kernel-fxtec-pro1x/drivers/scsi/cpqfcTSinit.c
Jesper Juhl f9101210e7 [PATCH] vfree and kfree cleanup in drivers/
This patch does a full cleanup of 'NULL checks before vfree', and a partial
cleanup of calls to kfree for all of drivers/ - the kfree bit is partial in
that I only did the files that also had vfree calls in them.  The patch
also gets rid of some redundant (void *) casts of pointers being passed to
[vk]free, and a some tiny whitespace corrections also crept in.

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 10:06:30 -07:00

2096 lines
64 KiB
C

/* Copyright(c) 2000, Compaq Computer Corporation
* Fibre Channel Host Bus Adapter
* 64-bit, 66MHz PCI
* Originally developed and tested on:
* (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ...
* SP# P225CXCBFIEL6T, Rev XC
* SP# 161290-001, Rev XD
* (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
* Written by Don Zimmerman
* IOCTL and procfs added by Jouke Numan
* SMP testing by Chel Van Gennip
*
* portions copied from:
* QLogic CPQFCTS SCSI-FCP
* Written by Erik H. Moe, ehm@cris.com
* Copyright 1995, Erik H. Moe
* Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu>
* Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200
*/
#define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s))
#include <linux/config.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/blkdev.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/ioport.h> // request_region() prototype
#include <linux/completion.h>
#include <asm/io.h>
#include <asm/uaccess.h> // ioctl related
#include <asm/irq.h>
#include <linux/spinlock.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>
#include "cpqfcTSchip.h"
#include "cpqfcTSstructs.h"
#include "cpqfcTStrigger.h"
#include "cpqfcTS.h"
/* Embedded module documentation macros - see module.h */
MODULE_AUTHOR("Compaq Computer Corporation");
MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.5.4");
MODULE_LICENSE("GPL");
int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, unsigned int reset_flags);
// This struct was originally defined in
// /usr/src/linux/include/linux/proc_fs.h
// since it's only partially implemented, we only use first
// few fields...
// NOTE: proc_fs changes in 2.4 kernel
#if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27)
static struct proc_dir_entry proc_scsi_cpqfcTS =
{
PROC_SCSI_CPQFCTS, // ushort low_ino (enumerated list)
7, // ushort namelen
DEV_NAME, // const char* name
S_IFDIR | S_IRUGO | S_IXUGO, // mode_t mode
2 // nlink_t nlink
// etc. ...
};
#endif
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7)
# define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x)
# define CPQFC_WAITING waiting
# define CPQFC_COMPLETE(x) complete(x)
# define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x);
#else
# define CPQFC_DECLARE_COMPLETION(x) DECLARE_MUTEX_LOCKED(x)
# define CPQFC_WAITING sem
# define CPQFC_COMPLETE(x) up(x)
# define CPQFC_WAIT_FOR_COMPLETION(x) down(x)
#endif
static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba);
/* local function to load our per-HBA (local) data for chip
registers, FC link state, all FC exchanges, etc.
We allocate space and compute address offsets for the
most frequently accessed addresses; others (like World Wide
Name) are not necessary.
