kernel-fxtec-pro1x/drivers/gpu/drm/i915/i915_gem.c
Chris Wilson e624ae8e0d Merge branch 'drm-intel-fixes' into drm-intel-next
Conflicts:
	drivers/gpu/drm/i915/i915_gem.c
2010-11-22 08:51:36 +00:00

5142 lines
134 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/intel-gtt.h>
struct change_domains {
uint32_t invalidate_domains;
uint32_t flush_domains;
uint32_t flush_rings;
};
static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
bool pipelined);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset,
uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
bool interruptible);
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
unsigned alignment,
bool map_and_fenceable);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv);
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
int nr_to_scan,
gfp_t gfp_mask);
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
}
static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *obj)
{
dev_priv->mm.gtt_count++;
dev_priv->mm.gtt_memory += obj->gtt_space->size;
if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
dev_priv->mm.mappable_gtt_used +=
min_t(size_t, obj->gtt_space->size,
dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
}
}
static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *obj)
{
dev_priv->mm.gtt_count--;
dev_priv->mm.gtt_memory -= obj->gtt_space->size;
if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
dev_priv->mm.mappable_gtt_used -=
min_t(size_t, obj->gtt_space->size,
dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
}
}
/**
* Update the mappable working set counters. Call _only_ when there is a change
* in one of (pin|fault)_mappable and update *_mappable _before_ calling.
* @mappable: new state the changed mappable flag (either pin_ or fault_).
*/
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *obj,
bool mappable)
{
if (mappable) {
if (obj->pin_mappable && obj->fault_mappable)
/* Combined state was already mappable. */
return;
dev_priv->mm.gtt_mappable_count++;
dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
} else {
if (obj->pin_mappable || obj->fault_mappable)
/* Combined state still mappable. */
return;
dev_priv->mm.gtt_mappable_count--;
dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
}
}
static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *obj,
bool mappable)
{
dev_priv->mm.pin_count++;
dev_priv->mm.pin_memory += obj->gtt_space->size;
if (mappable) {
obj->pin_mappable = true;
i915_gem_info_update_mappable(dev_priv, obj, true);
}
}
static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *obj)
{
dev_priv->mm.pin_count--;
dev_priv->mm.pin_memory -= obj->gtt_space->size;
if (obj->pin_mappable) {
obj->pin_mappable = false;
i915_gem_info_update_mappable(dev_priv, obj, false);
}
}
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct completion *x = &dev_priv->error_completion;
unsigned long flags;
int ret;
if (!atomic_read(&dev_priv->mm.wedged))
return 0;
ret = wait_for_completion_interruptible(x);
if (ret)
return ret;
/* Success, we reset the GPU! */
if (!atomic_read(&dev_priv->mm.wedged))
return 0;
/* GPU is hung, bump the completion count to account for
* the token we just consumed so that we never hit zero and
* end up waiting upon a subsequent completion event that
* will never happen.
*/
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
spin_unlock_irqrestore(&x->wait.lock, flags);
return -EIO;
}
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_check_is_wedged(dev);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (atomic_read(&dev_priv->mm.wedged)) {
mutex_unlock(&dev->struct_mutex);
return -EAGAIN;
}
WARN_ON(i915_verify_lists(dev));
return 0;
}
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
return obj_priv->gtt_space &&
!obj_priv->active &&
obj_priv->pin_count == 0;
}
int i915_gem_do_init(struct drm_device *dev,
unsigned long start,
unsigned long mappable_end,
unsigned long end)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (start >= end ||
(start & (PAGE_SIZE - 1)) != 0 ||
(end & (PAGE_SIZE - 1)) != 0) {
return -EINVAL;
}
drm_mm_init(&dev_priv->mm.gtt_space, start,
end - start);
dev_priv->mm.gtt_total = end - start;
dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
dev_priv->mm.gtt_mappable_end = mappable_end;
return 0;
}
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_init *args = data;
int ret;
mutex_lock(&dev->struct_mutex);
ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
mutex_lock(&dev->struct_mutex);
args->aper_size = dev_priv->mm.gtt_total;
args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
mutex_unlock(&dev->struct_mutex);
return 0;
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_create *args = data;
struct drm_gem_object *obj;
int ret;
u32 handle;
args->size = roundup(args->size, PAGE_SIZE);
/* Allocate the new object */
obj = i915_gem_alloc_object(dev, args->size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file_priv, obj, &handle);
if (ret) {
drm_gem_object_release(obj);
i915_gem_info_remove_obj(dev->dev_private, obj->size);
kfree(obj);
return ret;
}
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference(obj);
trace_i915_gem_object_create(obj);
args->handle = handle;
return 0;
}
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
drm_i915_private_t *dev_priv = obj->dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
obj_priv->tiling_mode != I915_TILING_NONE;
}
static inline void
slow_shmem_copy(struct page *dst_page,
int dst_offset,
struct page *src_page,
int src_offset,
int length)
{
char *dst_vaddr, *src_vaddr;
dst_vaddr = kmap(dst_page);
src_vaddr = kmap(src_page);
memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
kunmap(src_page);
kunmap(dst_page);
}
static inline void
slow_shmem_bit17_copy(struct page *gpu_page,
int gpu_offset,
struct page *cpu_page,
int cpu_offset,
int length,
int is_read)
{
char *gpu_vaddr, *cpu_vaddr;
/* Use the unswizzled path if this page isn't affected. */
if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
if (is_read)
return slow_shmem_copy(cpu_page, cpu_offset,
gpu_page, gpu_offset, length);
else
return slow_shmem_copy(gpu_page, gpu_offset,
cpu_page, cpu_offset, length);
}
gpu_vaddr = kmap(gpu_page);
cpu_vaddr = kmap(cpu_page);
/* Copy the data, XORing A6 with A17 (1). The user already knows he's
* XORing with the other bits (A9 for Y, A9 and A10 for X)
*/
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
if (is_read) {
memcpy(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
} else {
memcpy(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
}
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
kunmap(cpu_page);
kunmap(gpu_page);
}
/**
* This is the fast shmem pread path, which attempts to copy_from_user directly
* from the backing pages of the object to the user's address space. On a
* fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
*/
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file_priv)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
ssize_t remain;
loff_t offset;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
obj_priv = to_intel_bo(obj);
offset = args->offset;
while (remain > 0) {
struct page *page;
char *vaddr;
int ret;
/* Operation in this page
*
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_offset = offset & (PAGE_SIZE-1);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (IS_ERR(page))
return PTR_ERR(page);
vaddr = kmap_atomic(page);
ret = __copy_to_user_inatomic(user_data,
vaddr + page_offset,
page_length);
kunmap_atomic(vaddr);
mark_page_accessed(page);
page_cache_release(page);
if (ret)
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback shmem pread path, which allocates temporary storage
* in kernel space to copy_to_user into outside of the struct_mutex, so we
* can copy out of the object's backing pages while holding the struct mutex
* and not take page faults.
*/
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file_priv)
{
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct mm_struct *mm = current->mm;
struct page **user_pages;
ssize_t remain;
loff_t offset, pinned_pages, i;
loff_t first_data_page, last_data_page, num_pages;
int shmem_page_offset;
int data_page_index, data_page_offset;
int page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
int do_bit17_swizzling;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, yet we want to hold it while
* dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 1, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out;
}
ret = i915_gem_object_set_cpu_read_domain_range(obj,
args->offset,
args->size);
if (ret)
goto out;
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
obj_priv = to_intel_bo(obj);
offset = args->offset;
while (remain > 0) {
struct page *page;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset & ~PAGE_MASK;
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = data_ptr & ~PAGE_MASK;
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (IS_ERR(page))
return PTR_ERR(page);
if (do_bit17_swizzling) {
slow_shmem_bit17_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length,
1);
} else {
slow_shmem_copy(user_pages[data_page_index],
data_page_offset,
page,
shmem_page_offset,
page_length);
}
mark_page_accessed(page);
page_cache_release(page);
remain -= page_length;
data_ptr += page_length;
offset += page_length;
}
out:
for (i = 0; i < pinned_pages; i++) {
SetPageDirty(user_pages[i]);
mark_page_accessed(user_pages[i]);
page_cache_release(user_pages[i]);
}
drm_free_large(user_pages);
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pread *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
args->size);
if (ret)
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
/* Bounds check source. */
if (args->offset > obj->size || args->size > obj->size - args->offset) {
ret = -EINVAL;
goto out;
}
ret = i915_gem_object_set_cpu_read_domain_range(obj,
args->offset,
args->size);
if (ret)
goto out;
ret = -EFAULT;
if (!i915_gem_object_needs_bit17_swizzle(obj))
ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
if (ret == -EFAULT)
ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
char *vaddr_atomic;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/* Here's the write path which can sleep for
* page faults
*/
static inline void
slow_kernel_write(struct io_mapping *mapping,
loff_t gtt_base, int gtt_offset,
struct page *user_page, int user_offset,
int length)
{
char __iomem *dst_vaddr;
char *src_vaddr;
dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
src_vaddr = kmap(user_page);
memcpy_toio(dst_vaddr + gtt_offset,
src_vaddr + user_offset,
length);
kunmap(user_page);
io_mapping_unmap(dst_vaddr);
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
obj_priv = to_intel_bo(obj);
offset = obj_priv->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = (offset & ~(PAGE_SIZE-1));
page_offset = offset & (PAGE_SIZE-1);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
page_offset, user_data, page_length))
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback GTT pwrite path, which uses get_user_pages to pin
* the memory and maps it using kmap_atomic for copying.
