsk = current;
if (!tsk->irqaction)
return;
printk(KERN_ERR
"exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
tsk->comm ? tsk->comm : "", tsk->pid, tsk->irqaction->irq);
/*
* Set the THREAD DIED flag to prevent further wakeups of the
* soon to be gone threaded handler.
*/
set_bit(IRQTF_DIED, &tsk->irqaction->flags);
}
/*
* Internal function to register an irqaction - typically used to
* allocate special interrupts that are part of the architecture.
*/
static int
__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
{
struct irqaction *old, **old_ptr;
const char *old_name = NULL;
unsigned long flags;
int nested, shared = 0;
int ret;
if (!desc)
return -EINVAL;
if (desc->chip == &no_irq_chip)
return -ENOSYS;
/*
* Some drivers like serial.c use request_irq() heavily,
* so we have to be careful not to interfere with a
* running system.
*/
if (new->flags & IRQF_SAMPLE_RANDOM) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
/* Oneshot interrupts are not allowed with shared */
if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED))
return -EINVAL;
/*
* Check whether the interrupt nests into another interrupt
* thread.
*/
nested = desc->status & IRQ_NESTED_THREAD;
if (nested) {
if (!new->thread_fn)
return -EINVAL;
/*
* Replace the primary handler which was provided from
* the driver for non nested interrupt handling by the
* dummy function which warns when called.
*/
new->handler = irq_nested_primary_handler;
}
/*
* Create a handler thread when a thread function is supplied
* and the interrupt does not nest into another interrupt
* thread.
*/
if (new->thread_fn && !nested) {
struct task_struct *t;
t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
new->name);
if (IS_ERR(t))
return PTR_ERR(t);
/*
* We keep the reference to the task struct even if
* the thread dies to avoid that the interrupt code
* references an already freed task_struct.
*/
get_task_struct(t);
new->thread = t;
}
/*
* The following block of code has to be executed atomically
*/
raw_spin_lock_irqsave(&desc->lock, flags);
old_ptr = &desc->action;
old = *old_ptr;
if (old) {
/*
* Can't share interrupts unless both agree to and are
* the same type (level, edge, polarity). So both flag
* fields must have IRQF_SHARED set and the bits which
* set the trigger type must match.
*/
if (!((old->flags & new->flags) & IRQF_SHARED) ||
((old->flags ^ new->flags) & IRQF_TRIGGER_MASK)) {
old_name = old->name;
goto mismatch;
}
#if defined(CONFIG_IRQ_PER_CPU)
/* All handlers must agree on per-cpuness */
if ((old->flags & IRQF_PERCPU) !=
(new->flags & IRQF_PERCPU))
goto mismatch;
#endif
/* add new interrupt at end of irq queue */
do {
old_ptr = &old->next;
old = *old_ptr;
} while (old);
shared = 1;
}
if (!shared) {
irq_chip_set_defaults(desc->chip);
init_waitqueue_head(&desc->wait_for_threads);
/* Setup the type (level, edge polarity) if configured: */
if (new->flags & IRQF_TRIGGER_MASK) {
ret = __irq_set_trigger(desc, irq,
new->flags & IRQF_TRIGGER_MASK);
if (ret)
goto out_thread;
} else
compat_irq_chip_set_default_handler(desc);
#if defined(CONFIG_IRQ_PER_CPU)
if (new->flags & IRQF_PERCPU)
desc->status |= IRQ_PER_CPU;
#endif
desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT |
IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED);
if (new->flags & IRQF_ONESHOT)
desc->status |= IRQ_ONESHOT;
if (!(desc->status & IRQ_NOAUTOEN)) {
desc->depth = 0;
desc->status &= ~IRQ_DISABLED;
desc->chip->startup(irq);
} else
/* Undo nested disables: */
desc->depth = 1;
/* Exclude IRQ from balancing if requested */
if (new->flags & IRQF_NOBALANCING)
desc->status |= IRQ_NO_BALANCING;
/* Set default affinity mask once everything is setup */
setup_affinity(irq, desc);
} else if ((new->flags & IRQF_TRIGGER_MASK)
&& (new->flags & IRQF_TRIGGER_MASK)
!= (desc->status & IRQ_TYPE_SENSE_MASK)) {
/* hope the handler works with the actual trigger mode... */
pr_warning("IRQ %d uses trigger mode %d; requested %d\n",
irq, (int)(desc->status & IRQ_TYPE_SENSE_MASK),
(int)(new->flags & IRQF_TRIGGER_MASK));
}
new->irq = irq;
*old_ptr = new;
/* Reset broken irq detection when installing new handler */
desc->irq_count = 0;
desc->irqs_unhandled = 0;
/*
* Check whether we disabled the irq via the spurious handler
* before. Reenable it and give it another chance.