*/
static void Cpqfc_initHBAdata(CPQFCHBA *cpqfcHBAdata, struct pci_dev *PciDev )
{
cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr
// since x86 port space is 64k, we only need the lower 16 bits
cpqfcHBAdata->fcChip.Registers.IOBaseL =
PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
cpqfcHBAdata->fcChip.Registers.IOBaseU =
PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK;
// 32-bit memory addresses
cpqfcHBAdata->fcChip.Registers.MemBase =
PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK;
cpqfcHBAdata->fcChip.Registers.ReMapMemBase =
ioremap( PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK,
0x200);
cpqfcHBAdata->fcChip.Registers.RAMBase =
PciDev->resource[4].start;
cpqfcHBAdata->fcChip.Registers.SROMBase = // NULL for HP TS adapter
PciDev->resource[5].start;
// now the Tachlite chip registers
// the REGISTER struct holds both the physical address & last
// written value (some TL registers are WRITE ONLY)
cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX;
cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX;
// TL Frame Manager
cpqfcHBAdata->fcChip.Registers.FMconfig.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG;
cpqfcHBAdata->fcChip.Registers.FMcontrol.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL;
cpqfcHBAdata->fcChip.Registers.FMstatus.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS;
cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1;
cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2;
cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0;
// TL Control Regs
cpqfcHBAdata->fcChip.Registers.TYconfig.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG;
cpqfcHBAdata->fcChip.Registers.TYcontrol.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL;
cpqfcHBAdata->fcChip.Registers.TYstatus.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS;
cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA;
cpqfcHBAdata->fcChip.Registers.ed_tov.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV;
cpqfcHBAdata->fcChip.Registers.INTEN.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN;
cpqfcHBAdata->fcChip.Registers.INTPEND.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND;
cpqfcHBAdata->fcChip.Registers.INTSTAT.address =
cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT;
DEBUG_PCI(printk(" cpqfcHBAdata->fcChip.Registers. :\n"));
DEBUG_PCI(printk(" IOBaseL = %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseL));
DEBUG_PCI(printk(" IOBaseU = %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseU));
/* printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase); */
DEBUG_PCI(printk(" SFQconsumerIndex.address = %p\n",
cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address));
DEBUG_PCI(printk(" ERQproducerIndex.address = %p\n",
cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address));
DEBUG_PCI(printk(" TYconfig.address = %p\n",
cpqfcHBAdata->fcChip.Registers.TYconfig.address));
DEBUG_PCI(printk(" FMconfig.address = %p\n",
cpqfcHBAdata->fcChip.Registers.FMconfig.address));
DEBUG_PCI(printk(" FMcontrol.address = %p\n",
cpqfcHBAdata->fcChip.Registers.FMcontrol.address));
// set default options for FC controller (chip)
cpqfcHBAdata->fcChip.Options.initiator = 1; // default: SCSI initiator
cpqfcHBAdata->fcChip.Options.target = 0; // default: SCSI target
cpqfcHBAdata->fcChip.Options.extLoopback = 0;// default: no loopback @GBIC
cpqfcHBAdata->fcChip.Options.intLoopback = 0;// default: no loopback inside chip
// set highest and lowest FC-PH version the adapter/driver supports
// (NOT strict compliance)
cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3;
cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43;
// set function points for this controller / adapter
cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite;
cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite;
cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite;
cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues;
cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues;
cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite;
cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl;
cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry;
cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager;
cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN;
cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM;
if (cpqfc_alloc_private_data_pool(cpqfcHBAdata) != 0) {
printk(KERN_WARNING
"cpqfc: unable to allocate pool for passthru ioctls. "
"Passthru ioctls disabled.\n");
}
}
/* (borrowed from linux/drivers/scsi/hosts.c) */
static void launch_FCworker_thread(struct Scsi_Host *HostAdapter)
{
DECLARE_MUTEX_LOCKED(sem);
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
ENTER("launch_FC_worker_thread");
cpqfcHBAdata->notify_wt = &sem;
/* must unlock before kernel_thread(), for it may cause a reschedule. */
spin_unlock_irq(HostAdapter->host_lock);
kernel_thread((int (*)(void *))cpqfcTSWorkerThread,
(void *) HostAdapter, 0);
/*
* Now wait for the kernel error thread to initialize itself
*/
down (&sem);
spin_lock_irq(HostAdapter->host_lock);
cpqfcHBAdata->notify_wt = NULL;
LEAVE("launch_FC_worker_thread");
}
/* "Entry" point to discover if any supported PCI
bus adapter can be found
*/
/* We're supporting:
* Compaq 64-bit, 66MHz HBA with Tachyon TS
* Agilent XL2
* HP Tachyon
*/
#define HBA_TYPES 3
#ifndef PCI_DEVICE_ID_COMPAQ_
#define PCI_DEVICE_ID_COMPAQ_TACHYON 0xa0fc
#endif
static struct SupportedPCIcards cpqfc_boards[] __initdata = {
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON},
};
int cpqfcTS_detect(Scsi_Host_Template *ScsiHostTemplate)
{
int NumberOfAdapters=0; // how many of our PCI adapters are found?