*
* This code resulted in x11perf -rgb10text consuming about 10% more CPU
* than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
*/
static int
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t gtt_page_base, offset;
loff_t first_data_page, last_data_page, num_pages;
loff_t pinned_pages, i;
struct page **user_pages;
struct mm_struct *mm = current->mm;
int gtt_page_offset, data_page_offset, data_page_index, page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, and all of the pwrite implementations
* want to hold it while dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 0, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out_unpin_pages;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret)
goto out_unpin_pages;
obj_priv = to_intel_bo(obj);
offset = obj_priv->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* gtt_page_base = page offset within aperture
* gtt_page_offset = offset within page in aperture
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
gtt_page_base = offset & PAGE_MASK;
gtt_page_offset = offset & ~PAGE_MASK;
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = data_ptr & ~PAGE_MASK;
page_length = remain;
if ((gtt_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - gtt_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
slow_kernel_write(dev_priv->mm.gtt_mapping,
gtt_page_base, gtt_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length);
remain -= page_length;
offset += page_length;
data_ptr += page_length;
}
out_unpin_pages:
for (i = 0; i < pinned_pages; i++)
page_cache_release(user_pages[i]);
drm_free_large(user_pages);
return ret;
}
/**
* This is the fast shmem pwrite path, which attempts to directly
* copy_from_user into the kmapped pages backing the object.
*/
static int
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ssize_t remain;
loff_t offset;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
obj_priv = to_intel_bo(obj);
offset = args->offset;
obj_priv->dirty = 1;
while (remain > 0) {
struct page *page;
char *vaddr;
int ret;
/* Operation in this page
*
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_offset = offset & (PAGE_SIZE-1);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (IS_ERR(page))
return PTR_ERR(page);
vaddr = kmap_atomic(page, KM_USER0);
ret = __copy_from_user_inatomic(vaddr + page_offset,
user_data,
page_length);
kunmap_atomic(vaddr, KM_USER0);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (ret)
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback shmem pwrite path, which uses get_user_pages to pin
* the memory and maps it using kmap_atomic for copying.
*
* This avoids taking mmap_sem for faulting on the user's address while the
* struct_mutex is held.
*/
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct mm_struct *mm = current->mm;
struct page **user_pages;
ssize_t remain;
loff_t offset, pinned_pages, i;
loff_t first_data_page, last_data_page, num_pages;
int shmem_page_offset;
int data_page_index, data_page_offset;
int page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
int do_bit17_swizzling;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, and all of the pwrite implementations
* want to hold it while dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 0, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out;
}
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret)
goto out;
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
obj_priv = to_intel_bo(obj);
offset = args->offset;
obj_priv->dirty = 1;
while (remain > 0) {
struct page *page;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset & ~PAGE_MASK;
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = data_ptr & ~PAGE_MASK;
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
if (do_bit17_swizzling) {
slow_shmem_bit17_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length,
0);
} else {
slow_shmem_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length);
}
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
remain -= page_length;
data_ptr += page_length;
offset += page_length;
}
out:
for (i = 0; i < pinned_pages; i++)
page_cache_release(user_pages[i]);
drm_free_large(user_pages);
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
args->size);
if (ret)
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
/* Bounds check destination. */
if (args->offset > obj->size || args->size > obj->size - args->offset) {
ret = -EINVAL;
goto out;
}
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj_priv->phys_obj)
ret = i915_gem_phys_pwrite(dev, obj, args, file);
else if (obj_priv->tiling_mode == I915_TILING_NONE &&
obj_priv->gtt_space &&
obj->write_domain != I915_GEM_DOMAIN_CPU) {
ret = i915_gem_object_pin(obj, 0, true);
if (ret)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret)
goto out_unpin;
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
if (ret == -EFAULT)
ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
out_unpin:
i915_gem_object_unpin(obj);
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret)
goto out;
ret = -EFAULT;
if (!i915_gem_object_needs_bit17_swizzle(obj))
ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
if (ret == -EFAULT)
ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
}
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_set_domain *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & I915_GEM_GPU_DOMAINS)
return -EINVAL;
if (read_domains & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
intel_mark_busy(dev, obj);
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
/* Update the LRU on the fence for the CPU access that's
* about to occur.
*/
if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_fence_reg *reg =
&dev_priv->fence_regs[obj_priv->fence_reg];
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
}
/* Silently promote "you're not bound, there was nothing to do"
* to success, since the client was just asking us to
* make sure everything was done.
*/
if (ret == -EINVAL)
ret = 0;
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
/* Maintain LRU order of "inactive" objects */
if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_gem_object *obj;
int ret = 0;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Pinned buffers may be scanout, so flush the cache */
if (to_intel_bo(obj)->pin_count)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
loff_t offset;
unsigned long addr;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -ENOENT;
if (obj->size > dev_priv->mm.gtt_mappable_end) {
drm_gem_object_unreference_unlocked(obj);
return -E2BIG;
}
offset = args->offset;
down_write(&current->mm->mmap_sem);
addr = do_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
up_write(&current->mm->mmap_sem);
drm_gem_object_unreference_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
/**
* i915_gem_fault - fault a page into the GTT
* vma: VMA in question
* vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*/
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_gem_object *obj = vma->vm_private_data;
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
pgoff_t page_offset;
unsigned long pfn;
int ret = 0;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
/* Now bind it into the GTT if needed */
mutex_lock(&dev->struct_mutex);
BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
if (obj_priv->gtt_space) {
if (!obj_priv->map_and_fenceable) {
ret = i915_gem_object_unbind(obj);
if (ret)
goto unlock;
}
}
if (!obj_priv->gtt_space) {
ret = i915_gem_object_bind_to_gtt(obj, 0, true);
if (ret)
goto unlock;
}
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto unlock;
if (!obj_priv->fault_mappable) {
obj_priv->fault_mappable = true;
i915_gem_info_update_mappable(dev_priv, obj_priv, true);
}
/* Need a new fence register? */
if (obj_priv->tiling_mode != I915_TILING_NONE) {
ret = i915_gem_object_get_fence_reg(obj, true);
if (ret)
goto unlock;
}
if (i915_gem_object_is_inactive(obj_priv))
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
page_offset;
/* Finally, remap it using the new GTT offset */
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
unlock:
mutex_unlock(&dev->struct_mutex);
switch (ret) {
case -EAGAIN:
set_need_resched();
case 0:
case -ERESTARTSYS:
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
default:
return VM_FAULT_SIGBUS;
}
}
/**
* i915_gem_create_mmap_offset - create a fake mmap offset for an object
* @obj: obj in question
*
* GEM memory mapping works by handing back to userspace a fake mmap offset
* it can use in a subsequent mmap(2) call. The DRM core code then looks
* up the object based on the offset and sets up the various memory mapping
* structures.
*
* This routine allocates and attaches a fake offset for @obj.
*/
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_gem_mm *mm = dev->mm_private;
struct drm_map_list *list;
struct drm_local_map *map;
int ret = 0;
/* Set the object up for mmap'ing */
list = &obj->map_list;
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
if (!list->map)
return -ENOMEM;
map = list->map;
map->type = _DRM_GEM;
map->size = obj->size;
map->handle = obj;
/* Get a DRM GEM mmap offset allocated... */
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
obj->size / PAGE_SIZE, 0, 0);
if (!list->file_offset_node) {
DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
ret = -ENOSPC;
goto out_free_list;
}
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
obj->size / PAGE_SIZE, 0);
if (!list->file_offset_node) {
ret = -ENOMEM;
goto out_free_list;
}
list->hash.key = list->file_offset_node->start;
ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
if (ret) {
DRM_ERROR("failed to add to map hash\n");
goto out_free_mm;
}
return 0;
out_free_mm:
drm_mm_put_block(list->file_offset_node);
out_free_list:
kfree(list->map);
list->map = NULL;
return ret;
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
if (unlikely(obj->map_list.map && dev->dev_mapping))
unmap_mapping_range(dev->dev_mapping,
(loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
obj->size, 1);
if (obj_priv->fault_mappable) {
obj_priv->fault_mappable = false;
i915_gem_info_update_mappable(dev_priv, obj_priv, false);
}
}
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_gem_mm *mm = dev->mm_private;
struct drm_map_list *list = &obj->map_list;
drm_ht_remove_item(&mm->offset_hash, &list->hash);
drm_mm_put_block(list->file_offset_node);
kfree(list->map);
list->map = NULL;
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
static uint32_t
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
{
struct drm_device *dev = obj_priv->base.dev;
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 ||
obj_priv->tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_gtt_size(obj_priv);
}
/**
* i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
* unfenced object
* @obj: object to check
*
* Return the required GTT alignment for an object, only taking into account
* unfenced tiled surface requirements.
*/
static uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
{
struct drm_device *dev = obj_priv->base.dev;
int tile_height;
/*
* Minimum alignment is 4k (GTT page size) for sane hw.
*/
if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
obj_priv->tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Older chips need unfenced tiled buffers to be aligned to the left
* edge of an even tile row (where tile rows are counted as if the bo is
* placed in a fenced gtt region).
*/
if (IS_GEN2(dev) ||
(obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
tile_height = 32;
else
tile_height = 8;
return tile_height * obj_priv->stride * 2;
}
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
{
struct drm_device *dev = obj_priv->base.dev;
uint32_t size;
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4)
return obj_priv->base.size;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
if (INTEL_INFO(dev)->gen == 3)
size = 1024*1024;
else
size = 512*1024;
while (size < obj_priv->base.size)
size <<= 1;
return size;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file_priv: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_mmap_gtt *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
if (obj->size > dev_priv->mm.gtt_mappable_end) {
ret = -E2BIG;
goto unlock;
}
if (obj_priv->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (!obj->map_list.map) {
ret = i915_gem_create_mmap_offset(obj);
if (ret)
goto out;
}
args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
gfp_t gfpmask)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int page_count, i;
struct address_space *mapping;
struct inode *inode;
struct page *page;
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*/
page_count = obj->size / PAGE_SIZE;
BUG_ON(obj_priv->pages != NULL);
obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
if (obj_priv->pages == NULL)
return -ENOMEM;
inode = obj->filp->f_path.dentry->d_inode;
mapping = inode->i_mapping;
for (i = 0; i < page_count; i++) {
page = read_cache_page_gfp(mapping, i,
GFP_HIGHUSER |
__GFP_COLD |
__GFP_RECLAIMABLE |
gfpmask);
if (IS_ERR(page))
goto err_pages;
obj_priv->pages[i] = page;
}
if (obj_priv->tiling_mode != I915_TILING_NONE)
i915_gem_object_do_bit_17_swizzle(obj);
return 0;
err_pages:
while (i--)
page_cache_release(obj_priv->pages[i]);
drm_free_large(obj_priv->pages);
obj_priv->pages = NULL;
return PTR_ERR(page);
}
static void
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int page_count = obj->size / PAGE_SIZE;
int i;
BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
if (obj_priv->tiling_mode != I915_TILING_NONE)
i915_gem_object_save_bit_17_swizzle(obj);
if (obj_priv->madv == I915_MADV_DONTNEED)
obj_priv->dirty = 0;
for (i = 0; i < page_count; i++) {
if (obj_priv->dirty)
set_page_dirty(obj_priv->pages[i]);
if (obj_priv->madv == I915_MADV_WILLNEED)
mark_page_accessed(obj_priv->pages[i]);
page_cache_release(obj_priv->pages[i]);
}
obj_priv->dirty = 0;
drm_free_large(obj_priv->pages);
obj_priv->pages = NULL;
}
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = dev->dev_private;
return ring->outstanding_lazy_request = dev_priv->next_seqno;
}
static void
i915_gem_object_move_to_active(struct drm_gem_object *obj,
struct intel_ring_buffer *ring)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
BUG_ON(ring == NULL);
obj_priv->ring = ring;
/* Add a reference if we're newly entering the active list. */
if (!obj_priv->active) {
drm_gem_object_reference(obj);
obj_priv->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
list_move_tail(&obj_priv->ring_list, &ring->active_list);
obj_priv->last_rendering_seqno = seqno;
}
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
BUG_ON(!obj_priv->active);
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
list_del_init(&obj_priv->ring_list);
obj_priv->last_rendering_seqno = 0;
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct inode *inode;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*. Here we mirror the actions taken
* when by shmem_delete_inode() to release the backing store.