*/
if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) {
desc->status &= ~IRQ_SPURIOUS_DISABLED;
__enable_irq(desc, irq, false);
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
/*
* Strictly no need to wake it up, but hung_task complains
* when no hard interrupt wakes the thread up.
*/
if (new->thread)
wake_up_process(new->thread);
register_irq_proc(irq, desc);
new->dir = NULL;
register_handler_proc(irq, new);
return 0;
mismatch:
#ifdef CONFIG_DEBUG_SHIRQ
if (!(new->flags & IRQF_PROBE_SHARED)) {
printk(KERN_ERR "IRQ handler type mismatch for IRQ %d\n", irq);
if (old_name)
printk(KERN_ERR "current handler: %s\n", old_name);
dump_stack();
}
#endif
ret = -EBUSY;
out_thread:
raw_spin_unlock_irqrestore(&desc->lock, flags);
if (new->thread) {
struct task_struct *t = new->thread;
new->thread = NULL;
if (likely(!test_bit(IRQTF_DIED, &new->thread_flags)))
kthread_stop(t);
put_task_struct(t);
}
return ret;
}
/**
* setup_irq - setup an interrupt
* @irq: Interrupt line to setup
* @act: irqaction for the interrupt
*
* Used to statically setup interrupts in the early boot process.
*/
int setup_irq(unsigned int irq, struct irqaction *act)
{
struct irq_desc *desc = irq_to_desc(irq);
return __setup_irq(irq, desc, act);
}
EXPORT_SYMBOL_GPL(setup_irq);
/*
* Internal function to unregister an irqaction - used to free
* regular and special interrupts that are part of the architecture.
*/
static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
{
struct irq_desc *desc = irq_to_desc(irq);
struct irqaction *action, **action_ptr;
unsigned long flags;
WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
if (!desc)
return NULL;
raw_spin_lock_irqsave(&desc->lock, flags);
/*
* There can be multiple actions per IRQ descriptor, find the right
* one based on the dev_id:
*/
action_ptr = &desc->action;
for (;;) {
action = *action_ptr;
if (!action) {
WARN(1, "Trying to free already-free IRQ %d\n", irq);
raw_spin_unlock_irqrestore(&desc->lock, flags);
return NULL;
}
if (action->dev_id == dev_id)
break;
action_ptr = &action->next;
}
/* Found it - now remove it from the list of entries: */
*action_ptr = action->next;
/* Currently used only by UML, might disappear one day: */
#ifdef CONFIG_IRQ_RELEASE_METHOD
if (desc->chip->release)
desc->chip->release(irq, dev_id);
#endif
/* If this was the last handler, shut down the IRQ line: */
if (!desc->action) {
desc->status |= IRQ_DISABLED;
if (desc->chip->shutdown)
desc->chip->shutdown(irq);
else
desc->chip->disable(irq);
}
#ifdef CONFIG_SMP
/* make sure affinity_hint is cleaned up */
if (WARN_ON_ONCE(desc->affinity_hint))
desc->affinity_hint = NULL;
#endif
raw_spin_unlock_irqrestore(&desc->lock, flags);
unregister_handler_proc(irq, action);
/* Make sure it's not being used on another CPU: */
synchronize_irq(irq);
#ifdef CONFIG_DEBUG_SHIRQ
/*
* It's a shared IRQ -- the driver ought to be prepared for an IRQ
* event to happen even now it's being freed, so let's make sure that
* is so by doing an extra call to the handler ....
*
* ( We do this after actually deregistering it, to make sure that a
* 'real' IRQ doesn't run in * parallel with our fake. )
*/
if (action->flags & IRQF_SHARED) {
local_irq_save(flags);
action->handler(irq, dev_id);
local_irq_restore(flags);
}
#endif
if (action->thread) {
if (!test_bit(IRQTF_DIED, &action->thread_flags))
kthread_stop(action->thread);
put_task_struct(action->thread);
}
return action;
}
/**
* remove_irq - free an interrupt
* @irq: Interrupt line to free
* @act: irqaction for the interrupt
*
* Used to remove interrupts statically setup by the early boot process.
*/
void remove_irq(unsigned int irq, struct irqaction *act)
{
__free_irq(irq, act->dev_id);
}
EXPORT_SYMBOL_GPL(remove_irq);
/**
* free_irq - free an interrupt allocated with request_irq
* @irq: Interrupt line to free
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the
* interrupt line is no longer in use by any driver it is disabled.