struct pci_dev *PciDev = NULL;
struct Scsi_Host *HostAdapter = NULL;
CPQFCHBA *cpqfcHBAdata = NULL;
struct timer_list *cpqfcTStimer = NULL;
int i;
ENTER("cpqfcTS_detect");
#if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27)
ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS;
#else
ScsiHostTemplate->proc_name = "cpqfcTS";
#endif
for( i=0; i < HBA_TYPES; i++)
{
// look for all HBAs of each type
while((PciDev = pci_find_device(cpqfc_boards[i].vendor_id,
cpqfc_boards[i].device_id, PciDev)))
{
if (pci_enable_device(PciDev)) {
printk(KERN_ERR
"cpqfc: can't enable PCI device at %s\n", pci_name(PciDev));
goto err_continue;
}
if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) {
printk(KERN_WARNING
"cpqfc: HBA cannot support required DMA mask, skipping.\n");
goto err_disable_dev;
}
// NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes...
/* printk(" scsi_register allocating %d bytes for FC HBA\n",
(ULONG)sizeof(CPQFCHBA)); */
HostAdapter = scsi_register( ScsiHostTemplate, sizeof( CPQFCHBA ) );
if(HostAdapter == NULL) {
printk(KERN_WARNING
"cpqfc: can't register SCSI HBA, skipping.\n");
goto err_disable_dev;
}
DEBUG_PCI( printk(" HBA found!\n"));
DEBUG_PCI( printk(" HostAdapter->PciDev->irq = %u\n", PciDev->irq) );
DEBUG_PCI(printk(" PciDev->baseaddress[0]= %lx\n",
PciDev->resource[0].start));
DEBUG_PCI(printk(" PciDev->baseaddress[1]= %lx\n",
PciDev->resource[1].start));
DEBUG_PCI(printk(" PciDev->baseaddress[2]= %lx\n",
PciDev->resource[2].start));
DEBUG_PCI(printk(" PciDev->baseaddress[3]= %lx\n",
PciDev->resource[3].start));
HostAdapter->irq = PciDev->irq; // copy for Scsi layers
// HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper),
// for a total I/O port address space of 512 bytes.
// mask out the I/O port address (lower) & record
HostAdapter->io_port = (unsigned int)
PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
HostAdapter->n_io_port = 0xff;
// i.e., expect 128 targets (arbitrary number), while the
// RA-4000 supports 32 LUNs
HostAdapter->max_id = 0; // incremented as devices log in
HostAdapter->max_lun = CPQFCTS_MAX_LUN; // LUNs per FC device
HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses?
// get the pointer to our HBA specific data... (one for
// each HBA on the PCI bus(ses)).
cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
// make certain our data struct is clear
memset( cpqfcHBAdata, 0, sizeof( CPQFCHBA ) );
// initialize our HBA info
cpqfcHBAdata->HBAnum = NumberOfAdapters;
cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr
Cpqfc_initHBAdata( cpqfcHBAdata, PciDev ); // fill MOST fields
cpqfcHBAdata->HBAnum = NumberOfAdapters;
spin_lock_init(&cpqfcHBAdata->hba_spinlock);
// request necessary resources and check for conflicts
if( request_irq( HostAdapter->irq,
cpqfcTS_intr_handler,
SA_INTERRUPT | SA_SHIRQ,
DEV_NAME,
HostAdapter) )
{
printk(KERN_WARNING "cpqfc: IRQ %u already used\n", HostAdapter->irq);
goto err_unregister;
}
// Since we have two 256-byte I/O port ranges (upper
// and lower), check them both
if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseU,
0xff, DEV_NAME ) )
{
printk(KERN_WARNING "cpqfc: address in use: %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseU);
goto err_free_irq;
}
if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseL,
0xff, DEV_NAME ) )
{
printk(KERN_WARNING "cpqfc: address in use: %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseL);
goto err_release_region_U;
}
// OK, we have grabbed everything we need now.
DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseL ));
DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n",
cpqfcHBAdata->fcChip.Registers.IOBaseU ));
// start our kernel worker thread
spin_lock_irq(HostAdapter->host_lock);
launch_FCworker_thread(HostAdapter);
// start our TimerTask...
cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer;
init_timer( cpqfcTStimer); // Linux clears next/prev values
cpqfcTStimer->expires = jiffies + HZ; // one second
cpqfcTStimer->data = (unsigned long)cpqfcHBAdata; // this adapter
cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping
add_timer( cpqfcTStimer); // give it to Linux
// now initialize our hardware...
if (cpqfcHBAdata->fcChip.InitializeTachyon( cpqfcHBAdata, 1,1)) {
printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n");
goto err_release_region_L;
}
cpqfcHBAdata->fcStatsTime = jiffies; // (for FC Statistics delta)
// give our HBA time to initialize and login current devices...
{
// The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000,
// has the following algorithm for FL_Port startup:
// Time(sec) Action
// 0: Device Plugin and LIP(F7,F7) transmission
// 1.0 LIP incoming
// 1.027 LISA incoming, no CLS! (link not up)
// 1.028 NOS incoming (switch test for N_Port)
// 1.577 ED_TOV expired, transmit LIPs again
// 3.0 LIP(F8,F7) incoming (switch passes Tach Prim.Sig)
// 3.028 LILP received, link up, FLOGI starts
// slowest(worst) case, measured on 1Gb Finisar GT analyzer
unsigned long stop_time;
spin_unlock_irq(HostAdapter->host_lock);
stop_time = jiffies + 4*HZ;
while ( time_before(jiffies, stop_time) )
schedule(); // (our worker task needs to run)
}
spin_lock_irq(HostAdapter->host_lock);
NumberOfAdapters++;
spin_unlock_irq(HostAdapter->host_lock);
continue;
err_release_region_L:
release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff );
err_release_region_U:
release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff );
err_free_irq:
free_irq( HostAdapter->irq, HostAdapter);
err_unregister:
scsi_unregister( HostAdapter);
err_disable_dev:
pci_disable_device( PciDev );
err_continue:
continue;
} // end of while()
}
LEAVE("cpqfcTS_detect");
return NumberOfAdapters;
}
#ifdef SUPPORT_RESET
static void my_ioctl_done (Scsi_Cmnd * SCpnt)
{
struct request * req;
req = SCpnt->request;
req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */
if (req->CPQFC_WAITING != NULL)
CPQFC_COMPLETE(req->CPQFC_WAITING);
}
#endif
static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba)
{
hba->private_data_bits = NULL;
hba->private_data_pool = NULL;
hba->private_data_bits =
kmalloc(((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) /
BITS_PER_LONG)*sizeof(unsigned long),
GFP_KERNEL);
if (hba->private_data_bits == NULL)
return -1;
memset(hba->private_data_bits, 0,
((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) /
BITS_PER_LONG)*sizeof(unsigned long));
hba->private_data_pool = kmalloc(sizeof(cpqfc_passthru_private_t) *
CPQFC_MAX_PASSTHRU_CMDS, GFP_KERNEL);
if (hba->private_data_pool == NULL) {
kfree(hba->private_data_bits);
hba->private_data_bits = NULL;
return -1;
}
return 0;
}
static void cpqfc_free_private_data_pool(CPQFCHBA *hba)
{
kfree(hba->private_data_bits);
kfree(hba->private_data_pool);
}
int is_private_data_of_cpqfc(CPQFCHBA *hba, void *pointer)
{
/* Is pointer within our private data pool?