*/
inode = obj->filp->f_path.dentry->d_inode;
truncate_inode_pages(inode->i_mapping, 0);
if (inode->i_op->truncate_range)
inode->i_op->truncate_range(inode, 0, (loff_t)-1);
obj_priv->madv = __I915_MADV_PURGED;
}
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
return obj_priv->madv == I915_MADV_DONTNEED;
}
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
if (obj_priv->pin_count != 0)
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
else
list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
list_del_init(&obj_priv->ring_list);
BUG_ON(!list_empty(&obj_priv->gpu_write_list));
obj_priv->last_rendering_seqno = 0;
obj_priv->ring = NULL;
if (obj_priv->active) {
obj_priv->active = 0;
drm_gem_object_unreference(obj);
}
WARN_ON(i915_verify_lists(dev));
}
static void
i915_gem_process_flushing_list(struct drm_device *dev,
uint32_t flush_domains,
struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv, *next;
list_for_each_entry_safe(obj_priv, next,
&ring->gpu_write_list,
gpu_write_list) {
struct drm_gem_object *obj = &obj_priv->base;
if (obj->write_domain & flush_domains) {
uint32_t old_write_domain = obj->write_domain;
obj->write_domain = 0;
list_del_init(&obj_priv->gpu_write_list);
i915_gem_object_move_to_active(obj, ring);
/* update the fence lru list */
if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_fence_reg *reg =
&dev_priv->fence_regs[obj_priv->fence_reg];
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
}
trace_i915_gem_object_change_domain(obj,
obj->read_domains,
old_write_domain);
}
}
}
int
i915_add_request(struct drm_device *dev,
struct drm_file *file,
struct drm_i915_gem_request *request,
struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = NULL;
uint32_t seqno;
int was_empty;
int ret;
BUG_ON(request == NULL);
if (file != NULL)
file_priv = file->driver_priv;
ret = ring->add_request(ring, &seqno);
if (ret)
return ret;
ring->outstanding_lazy_request = false;
request->seqno = seqno;
request->ring = ring;
request->emitted_jiffies = jiffies;
was_empty = list_empty(&ring->request_list);
list_add_tail(&request->list, &ring->request_list);
if (file_priv) {
spin_lock(&file_priv->mm.lock);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
}
if (!dev_priv->mm.suspended) {
mod_timer(&dev_priv->hangcheck_timer,
jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
if (was_empty)
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work, HZ);
}
return 0;
}
/**
* Command execution barrier
*
* Ensures that all commands in the ring are finished
* before signalling the CPU
*/
static void
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
{
uint32_t flush_domains = 0;
/* The sampler always gets flushed on i965 (sigh) */
if (INTEL_INFO(dev)->gen >= 4)
flush_domains |= I915_GEM_DOMAIN_SAMPLER;
ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
list_del(&request->client_list);
request->file_priv = NULL;
spin_unlock(&file_priv->mm.lock);
}
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj_priv;
obj_priv = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
obj_priv->base.write_domain = 0;
list_del_init(&obj_priv->gpu_write_list);
i915_gem_object_move_to_inactive(&obj_priv->base);
}
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv;
int i;
i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
/* Remove anything from the flushing lists. The GPU cache is likely
* to be lost on reset along with the data, so simply move the
* lost bo to the inactive list.
*/
while (!list_empty(&dev_priv->mm.flushing_list)) {
obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
struct drm_i915_gem_object,
mm_list);
obj_priv->base.write_domain = 0;
list_del_init(&obj_priv->gpu_write_list);
i915_gem_object_move_to_inactive(&obj_priv->base);
}
/* Move everything out of the GPU domains to ensure we do any
* necessary invalidation upon reuse.
*/
list_for_each_entry(obj_priv,
&dev_priv->mm.inactive_list,
mm_list)
{
obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
}
/* The fence registers are invalidated so clear them out */
for (i = 0; i < 16; i++) {
struct drm_i915_fence_reg *reg;
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
continue;
i915_gem_clear_fence_reg(reg->obj);
}
}
/**
* This function clears the request list as sequence numbers are passed.
*/
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t seqno;
if (!ring->status_page.page_addr ||
list_empty(&ring->request_list))
return;
WARN_ON(i915_verify_lists(dev));
seqno = ring->get_seqno(ring);
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_seqno_passed(seqno, request->seqno))
break;
trace_i915_gem_request_retire(dev, request->seqno);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&ring->active_list)) {
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
obj_priv = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
break;
obj = &obj_priv->base;
if (obj->write_domain != 0)
i915_gem_object_move_to_flushing(obj);
else
i915_gem_object_move_to_inactive(obj);
}
if (unlikely (dev_priv->trace_irq_seqno &&
i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
ring->user_irq_put(ring);
dev_priv->trace_irq_seqno = 0;
}
WARN_ON(i915_verify_lists(dev));
}
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (!list_empty(&dev_priv->mm.deferred_free_list)) {
struct drm_i915_gem_object *obj_priv, *tmp;
/* We must be careful that during unbind() we do not
* accidentally infinitely recurse into retire requests.
* Currently:
* retire -> free -> unbind -> wait -> retire_ring
*/
list_for_each_entry_safe(obj_priv, tmp,
&dev_priv->mm.deferred_free_list,
mm_list)
i915_gem_free_object_tail(&obj_priv->base);
}
i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
dev_priv = container_of(work, drm_i915_private_t,
mm.retire_work.work);
dev = dev_priv->dev;
/* Come back later if the device is busy... */
if (!mutex_trylock(&dev->struct_mutex)) {
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
return;
}
i915_gem_retire_requests(dev);
if (!dev_priv->mm.suspended &&
(!list_empty(&dev_priv->render_ring.request_list) ||
!list_empty(&dev_priv->bsd_ring.request_list) ||
!list_empty(&dev_priv->blt_ring.request_list)))
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
mutex_unlock(&dev->struct_mutex);
}
int
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
bool interruptible, struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 ier;
int ret = 0;
BUG_ON(seqno == 0);
if (atomic_read(&dev_priv->mm.wedged))
return -EAGAIN;
if (seqno == ring->outstanding_lazy_request) {
struct drm_i915_gem_request *request;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL)
return -ENOMEM;
ret = i915_add_request(dev, NULL, request, ring);
if (ret) {
kfree(request);
return ret;
}
seqno = request->seqno;
}
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
if (HAS_PCH_SPLIT(dev))
ier = I915_READ(DEIER) | I915_READ(GTIER);
else
ier = I915_READ(IER);
if (!ier) {
DRM_ERROR("something (likely vbetool) disabled "
"interrupts, re-enabling\n");
i915_driver_irq_preinstall(dev);
i915_driver_irq_postinstall(dev);
}
trace_i915_gem_request_wait_begin(dev, seqno);
ring->waiting_seqno = seqno;
ring->user_irq_get(ring);
if (interruptible)
ret = wait_event_interruptible(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
else
wait_event(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
ring->user_irq_put(ring);
ring->waiting_seqno = 0;
trace_i915_gem_request_wait_end(dev, seqno);
}
if (atomic_read(&dev_priv->mm.wedged))
ret = -EAGAIN;
if (ret && ret != -ERESTARTSYS)
DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
__func__, ret, seqno, ring->get_seqno(ring),
dev_priv->next_seqno);
/* Directly dispatch request retiring. While we have the work queue
* to handle this, the waiter on a request often wants an associated
* buffer to have made it to the inactive list, and we would need
* a separate wait queue to handle that.
*/
if (ret == 0)
i915_gem_retire_requests_ring(dev, ring);
return ret;
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
static int
i915_wait_request(struct drm_device *dev, uint32_t seqno,
struct intel_ring_buffer *ring)
{
return i915_do_wait_request(dev, seqno, 1, ring);
}
static void
i915_gem_flush_ring(struct drm_device *dev,
struct drm_file *file_priv,
struct intel_ring_buffer *ring,
uint32_t invalidate_domains,
uint32_t flush_domains)
{
ring->flush(ring, invalidate_domains, flush_domains);
i915_gem_process_flushing_list(dev, flush_domains, ring);
}
static void
i915_gem_flush(struct drm_device *dev,
struct drm_file *file_priv,
uint32_t invalidate_domains,
uint32_t flush_domains,
uint32_t flush_rings)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (flush_domains & I915_GEM_DOMAIN_CPU)
drm_agp_chipset_flush(dev);
if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
if (flush_rings & RING_RENDER)
i915_gem_flush_ring(dev, file_priv,
&dev_priv->render_ring,
invalidate_domains, flush_domains);
if (flush_rings & RING_BSD)
i915_gem_flush_ring(dev, file_priv,
&dev_priv->bsd_ring,
invalidate_domains, flush_domains);
if (flush_rings & RING_BLT)
i915_gem_flush_ring(dev, file_priv,
&dev_priv->blt_ring,
invalidate_domains, flush_domains);
}
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
bool interruptible)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int ret;
/* This function only exists to support waiting for existing rendering,
* not for emitting required flushes.