* On a shared IRQ the caller must ensure the interrupt is disabled
* on the card it drives before calling this function. The function
* does not return until any executing interrupts for this IRQ
* have completed.
*
* This function must not be called from interrupt context.
*/
void free_irq(unsigned int irq, void *dev_id)
{
struct irq_desc *desc = irq_to_desc(irq);
if (!desc)
return;
chip_bus_lock(irq, desc);
kfree(__free_irq(irq, dev_id));
chip_bus_sync_unlock(irq, desc);
}
EXPORT_SYMBOL(free_irq);
/**
* request_threaded_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs.
* Primary handler for threaded interrupts
* If NULL and thread_fn != NULL the default
* primary handler is installed
* @thread_fn: Function called from the irq handler thread
* If NULL, no irq thread is created
* @irqflags: Interrupt type flags
* @devname: An ascii name for the claiming device
* @dev_id: A cookie passed back to the handler function
*
* This call allocates interrupt resources and enables the
* interrupt line and IRQ handling. From the point this
* call is made your handler function may be invoked. Since
* your handler function must clear any interrupt the board
* raises, you must take care both to initialise your hardware
* and to set up the interrupt handler in the right order.
*
* If you want to set up a threaded irq handler for your device
* then you need to supply @handler and @thread_fn. @handler ist
* still called in hard interrupt context and has to check
* whether the interrupt originates from the device. If yes it
* needs to disable the interrupt on the device and return
* IRQ_WAKE_THREAD which will wake up the handler thread and run
* @thread_fn. This split handler design is necessary to support
* shared interrupts.
*
* Dev_id must be globally unique. Normally the address of the
* device data structure is used as the cookie. Since the handler
* receives this value it makes sense to use it.
*
* If your interrupt is shared you must pass a non NULL dev_id
* as this is required when freeing the interrupt.
*
* Flags:
*
* IRQF_SHARED Interrupt is shared
* IRQF_SAMPLE_RANDOM The interrupt can be used for entropy
* IRQF_TRIGGER_* Specify active edge(s) or level
*
*/
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char *devname, void *dev_id)
{
struct irqaction *action;
struct irq_desc *desc;
int retval;
/*
* Sanity-check: shared interrupts must pass in a real dev-ID,
* otherwise we'll have trouble later trying to figure out
* which interrupt is which (messes up the interrupt freeing
* logic etc).
*/
if ((irqflags & IRQF_SHARED) && !dev_id)
return -EINVAL;
desc = irq_to_desc(irq);
if (!desc)
return -EINVAL;
if (desc->status & IRQ_NOREQUEST)
return -EINVAL;
if (!handler) {
if (!thread_fn)
return -EINVAL;
handler = irq_default_primary_handler;
}
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
if (!action)
return -ENOMEM;
action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irqflags;
action->name = devname;
action->dev_id = dev_id;
chip_bus_lock(irq, desc);
retval = __setup_irq(irq, desc, action);
chip_bus_sync_unlock(irq, desc);
if (retval)
kfree(action);
#ifdef CONFIG_DEBUG_SHIRQ
if (!retval && (irqflags & IRQF_SHARED)) {
/*
* It's a shared IRQ -- the driver ought to be prepared for it
* to happen immediately, so let's make sure....
* We disable the irq to make sure that a 'real' IRQ doesn't
* run in parallel with our fake.
*/
unsigned long flags;
disable_irq(irq);
local_irq_save(flags);
handler(irq, dev_id);
local_irq_restore(flags);
enable_irq(irq);
}
#endif
return retval;
}
EXPORT_SYMBOL(request_threaded_irq);
/**
* request_any_context_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs.
* Threaded handler for threaded interrupts.
* @flags: Interrupt type flags
* @name: An ascii name for the claiming device
* @dev_id: A cookie passed back to the handler function
*
* This call allocates interrupt resources and enables the
* interrupt line and IRQ handling. It selects either a
* hardirq or threaded handling method depending on the
* context.
*
* On failure, it returns a negative value. On success,
* it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
*/
int request_any_context_irq(unsigned int irq, irq_handler_t handler,
unsigned long flags, const char *name, void *dev_id)
{
struct irq_desc *desc = irq_to_desc(irq);
int ret;
if (!desc)
return -EINVAL;
if (desc->status & IRQ_NESTED_THREAD) {
ret = request_threaded_irq(irq, NULL, handler,
flags, name, dev_id);
return !ret ? IRQC_IS_NESTED : ret;
}
ret = request_irq(irq, handler, flags, name, dev_id);
return !ret ? IRQC_IS_HARDIRQ : ret;
}
EXPORT_SYMBOL_GPL(request_any_context_irq);