*/
BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
/* If there is rendering queued on the buffer being evicted, wait for
* it.
*/
if (obj_priv->active) {
ret = i915_do_wait_request(dev,
obj_priv->last_rendering_seqno,
interruptible,
obj_priv->ring);
if (ret)
return ret;
}
return 0;
}
/**
* Unbinds an object from the GTT aperture.
*/
int
i915_gem_object_unbind(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int ret = 0;
if (obj_priv->gtt_space == NULL)
return 0;
if (obj_priv->pin_count != 0) {
DRM_ERROR("Attempting to unbind pinned buffer\n");
return -EINVAL;
}
/* blow away mappings if mapped through GTT */
i915_gem_release_mmap(obj);
/* Move the object to the CPU domain to ensure that
* any possible CPU writes while it's not in the GTT
* are flushed when we go to remap it. This will
* also ensure that all pending GPU writes are finished
* before we unbind.
*/
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret == -ERESTARTSYS)
return ret;
/* Continue on if we fail due to EIO, the GPU is hung so we
* should be safe and we need to cleanup or else we might
* cause memory corruption through use-after-free.
*/
if (ret) {
i915_gem_clflush_object(obj);
obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
}
/* release the fence reg _after_ flushing */
if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
i915_gem_clear_fence_reg(obj);
drm_unbind_agp(obj_priv->agp_mem);
drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
i915_gem_object_put_pages_gtt(obj);
i915_gem_info_remove_gtt(dev_priv, obj_priv);
list_del_init(&obj_priv->mm_list);
/* Avoid an unnecessary call to unbind on rebind. */
obj_priv->map_and_fenceable = true;
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
obj_priv->gtt_offset = 0;
if (i915_gem_object_is_purgeable(obj_priv))
i915_gem_object_truncate(obj);
trace_i915_gem_object_unbind(obj);
return ret;
}
static int i915_ring_idle(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
return 0;
i915_gem_flush_ring(dev, NULL, ring,
I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
return i915_wait_request(dev,
i915_gem_next_request_seqno(dev, ring),
ring);
}
int
i915_gpu_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
bool lists_empty;
int ret;
lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list));
if (lists_empty)
return 0;
/* Flush everything onto the inactive list. */
ret = i915_ring_idle(dev, &dev_priv->render_ring);
if (ret)
return ret;
ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
if (ret)
return ret;
ret = i915_ring_idle(dev, &dev_priv->blt_ring);
if (ret)
return ret;
return 0;
}
static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
u32 size = i915_gem_get_gtt_size(obj_priv);
int regnum = obj_priv->fence_reg;
uint64_t val;
val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj_priv->gtt_offset & 0xfffff000;
val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
SANDYBRIDGE_FENCE_PITCH_SHIFT;
if (obj_priv->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}
static void i965_write_fence_reg(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
u32 size = i915_gem_get_gtt_size(obj_priv);
int regnum = obj_priv->fence_reg;
uint64_t val;
val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj_priv->gtt_offset & 0xfffff000;
val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
if (obj_priv->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}
static void i915_write_fence_reg(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
u32 size = i915_gem_get_gtt_size(obj_priv);
uint32_t fence_reg, val, pitch_val;
int tile_width;
if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
(obj_priv->gtt_offset & (size - 1))) {
WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
__func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
obj_priv->gtt_space->start, obj_priv->gtt_space->size);
return;
}
if (obj_priv->tiling_mode == I915_TILING_Y &&
HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj_priv->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
if (obj_priv->tiling_mode == I915_TILING_Y &&
HAS_128_BYTE_Y_TILING(dev))
WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
else
WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
val = obj_priv->gtt_offset;
if (obj_priv->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
fence_reg = obj_priv->fence_reg;
if (fence_reg < 8)
fence_reg = FENCE_REG_830_0 + fence_reg * 4;
else
fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
I915_WRITE(fence_reg, val);
}
static void i830_write_fence_reg(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
u32 size = i915_gem_get_gtt_size(obj_priv);
int regnum = obj_priv->fence_reg;
uint32_t val;
uint32_t pitch_val;
uint32_t fence_size_bits;
if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
(obj_priv->gtt_offset & (obj->size - 1))) {
WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
__func__, obj_priv->gtt_offset);
return;
}
pitch_val = obj_priv->stride / 128;
pitch_val = ffs(pitch_val) - 1;
WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
val = obj_priv->gtt_offset;
if (obj_priv->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
fence_size_bits = I830_FENCE_SIZE_BITS(size);
WARN_ON(fence_size_bits & ~0x00000f00);
val |= fence_size_bits;
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}
static int i915_find_fence_reg(struct drm_device *dev,
bool interruptible)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg;
struct drm_i915_gem_object *obj_priv = NULL;
int i, avail, ret;
/* First try to find a free reg */
avail = 0;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return i;
obj_priv = to_intel_bo(reg->obj);
if (!obj_priv->pin_count)
avail++;
}
if (avail == 0)
return -ENOSPC;
/* None available, try to steal one or wait for a user to finish */
avail = I915_FENCE_REG_NONE;
list_for_each_entry(reg, &dev_priv->mm.fence_list,
lru_list) {
obj_priv = to_intel_bo(reg->obj);
if (obj_priv->pin_count)
continue;
/* found one! */
avail = obj_priv->fence_reg;
break;
}
BUG_ON(avail == I915_FENCE_REG_NONE);
/* We only have a reference on obj from the active list. put_fence_reg
* might drop that one, causing a use-after-free in it. So hold a
* private reference to obj like the other callers of put_fence_reg
* (set_tiling ioctl) do. */
drm_gem_object_reference(&obj_priv->base);
ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
drm_gem_object_unreference(&obj_priv->base);
if (ret != 0)
return ret;
return avail;
}
/**
* i915_gem_object_get_fence_reg - set up a fence reg for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
*
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*/
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
bool interruptible)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct drm_i915_fence_reg *reg = NULL;
int ret;
/* Just update our place in the LRU if our fence is getting used. */
if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj_priv->fence_reg];
list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
return 0;
}
switch (obj_priv->tiling_mode) {
case I915_TILING_NONE:
WARN(1, "allocating a fence for non-tiled object?\n");
break;
case I915_TILING_X:
if (!obj_priv->stride)
return -EINVAL;
WARN((obj_priv->stride & (512 - 1)),
"object 0x%08x is X tiled but has non-512B pitch\n",
obj_priv->gtt_offset);
break;
case I915_TILING_Y:
if (!obj_priv->stride)
return -EINVAL;
WARN((obj_priv->stride & (128 - 1)),
"object 0x%08x is Y tiled but has non-128B pitch\n",
obj_priv->gtt_offset);
break;
}
ret = i915_find_fence_reg(dev, interruptible);
if (ret < 0)
return ret;
obj_priv->fence_reg = ret;
reg = &dev_priv->fence_regs[obj_priv->fence_reg];
list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
reg->obj = obj;
switch (INTEL_INFO(dev)->gen) {
case 6:
sandybridge_write_fence_reg(obj);
break;
case 5:
case 4:
i965_write_fence_reg(obj);
break;
case 3:
i915_write_fence_reg(obj);
break;
case 2:
i830_write_fence_reg(obj);
break;
}
trace_i915_gem_object_get_fence(obj,
obj_priv->fence_reg,
obj_priv->tiling_mode);
return 0;
}
/**
* i915_gem_clear_fence_reg - clear out fence register info
* @obj: object to clear
*
* Zeroes out the fence register itself and clears out the associated
* data structures in dev_priv and obj_priv.
*/
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct drm_i915_fence_reg *reg =
&dev_priv->fence_regs[obj_priv->fence_reg];
uint32_t fence_reg;
switch (INTEL_INFO(dev)->gen) {
case 6:
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
(obj_priv->fence_reg * 8), 0);
break;
case 5:
case 4:
I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
break;
case 3:
if (obj_priv->fence_reg >= 8)
fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
else
case 2:
fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
I915_WRITE(fence_reg, 0);
break;
}
reg->obj = NULL;
obj_priv->fence_reg = I915_FENCE_REG_NONE;
list_del_init(&reg->lru_list);
}
/**
* i915_gem_object_put_fence_reg - waits on outstanding fenced access
* to the buffer to finish, and then resets the fence register.
* @obj: tiled object holding a fence register.
* @bool: whether the wait upon the fence is interruptible
*
* Zeroes out the fence register itself and clears out the associated
* data structures in dev_priv and obj_priv.
*/
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
bool interruptible)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct drm_i915_fence_reg *reg;
if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
return 0;
/* If we've changed tiling, GTT-mappings of the object
* need to re-fault to ensure that the correct fence register
* setup is in place.
*/
i915_gem_release_mmap(obj);
/* On the i915, GPU access to tiled buffers is via a fence,
* therefore we must wait for any outstanding access to complete
* before clearing the fence.
*/
reg = &dev_priv->fence_regs[obj_priv->fence_reg];
if (reg->gpu) {
int ret;
ret = i915_gem_object_flush_gpu_write_domain(obj, true);
if (ret)
return ret;
ret = i915_gem_object_wait_rendering(obj, interruptible);
if (ret)
return ret;
reg->gpu = false;
}
i915_gem_object_flush_gtt_write_domain(obj);
i915_gem_clear_fence_reg(obj);
return 0;
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
unsigned alignment,
bool map_and_fenceable)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
struct drm_mm_node *free_space;
gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
u32 size, fence_size, fence_alignment, unfenced_alignment;
bool mappable, fenceable;
int ret;
if (obj_priv->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to bind a purgeable object\n");
return -EINVAL;
}
fence_size = i915_gem_get_gtt_size(obj_priv);
fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
if (alignment == 0)
alignment = map_and_fenceable ? fence_alignment :
unfenced_alignment;
if (map_and_fenceable && alignment & (fence_alignment - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return -EINVAL;
}
size = map_and_fenceable ? fence_size : obj->size;
/* If the object is bigger than the entire aperture, reject it early
* before evicting everything in a vain attempt to find space.
*/
if (obj->size >
(map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
DRM_ERROR("Attempting to bind an object larger than the aperture\n");
return -E2BIG;
}
search_free:
if (map_and_fenceable)
free_space =
drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
size, alignment, 0,
dev_priv->mm.gtt_mappable_end,
0);
else
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
size, alignment, 0);
if (free_space != NULL) {
if (map_and_fenceable)
obj_priv->gtt_space =
drm_mm_get_block_range_generic(free_space,
size, alignment, 0,
dev_priv->mm.gtt_mappable_end,
0);
else
obj_priv->gtt_space =
drm_mm_get_block(free_space, size, alignment);
}
if (obj_priv->gtt_space == NULL) {
/* If the gtt is empty and we're still having trouble
* fitting our object in, we're out of memory.
*/
ret = i915_gem_evict_something(dev, size, alignment,
map_and_fenceable);
if (ret)
return ret;
goto search_free;
}
ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
if (ret) {
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
if (ret == -ENOMEM) {
/* first try to clear up some space from the GTT */
ret = i915_gem_evict_something(dev, size,
alignment,
map_and_fenceable);
if (ret) {
/* now try to shrink everyone else */
if (gfpmask) {
gfpmask = 0;
goto search_free;
}
return ret;
}
goto search_free;
}
return ret;
}
/* Create an AGP memory structure pointing at our pages, and bind it
* into the GTT.
*/
obj_priv->agp_mem = drm_agp_bind_pages(dev,
obj_priv->pages,
obj->size >> PAGE_SHIFT,
obj_priv->gtt_space->start,
obj_priv->agp_type);
if (obj_priv->agp_mem == NULL) {
i915_gem_object_put_pages_gtt(obj);
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
ret = i915_gem_evict_something(dev, size,
alignment, map_and_fenceable);
if (ret)
return ret;
goto search_free;
}
obj_priv->gtt_offset = obj_priv->gtt_space->start;
/* keep track of bounds object by adding it to the inactive list */
list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
i915_gem_info_add_gtt(dev_priv, obj_priv);
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
fenceable =
obj_priv->gtt_space->size == fence_size &&
(obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
mappable =
obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
obj_priv->map_and_fenceable = mappable && fenceable;
return 0;
}
void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj_priv->pages == NULL)
return;
trace_i915_gem_object_clflush(obj);
drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
}
/** Flushes any GPU write domain for the object if it's dirty. */
static int
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
bool pipelined)
{
struct drm_device *dev = obj->dev;
if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
return 0;
/* Queue the GPU write cache flushing we need. */
i915_gem_flush_ring(dev, NULL,
to_intel_bo(obj)->ring,
0, obj->write_domain);
BUG_ON(obj->write_domain);
if (pipelined)
return 0;
return i915_gem_object_wait_rendering(obj, true);
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*/
i915_gem_release_mmap(obj);
old_write_domain = obj->write_domain;
obj->write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->read_domains,
old_write_domain);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
uint32_t old_write_domain;
if (obj->write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
drm_agp_chipset_flush(dev);
old_write_domain = obj->write_domain;
obj->write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->read_domains,
old_write_domain);
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
uint32_t old_write_domain, old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (obj_priv->gtt_space == NULL)
return -EINVAL;
ret = i915_gem_object_flush_gpu_write_domain(obj, false);
if (ret != 0)
return ret;
i915_gem_object_flush_cpu_write_domain(obj);
if (write) {
ret = i915_gem_object_wait_rendering(obj, true);
if (ret)
return ret;
}
old_write_domain = obj->write_domain;
old_read_domains = obj->read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->read_domains = I915_GEM_DOMAIN_GTT;
obj->write_domain = I915_GEM_DOMAIN_GTT;
obj_priv->dirty = 1;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/*
* Prepare buffer for display plane. Use uninterruptible for possible flush
* wait, as in modesetting process we're not supposed to be interrupted.
*/
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
bool pipelined)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
uint32_t old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (obj_priv->gtt_space == NULL)
return -EINVAL;
ret = i915_gem_object_flush_gpu_write_domain(obj, true);
if (ret)
return ret;
/* Currently, we are always called from an non-interruptible context. */
if (!pipelined) {
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
}
i915_gem_object_flush_cpu_write_domain(obj);
old_read_domains = obj->read_domains;
obj->read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
obj->write_domain);
return 0;
}
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
bool interruptible)
{
if (!obj->active)
return 0;
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
0, obj->base.write_domain);
return i915_gem_object_wait_rendering(&obj->base, interruptible);
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
ret = i915_gem_object_flush_gpu_write_domain(obj, false);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we have a partially-valid cache of the object in the CPU,
* finish invalidating it and free the per-page flags.
*/
i915_gem_object_set_to_full_cpu_read_domain(obj);
if (write) {
ret = i915_gem_object_wait_rendering(obj, true);
if (ret)
return ret;
}
old_write_domain = obj->write_domain;
old_read_domains = obj->read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->read_domains = I915_GEM_DOMAIN_CPU;
obj->write_domain = I915_GEM_DOMAIN_CPU;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/*
* Set the next domain for the specified object. This
* may not actually perform the necessary flushing/invaliding though,
* as that may want to be batched with other set_domain operations
*
* This is (we hope) the only really tricky part of gem. The goal
* is fairly simple -- track which caches hold bits of the object
* and make sure they remain coherent. A few concrete examples may
* help to explain how it works. For shorthand, we use the notation
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
* a pair of read and write domain masks.
*
* Case 1: the batch buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Mapped to GTT
* 4. Read by GPU
* 5. Unmapped from GTT
* 6. Freed
*
* Let's take these a step at a time
*
* 1. Allocated
* Pages allocated from the kernel may still have
* cache contents, so we set them to (CPU, CPU) always.
* 2. Written by CPU (using pwrite)
* The pwrite function calls set_domain (CPU, CPU) and
* this function does nothing (as nothing changes)
* 3. Mapped by GTT
* This function asserts that the object is not
* currently in any GPU-based read or write domains
* 4. Read by GPU
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
* As write_domain is zero, this function adds in the
* current read domains (CPU+COMMAND, 0).
* flush_domains is set to CPU.
* invalidate_domains is set to COMMAND
* clflush is run to get data out of the CPU caches
* then i915_dev_set_domain calls i915_gem_flush to
* emit an MI_FLUSH and drm_agp_chipset_flush
* 5. Unmapped from GTT
* i915_gem_object_unbind calls set_domain (CPU, CPU)
* flush_domains and invalidate_domains end up both zero
* so no flushing/invalidating happens
* 6. Freed
* yay, done
*
* Case 2: The shared render buffer
*
* 1. Allocated
* 2. Mapped to GTT
* 3. Read/written by GPU
* 4. set_domain to (CPU,CPU)
* 5. Read/written by CPU
* 6. Read/written by GPU
*
* 1. Allocated
* Same as last example, (CPU, CPU)
* 2. Mapped to GTT
* Nothing changes (assertions find that it is not in the GPU)
* 3. Read/written by GPU
* execbuffer calls set_domain (RENDER, RENDER)
* flush_domains gets CPU
* invalidate_domains gets GPU
* clflush (obj)
* MI_FLUSH and drm_agp_chipset_flush
* 4. set_domain (CPU, CPU)
* flush_domains gets GPU
* invalidate_domains gets CPU
* wait_rendering (obj) to make sure all drawing is complete.
* This will include an MI_FLUSH to get the data from GPU
* to memory
* clflush (obj) to invalidate the CPU cache
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
* 5. Read/written by CPU
* cache lines are loaded and dirtied
* 6. Read written by GPU
* Same as last GPU access
*
* Case 3: The constant buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Read by GPU
* 4. Updated (written) by CPU again
* 5. Read by GPU
*
* 1. Allocated
* (CPU, CPU)
* 2. Written by CPU
* (CPU, CPU)
* 3. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
* 4. Updated (written) by CPU again
* (CPU, CPU)
* flush_domains = 0 (no previous write domain)
* invalidate_domains = 0 (no new read domains)
* 5. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
*/
static void
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
struct intel_ring_buffer *ring,
struct change_domains *cd)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
uint32_t invalidate_domains = 0;
uint32_t flush_domains = 0;
/*
* If the object isn't moving to a new write domain,
* let the object stay in multiple read domains
*/
if (obj->pending_write_domain == 0)
obj->pending_read_domains |= obj->read_domains;
/*
* Flush the current write domain if
* the new read domains don't match. Invalidate
* any read domains which differ from the old
* write domain
*/
if (obj->write_domain &&
(obj->write_domain != obj->pending_read_domains ||
obj_priv->ring != ring)) {
flush_domains |= obj->write_domain;
invalidate_domains |=
obj->pending_read_domains & ~obj->write_domain;
}
/*
* Invalidate any read caches which may have
* stale data. That is, any new read domains.
*/
invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
i915_gem_clflush_object(obj);
/* blow away mappings if mapped through GTT */
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
i915_gem_release_mmap(obj);
/* The actual obj->write_domain will be updated with
* pending_write_domain after we emit the accumulated flush for all
* of our domain changes in execbuffers (which clears objects'
* write_domains). So if we have a current write domain that we
* aren't changing, set pending_write_domain to that.
*/
if (flush_domains == 0 && obj->pending_write_domain == 0)
obj->pending_write_domain = obj->write_domain;
cd->invalidate_domains |= invalidate_domains;
cd->flush_domains |= flush_domains;
if (flush_domains & I915_GEM_GPU_DOMAINS)
cd->flush_rings |= obj_priv->ring->id;
if (invalidate_domains & I915_GEM_GPU_DOMAINS)
cd->flush_rings |= ring->id;
}
/**
* Moves the object from a partially CPU read to a full one.
*
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
*/
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
if (!obj_priv->page_cpu_valid)
return;
/* If we're partially in the CPU read domain, finish moving it in.
*/
if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
int i;
for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->pages + i, 1);
}
}
/* Free the page_cpu_valid mappings which are now stale, whether
* or not we've got I915_GEM_DOMAIN_CPU.
*/
kfree(obj_priv->page_cpu_valid);
obj_priv->page_cpu_valid = NULL;
}
/**
* Set the CPU read domain on a range of the object.
*
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
* not entirely valid. The page_cpu_valid member of the object flags which
* pages have been flushed, and will be respected by
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
* of the whole object.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset, uint64_t size)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
uint32_t old_read_domains;
int i, ret;
if (offset == 0 && size == obj->size)
return i915_gem_object_set_to_cpu_domain(obj, 0);
ret = i915_gem_object_flush_gpu_write_domain(obj, false);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're already fully in the CPU read domain, we're done. */
if (obj_priv->page_cpu_valid == NULL &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
return 0;
/* Otherwise, create/clear the per-page CPU read domain flag if we're
* newly adding I915_GEM_DOMAIN_CPU
*/
if (obj_priv->page_cpu_valid == NULL) {
obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
GFP_KERNEL);
if (obj_priv->page_cpu_valid == NULL)
return -ENOMEM;
} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
/* Flush the cache on any pages that are still invalid from the CPU's
* perspective.
*/
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->pages + i, 1);
obj_priv->page_cpu_valid[i] = 1;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
old_read_domains = obj->read_domains;
obj->read_domains |= I915_GEM_DOMAIN_CPU;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
obj->write_domain);
return 0;
}
/**
* Pin an object to the GTT and evaluate the relocations landing in it.
*/
static int
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
struct drm_file *file_priv,
struct drm_i915_gem_exec_object2 *entry)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_relocation_entry __user *user_relocs;
struct drm_gem_object *target_obj = NULL;
uint32_t target_handle = 0;
int i, ret = 0;
user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
for (i = 0; i < entry->relocation_count; i++) {
struct drm_i915_gem_relocation_entry reloc;
uint32_t target_offset;
if (__copy_from_user_inatomic(&reloc,
user_relocs+i,
sizeof(reloc))) {
ret = -EFAULT;
break;
}
if (reloc.target_handle != target_handle) {
drm_gem_object_unreference(target_obj);
target_obj = drm_gem_object_lookup(dev, file_priv,
reloc.target_handle);
if (target_obj == NULL) {
ret = -ENOENT;
break;
}
target_handle = reloc.target_handle;
}
target_offset = to_intel_bo(target_obj)->gtt_offset;
#if WATCH_RELOC
DRM_INFO("%s: obj %p offset %08x target %d "
"read %08x write %08x gtt %08x "
"presumed %08x delta %08x\n",
__func__,
obj,
(int) reloc.offset,
(int) reloc.target_handle,
(int) reloc.read_domains,
(int) reloc.write_domain,
(int) target_offset,
(int) reloc.presumed_offset,
reloc.delta);
#endif
/* The target buffer should have appeared before us in the
* exec_object list, so it should have a GTT space bound by now.
*/
if (target_offset == 0) {
DRM_ERROR("No GTT space found for object %d\n",
reloc.target_handle);
ret = -EINVAL;
break;
}
/* Validate that the target is in a valid r/w GPU domain */
if (reloc.write_domain & (reloc.write_domain - 1)) {
DRM_ERROR("reloc with multiple write domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.read_domains,
reloc.write_domain);
ret = -EINVAL;
break;
}
if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
reloc.read_domains & I915_GEM_DOMAIN_CPU) {
DRM_ERROR("reloc with read/write CPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.read_domains,
reloc.write_domain);
ret = -EINVAL;
break;
}
if (reloc.write_domain && target_obj->pending_write_domain &&
reloc.write_domain != target_obj->pending_write_domain) {
DRM_ERROR("Write domain conflict: "
"obj %p target %d offset %d "
"new %08x old %08x\n",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.write_domain,
target_obj->pending_write_domain);
ret = -EINVAL;
break;
}
target_obj->pending_read_domains |= reloc.read_domains;
target_obj->pending_write_domain |= reloc.write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_offset == reloc.presumed_offset)
continue;
/* Check that the relocation address is valid... */
if (reloc.offset > obj->base.size - 4) {
DRM_ERROR("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc.target_handle,
(int) reloc.offset, (int) obj->base.size);
ret = -EINVAL;
break;
}
if (reloc.offset & 3) {
DRM_ERROR("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc.target_handle,
(int) reloc.offset);
ret = -EINVAL;
break;
}
/* and points to somewhere within the target object. */
if (reloc.delta >= target_obj->size) {
DRM_ERROR("Relocation beyond target object bounds: "
"obj %p target %d delta %d size %d.\n",
obj, reloc.target_handle,
(int) reloc.delta, (int) target_obj->size);
ret = -EINVAL;
break;
}
reloc.delta += target_offset;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
uint32_t page_offset = reloc.offset & ~PAGE_MASK;
char *vaddr;
vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
*(uint32_t *)(vaddr + page_offset) = reloc.delta;
kunmap_atomic(vaddr);
} else {
uint32_t __iomem *reloc_entry;
void __iomem *reloc_page;
ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
if (ret)
break;
/* Map the page containing the relocation we're going to perform. */
reloc.offset += obj->gtt_offset;
reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
reloc.offset & PAGE_MASK);
reloc_entry = (uint32_t __iomem *)
(reloc_page + (reloc.offset & ~PAGE_MASK));
iowrite32(reloc.delta, reloc_entry);
io_mapping_unmap_atomic(reloc_page);
}
/* and update the user's relocation entry */
reloc.presumed_offset = target_offset;
if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
&reloc.presumed_offset,
sizeof(reloc.presumed_offset))) {
ret = -EFAULT;
break;
}
}
drm_gem_object_unreference(target_obj);
return ret;
}
static int
i915_gem_execbuffer_pin(struct drm_device *dev,
struct drm_file *file,
struct drm_gem_object **object_list,
struct drm_i915_gem_exec_object2 *exec_list,
int count)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret, i, retry;
/* attempt to pin all of the buffers into the GTT */
retry = 0;
do {
ret = 0;
for (i = 0; i < count; i++) {
struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
bool need_fence =
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
/* g33/pnv can't fence buffers in the unmappable part */
bool need_mappable =
entry->relocation_count ? true : need_fence;
/* Check fence reg constraints and rebind if necessary */
if (need_mappable && !obj->map_and_fenceable) {
ret = i915_gem_object_unbind(&obj->base);
if (ret)
break;
}
ret = i915_gem_object_pin(&obj->base,
entry->alignment,
need_mappable);
if (ret)
break;
/*
* Pre-965 chips need a fence register set up in order
* to properly handle blits to/from tiled surfaces.
*/
if (need_fence) {
ret = i915_gem_object_get_fence_reg(&obj->base, true);
if (ret) {
i915_gem_object_unpin(&obj->base);
break;
}
dev_priv->fence_regs[obj->fence_reg].gpu = true;
}
entry->offset = obj->gtt_offset;
}
while (i--)
i915_gem_object_unpin(object_list[i]);
if (ret != -ENOSPC || retry > 1)
return ret;
/* First attempt, just clear anything that is purgeable.
* Second attempt, clear the entire GTT.
*/
ret = i915_gem_evict_everything(dev, retry == 0);
if (ret)
return ret;
retry++;
} while (1);
}
static int
i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
struct drm_file *file,
struct intel_ring_buffer *ring,
struct drm_gem_object **objects,
int count)
{
struct change_domains cd;
int ret, i;
cd.invalidate_domains = 0;
cd.flush_domains = 0;
cd.flush_rings = 0;
for (i = 0; i < count; i++)
i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
if (cd.invalidate_domains | cd.flush_domains) {
#if WATCH_EXEC
DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
__func__,
cd.invalidate_domains,
cd.flush_domains);
#endif
i915_gem_flush(dev, file,
cd.invalidate_domains,
cd.flush_domains,
cd.flush_rings);
}
for (i = 0; i < count; i++) {
struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
/* XXX replace with semaphores */
if (obj->ring && ring != obj->ring) {
ret = i915_gem_object_wait_rendering(&obj->base, true);
if (ret)
return ret;
}
}
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
struct drm_i915_gem_request *request;
struct intel_ring_buffer *ring = NULL;
u32 seqno = 0;
int ret;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
ring = request->ring;
seqno = request->seqno;
}
spin_unlock(&file_priv->mm.lock);
if (seqno == 0)
return 0;
ret = 0;
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
/* And wait for the seqno passing without holding any locks and
* causing extra latency for others. This is safe as the irq
* generation is designed to be run atomically and so is
* lockless.
*/
ring->user_irq_get(ring);
ret = wait_event_interruptible(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
ring->user_irq_put(ring);
if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
ret = -EIO;
}
if (ret == 0)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
return ret;
}
static int
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
uint64_t exec_offset)
{
uint32_t exec_start, exec_len;
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
exec_len = (uint32_t) exec->batch_len;
if ((exec_start | exec_len) & 0x7)
return -EINVAL;
if (!exec_start)
return -EINVAL;
return 0;
}
static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
int count)
{
int i;
for (i = 0; i < count; i++) {
char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
int length; /* limited by fault_in_pages_readable() */
/* First check for malicious input causing overflow */
if (exec[i].relocation_count >
INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
return -EINVAL;
length = exec[i].relocation_count *
sizeof(struct drm_i915_gem_relocation_entry);
if (!access_ok(VERIFY_READ, ptr, length))
return -EFAULT;
/* we may also need to update the presumed offsets */
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
if (fault_in_pages_readable(ptr, length))
return -EFAULT;
}
return 0;
}
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec_list)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object **object_list = NULL;
struct drm_gem_object *batch_obj;
struct drm_clip_rect *cliprects = NULL;
struct drm_i915_gem_request *request = NULL;
int ret, i, flips;
uint64_t exec_offset;
struct intel_ring_buffer *ring = NULL;
ret = i915_gem_check_is_wedged(dev);
if (ret)
return ret;
ret = validate_exec_list(exec_list, args->buffer_count);
if (ret)
return ret;
#if WATCH_EXEC
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
switch (args->flags & I915_EXEC_RING_MASK) {
case I915_EXEC_DEFAULT:
case I915_EXEC_RENDER:
ring = &dev_priv->render_ring;
break;
case I915_EXEC_BSD:
if (!HAS_BSD(dev)) {
DRM_ERROR("execbuf with invalid ring (BSD)\n");
return -EINVAL;
}
ring = &dev_priv->bsd_ring;
break;
case I915_EXEC_BLT:
if (!HAS_BLT(dev)) {
DRM_ERROR("execbuf with invalid ring (BLT)\n");
return -EINVAL;
}
ring = &dev_priv->blt_ring;
break;
default:
DRM_ERROR("execbuf with unknown ring: %d\n",
(int)(args->flags & I915_EXEC_RING_MASK));
return -EINVAL;
}
if (args->buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
if (object_list == NULL) {
DRM_ERROR("Failed to allocate object list for %d buffers\n",
args->buffer_count);
ret = -ENOMEM;
goto pre_mutex_err;
}
if (args->num_cliprects != 0) {
cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
GFP_KERNEL);
if (cliprects == NULL) {
ret = -ENOMEM;
goto pre_mutex_err;
}
ret = copy_from_user(cliprects,
(struct drm_clip_rect __user *)
(uintptr_t) args->cliprects_ptr,
sizeof(*cliprects) * args->num_cliprects);
if (ret != 0) {
DRM_ERROR("copy %d cliprects failed: %d\n",
args->num_cliprects, ret);
ret = -EFAULT;
goto pre_mutex_err;
}
}
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL) {
ret = -ENOMEM;
goto pre_mutex_err;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto pre_mutex_err;
if (dev_priv->mm.suspended) {
mutex_unlock(&dev->struct_mutex);
ret = -EBUSY;
goto pre_mutex_err;
}
/* Look up object handles */
for (i = 0; i < args->buffer_count; i++) {
struct drm_i915_gem_object *obj_priv;
object_list[i] = drm_gem_object_lookup(dev, file,
exec_list[i].handle);
if (object_list[i] == NULL) {
DRM_ERROR("Invalid object handle %d at index %d\n",
exec_list[i].handle, i);
/* prevent error path from reading uninitialized data */
args->buffer_count = i + 1;
ret = -ENOENT;
goto err;
}
obj_priv = to_intel_bo(object_list[i]);
if (obj_priv->in_execbuffer) {
DRM_ERROR("Object %p appears more than once in object list\n",
object_list[i]);
/* prevent error path from reading uninitialized data */
args->buffer_count = i + 1;
ret = -EINVAL;
goto err;
}
obj_priv->in_execbuffer = true;
}
/* Move the objects en-masse into the GTT, evicting if necessary. */
ret = i915_gem_execbuffer_pin(dev, file,
object_list, exec_list,
args->buffer_count);
if (ret)
goto err;
/* The objects are in their final locations, apply the relocations. */
for (i = 0; i < args->buffer_count; i++) {
struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
obj->base.pending_read_domains = 0;
obj->base.pending_write_domain = 0;
ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
batch_obj = object_list[args->buffer_count-1];
if (batch_obj->pending_write_domain) {
DRM_ERROR("Attempting to use self-modifying batch buffer\n");
ret = -EINVAL;
goto err;
}
batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
/* Sanity check the batch buffer */
exec_offset = to_intel_bo(batch_obj)->gtt_offset;
ret = i915_gem_check_execbuffer(args, exec_offset);
if (ret != 0) {
DRM_ERROR("execbuf with invalid offset/length\n");
goto err;
}
ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
object_list, args->buffer_count);
if (ret)
goto err;
#if WATCH_COHERENCY
for (i = 0; i < args->buffer_count; i++) {
i915_gem_object_check_coherency(object_list[i],
exec_list[i].handle);
}
#endif
#if WATCH_EXEC
i915_gem_dump_object(batch_obj,
args->batch_len,
__func__,
~0);
#endif
/* Check for any pending flips. As we only maintain a flip queue depth
* of 1, we can simply insert a WAIT for the next display flip prior
* to executing the batch and avoid stalling the CPU.
*/
flips = 0;
for (i = 0; i < args->buffer_count; i++) {
if (object_list[i]->write_domain)
flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
}
if (flips) {
int plane, flip_mask;
for (plane = 0; flips >> plane; plane++) {
if (((flips >> plane) & 1) == 0)
continue;
if (plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
ret = intel_ring_begin(ring, 2);
if (ret)
goto err;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
}
}
/* Exec the batchbuffer */
ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
if (ret) {
DRM_ERROR("dispatch failed %d\n", ret);
goto err;
}
for (i = 0; i < args->buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
obj->read_domains = obj->pending_read_domains;
obj->write_domain = obj->pending_write_domain;
i915_gem_object_move_to_active(obj, ring);
if (obj->write_domain) {
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
obj_priv->dirty = 1;
list_move_tail(&obj_priv->gpu_write_list,
&ring->gpu_write_list);
intel_mark_busy(dev, obj);
}
trace_i915_gem_object_change_domain(obj,
obj->read_domains,
obj->write_domain);
}
/*
* Ensure that the commands in the batch buffer are
* finished before the interrupt fires
*/
i915_retire_commands(dev, ring);
if (i915_add_request(dev, file, request, ring))
i915_gem_next_request_seqno(dev, ring);
else
request = NULL;
err:
for (i = 0; i < args->buffer_count; i++) {
if (object_list[i] == NULL)
break;
to_intel_bo(object_list[i])->in_execbuffer = false;
drm_gem_object_unreference(object_list[i]);
}
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
drm_free_large(object_list);
kfree(cliprects);
kfree(request);
return ret;
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret, i;
#if WATCH_EXEC
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
if (args->buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec_list == NULL || exec2_list == NULL) {
DRM_ERROR("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -ENOMEM;
}
ret = copy_from_user(exec_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_INFO(dev)->gen < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++)
exec_list[i].offset = exec2_list[i].offset;
/* ... and back out to userspace */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec_list,
sizeof(*exec_list) * args->buffer_count);
if (ret) {
ret = -EFAULT;
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
}
}
drm_free_large(exec_list);
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
#if WATCH_EXEC
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
if (args->buffer_count < 1) {
DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec2_list == NULL) {
DRM_ERROR("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec2_list,
sizeof(*exec2_list) * args->buffer_count);
if (ret) {
ret = -EFAULT;
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
}
}
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
bool map_and_fenceable)
{
struct drm_device *dev = obj->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int ret;
BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
BUG_ON(map_and_fenceable && !map_and_fenceable);
WARN_ON(i915_verify_lists(dev));
if (obj_priv->gtt_space != NULL) {
if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
(map_and_fenceable && !obj_priv->map_and_fenceable)) {
WARN(obj_priv->pin_count,
"bo is already pinned with incorrect alignment:"
" offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
obj_priv->gtt_offset, alignment,
map_and_fenceable,
obj_priv->map_and_fenceable);
ret = i915_gem_object_unbind(obj);
if (ret)
return ret;
}
}
if (obj_priv->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment,
map_and_fenceable);
if (ret)
return ret;
}
if (obj_priv->pin_count++ == 0) {
i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
if (!obj_priv->active)
list_move_tail(&obj_priv->mm_list,
&dev_priv->mm.pinned_list);
}
BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
WARN_ON(i915_verify_lists(dev));
return 0;
}
void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
WARN_ON(i915_verify_lists(dev));
BUG_ON(obj_priv->pin_count == 0);
BUG_ON(obj_priv->gtt_space == NULL);
if (--obj_priv->pin_count == 0) {
if (!obj_priv->active)
list_move_tail(&obj_priv->mm_list,
&dev_priv->mm.inactive_list);
i915_gem_info_remove_pin(dev_priv, obj_priv);
}
WARN_ON(i915_verify_lists(dev));
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pin *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
if (obj_priv->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to pin a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj_priv->user_pin_count++;
obj_priv->pin_filp = file_priv;
if (obj_priv->user_pin_count == 1) {
ret = i915_gem_object_pin(obj, args->alignment, true);
if (ret)
goto out;
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args->offset = obj_priv->gtt_offset;
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pin *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
if (obj_priv->pin_filp != file_priv) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj_priv->user_pin_count--;
if (obj_priv->user_pin_count == 0) {
obj_priv->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_busy *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
/* Count all active objects as busy, even if they are currently not used
* by the gpu. Users of this interface expect objects to eventually
* become non-busy without any further actions, therefore emit any
* necessary flushes here.
*/
args->busy = obj_priv->active;
if (args->busy) {
/* Unconditionally flush objects, even when the gpu still uses this
* object. Userspace calling this function indicates that it wants to
* use this buffer rather sooner than later, so issuing the required
* flush earlier is beneficial.
*/
if (obj->write_domain & I915_GEM_GPU_DOMAINS)
i915_gem_flush_ring(dev, file_priv,
obj_priv->ring,
0, obj->write_domain);
/* Update the active list for the hardware's current position.
* Otherwise this only updates on a delayed timer or when irqs
* are actually unmasked, and our working set ends up being
* larger than required.
*/
i915_gem_retire_requests_ring(dev, obj_priv->ring);
args->busy = obj_priv->active;
}
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_madvise *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj_priv = to_intel_bo(obj);
if (obj_priv->pin_count) {
ret = -EINVAL;
goto out;
}
if (obj_priv->madv != __I915_MADV_PURGED)
obj_priv->madv = args->madv;
/* if the object is no longer bound, discard its backing storage */
if (i915_gem_object_is_purgeable(obj_priv) &&
obj_priv->gtt_space == NULL)
i915_gem_object_truncate(obj);
args->retained = obj_priv->madv != __I915_MADV_PURGED;
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
size_t size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (obj == NULL)
return NULL;
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
kfree(obj);
return NULL;
}
i915_gem_info_add_obj(dev_priv, size);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->agp_type = AGP_USER_MEMORY;
obj->base.driver_private = NULL;
obj->fence_reg = I915_FENCE_REG_NONE;
INIT_LIST_HEAD(&obj->mm_list);
INIT_LIST_HEAD(&obj->ring_list);
INIT_LIST_HEAD(&obj->gpu_write_list);
obj->madv = I915_MADV_WILLNEED;
/* Avoid an unnecessary call to unbind on the first bind. */
obj->map_and_fenceable = true;
return &obj->base;
}
int i915_gem_init_object(struct drm_gem_object *obj)
{
BUG();
return 0;
}
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
int ret;
ret = i915_gem_object_unbind(obj);
if (ret == -ERESTARTSYS) {
list_move(&obj_priv->mm_list,
&dev_priv->mm.deferred_free_list);
return;
}
if (obj->map_list.map)
i915_gem_free_mmap_offset(obj);
drm_gem_object_release(obj);
i915_gem_info_remove_obj(dev_priv, obj->size);
kfree(obj_priv->page_cpu_valid);
kfree(obj_priv->bit_17);
kfree(obj_priv);
}
void i915_gem_free_object(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
trace_i915_gem_object_destroy(obj);
while (obj_priv->pin_count > 0)
i915_gem_object_unpin(obj);
if (obj_priv->phys_obj)
i915_gem_detach_phys_object(dev, obj);
i915_gem_free_object_tail(obj);
}
int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev->struct_mutex);
if (dev_priv->mm.suspended) {
mutex_unlock(&dev->struct_mutex);
return 0;
}
ret = i915_gpu_idle(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* Under UMS, be paranoid and evict. */
if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
ret = i915_gem_evict_inactive(dev, false);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
}
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
* And not confound mm.suspended!
*/
dev_priv->mm.suspended = 1;
del_timer_sync(&dev_priv->hangcheck_timer);
i915_kernel_lost_context(dev);
i915_gem_cleanup_ringbuffer(dev);
mutex_unlock(&dev->struct_mutex);
/* Cancel the retire work handler, which should be idle now. */
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
return 0;
}
/*
* 965+ support PIPE_CONTROL commands, which provide finer grained control
* over cache flushing.
*/
static int
i915_gem_init_pipe_control(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
obj = i915_gem_alloc_object(dev, 4096);
if (obj == NULL) {
DRM_ERROR("Failed to allocate seqno page\n");
ret = -ENOMEM;
goto err;
}
obj_priv = to_intel_bo(obj);
obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
ret = i915_gem_object_pin(obj, 4096, true);
if (ret)
goto err_unref;
dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
dev_priv->seqno_page = kmap(obj_priv->pages[0]);
if (dev_priv->seqno_page == NULL)
goto err_unpin;
dev_priv->seqno_obj = obj;
memset(dev_priv->seqno_page, 0, PAGE_SIZE);
return 0;
err_unpin:
i915_gem_object_unpin(obj);
err_unref:
drm_gem_object_unreference(obj);
err:
return ret;
}
static void
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
obj = dev_priv->seqno_obj;
obj_priv = to_intel_bo(obj);
kunmap(obj_priv->pages[0]);
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
dev_priv->seqno_obj = NULL;
dev_priv->seqno_page = NULL;
}
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (HAS_PIPE_CONTROL(dev)) {
ret = i915_gem_init_pipe_control(dev);
if (ret)
return ret;
}
ret = intel_init_render_ring_buffer(dev);
if (ret)
goto cleanup_pipe_control;
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret)
goto cleanup_bsd_ring;
}
dev_priv->next_seqno = 1;
return 0;
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->render_ring);
cleanup_pipe_control:
if (HAS_PIPE_CONTROL(dev))
i915_gem_cleanup_pipe_control(dev);
return ret;
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
intel_cleanup_ring_buffer(&dev_priv->render_ring);
intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
intel_cleanup_ring_buffer(&dev_priv->blt_ring);
if (HAS_PIPE_CONTROL(dev))
i915_gem_cleanup_pipe_control(dev);
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
if (atomic_read(&dev_priv->mm.wedged)) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
atomic_set(&dev_priv->mm.wedged, 0);
}
mutex_lock(&dev->struct_mutex);
dev_priv->mm.suspended = 0;
ret = i915_gem_init_ringbuffer(dev);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
BUG_ON(!list_empty(&dev_priv->mm.active_list));
BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
mutex_unlock(&dev->struct_mutex);
ret = drm_irq_install(dev);
if (ret)
goto cleanup_ringbuffer;
return 0;
cleanup_ringbuffer:
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
dev_priv->mm.suspended = 1;
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
drm_irq_uninstall(dev);
return i915_gem_idle(dev);
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return;
ret = i915_gem_idle(dev);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
}
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
INIT_LIST_HEAD(&ring->gpu_write_list);
}
void
i915_gem_load(struct drm_device *dev)
{
int i;
drm_i915_private_t *dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
init_ring_lists(&dev_priv->render_ring);
init_ring_lists(&dev_priv->bsd_ring);
init_ring_lists(&dev_priv->blt_ring);
for (i = 0; i < 16; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
init_completion(&dev_priv->error_completion);
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
if (IS_GEN3(dev)) {
u32 tmp = I915_READ(MI_ARB_STATE);
if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
/* arb state is a masked write, so set bit + bit in mask */
tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
I915_WRITE(MI_ARB_STATE, tmp);
}
}
/* Old X drivers will take 0-2 for front, back, depth buffers */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->fence_reg_start = 3;
if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
/* Initialize fence registers to zero */
switch (INTEL_INFO(dev)->gen) {
case 6:
for (i = 0; i < 16; i++)
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
break;
case 5:
case 4:
for (i = 0; i < 16; i++)
I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
break;
case 3:
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
for (i = 0; i < 8; i++)
I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
case 2:
for (i = 0; i < 8; i++)
I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
break;
}
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&dev_priv->mm.inactive_shrinker);
}
/*
* Create a physically contiguous memory object for this object
* e.g. for cursor + overlay regs
*/
static int i915_gem_init_phys_object(struct drm_device *dev,
int id, int size, int align)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
int ret;
if (dev_priv->mm.phys_objs[id - 1] || !size)
return 0;
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
if (!phys_obj)
return -ENOMEM;
phys_obj->id = id;
phys_obj->handle = drm_pci_alloc(dev, size, align);
if (!phys_obj->handle) {
ret = -ENOMEM;
goto kfree_obj;
}
#ifdef CONFIG_X86
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
dev_priv->mm.phys_objs[id - 1] = phys_obj;
return 0;
kfree_obj:
kfree(phys_obj);
return ret;
}
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
if (!dev_priv->mm.phys_objs[id - 1])
return;
phys_obj = dev_priv->mm.phys_objs[id - 1];
if (phys_obj->cur_obj) {
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
}
#ifdef CONFIG_X86
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
drm_pci_free(dev, phys_obj->handle);
kfree(phys_obj);
dev_priv->mm.phys_objs[id - 1] = NULL;
}
void i915_gem_free_all_phys_object(struct drm_device *dev)
{
int i;
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
i915_gem_free_phys_object(dev, i);
}
void i915_gem_detach_phys_object(struct drm_device *dev,
struct drm_gem_object *obj)
{
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
char *vaddr;
int i;
int page_count;
if (!obj_priv->phys_obj)
return;
vaddr = obj_priv->phys_obj->handle->vaddr;
page_count = obj->size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page = read_cache_page_gfp(mapping, i,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (!IS_ERR(page)) {
char *dst = kmap_atomic(page);
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
kunmap_atomic(dst);
drm_clflush_pages(&page, 1);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
}
}
drm_agp_chipset_flush(dev);
obj_priv->phys_obj->cur_obj = NULL;
obj_priv->phys_obj = NULL;
}
int
i915_gem_attach_phys_object(struct drm_device *dev,
struct drm_gem_object *obj,
int id,
int align)
{
struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
int page_count;
int i;
if (id > I915_MAX_PHYS_OBJECT)
return -EINVAL;
obj_priv = to_intel_bo(obj);
if (obj_priv->phys_obj) {
if (obj_priv->phys_obj->id == id)
return 0;
i915_gem_detach_phys_object(dev, obj);
}
/* create a new object */
if (!dev_priv->mm.phys_objs[id - 1]) {
ret = i915_gem_init_phys_object(dev, id,
obj->size, align);
if (ret) {
DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
return ret;
}
}
/* bind to the object */
obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
obj_priv->phys_obj->cur_obj = obj;
page_count = obj->size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page;
char *dst, *src;
page = read_cache_page_gfp(mapping, i,
GFP_HIGHUSER | __GFP_RECLAIMABLE);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
memcpy(dst, src, PAGE_SIZE);
kunmap_atomic(src);
mark_page_accessed(page);
page_cache_release(page);
}
return 0;
}
static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten)
return -EFAULT;
}
drm_agp_chipset_flush(dev);
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
while (!list_empty(&file_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static int
i915_gpu_is_active(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int lists_empty;
lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list);
return !lists_empty;
}
static int
i915_gem_inactive_shrink(struct shrinker *shrinker,
int nr_to_scan,
gfp_t gfp_mask)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
struct drm_i915_gem_object *obj, *next;
int cnt;
if (!mutex_trylock(&dev->struct_mutex))
return 0;
/* "fast-path" to count number of available objects */
if (nr_to_scan == 0) {
cnt = 0;
list_for_each_entry(obj,
&dev_priv->mm.inactive_list,
mm_list)
cnt++;
mutex_unlock(&dev->struct_mutex);
return cnt / 100 * sysctl_vfs_cache_pressure;
}
rescan:
/* first scan for clean buffers */
i915_gem_retire_requests(dev);
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list,
mm_list) {
if (i915_gem_object_is_purgeable(obj)) {
i915_gem_object_unbind(&obj->base);
if (--nr_to_scan == 0)
break;
}
}
/* second pass, evict/count anything still on the inactive list */
cnt = 0;
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list,
mm_list) {
if (nr_to_scan) {
i915_gem_object_unbind(&obj->base);
nr_to_scan--;
} else
cnt++;
}
if (nr_to_scan && i915_gpu_is_active(dev)) {
/*
* We are desperate for pages, so as a last resort, wait
* for the GPU to finish and discard whatever we can.
* This has a dramatic impact to reduce the number of
* OOM-killer events whilst running the GPU aggressively.
*/
if (i915_gpu_idle(dev) == 0)
goto rescan;
}
mutex_unlock(&dev->struct_mutex);
return cnt / 100 * sysctl_vfs_cache_pressure;
}