We use Scsi_Request->upper_private_data (normally
reserved for upper layer drivers, e.g. the sg driver)
We check to see if the pointer is ours by looking at
its address. Is this ok? Hmm, it occurs to me that
a user app might do something bad by using sg to send
a cpqfc passthrough ioctl with upper_data_private
forged to be somewhere in our pool..., though they'd
normally have to be root already to do this. */
return (pointer != NULL &&
pointer >= (void *) hba->private_data_pool &&
pointer < (void *) hba->private_data_pool +
sizeof(*hba->private_data_pool) *
CPQFC_MAX_PASSTHRU_CMDS);
}
cpqfc_passthru_private_t *cpqfc_alloc_private_data(CPQFCHBA *hba)
{
int i;
do {
i = find_first_zero_bit(hba->private_data_bits,
CPQFC_MAX_PASSTHRU_CMDS);
if (i == CPQFC_MAX_PASSTHRU_CMDS)
return NULL;
} while ( test_and_set_bit(i & (BITS_PER_LONG - 1),
hba->private_data_bits+(i/BITS_PER_LONG)) != 0);
return &hba->private_data_pool[i];
}
void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data)
{
int i;
i = data - hba->private_data_pool;
clear_bit(i&(BITS_PER_LONG-1),
hba->private_data_bits+(i/BITS_PER_LONG));
}
int cpqfcTS_ioctl( struct scsi_device *ScsiDev, int Cmnd, void *arg)
{
int result = 0;
struct Scsi_Host *HostAdapter = ScsiDev->host;
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
PFC_LOGGEDIN_PORT pLoggedInPort = NULL;
struct scsi_cmnd *DumCmnd;
int i, j;
VENDOR_IOCTL_REQ ioc;
cpqfc_passthru_t *vendor_cmd;
Scsi_Device *SDpnt;
Scsi_Request *ScsiPassThruReq;
cpqfc_passthru_private_t *privatedata;
ENTER("cpqfcTS_ioctl ");
// printk("ioctl CMND %d", Cmnd);
switch (Cmnd) {
// Passthrough provides a mechanism to bypass the RAID
// or other controller and talk directly to the devices
// (e.g. physical disk drive)
// Passthrough commands, unfortunately, tend to be vendor
// specific; this is tailored to COMPAQ's RAID (RA4x00)
case CPQFCTS_SCSI_PASSTHRU:
{
void *buf = NULL; // for kernel space buffer for user data
/* Check that our pool got allocated ok. */
if (cpqfcHBAdata->private_data_pool == NULL)
return -ENOMEM;
if( !arg)
return -EINVAL;
// must be super user to send stuff directly to the
// controller and/or physical drives...
if( !capable(CAP_SYS_RAWIO) )
return -EPERM;
// copy the caller's struct to our space.
if( copy_from_user( &ioc, arg, sizeof( VENDOR_IOCTL_REQ)))
return( -EFAULT);
vendor_cmd = ioc.argp; // i.e., CPQ specific command struct
// If necessary, grab a kernel/DMA buffer
if( vendor_cmd->len)
{
buf = kmalloc( vendor_cmd->len, GFP_KERNEL);
if( !buf)
return -ENOMEM;
}
// Now build a Scsi_Request to pass down...
ScsiPassThruReq = scsi_allocate_request(ScsiDev, GFP_KERNEL);
if (ScsiPassThruReq == NULL) {
kfree(buf);
return -ENOMEM;
}
ScsiPassThruReq->upper_private_data =
cpqfc_alloc_private_data(cpqfcHBAdata);
if (ScsiPassThruReq->upper_private_data == NULL) {
kfree(buf);
scsi_release_request(ScsiPassThruReq); // "de-allocate"
return -ENOMEM;
}
if (vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) {
if (vendor_cmd->len) { // Need data from user?
if (copy_from_user(buf, vendor_cmd->bufp,
vendor_cmd->len)) {
kfree(buf);
cpqfc_free_private_data(cpqfcHBAdata,
ScsiPassThruReq->upper_private_data);
scsi_release_request(ScsiPassThruReq);
return( -EFAULT);
}
}
ScsiPassThruReq->sr_data_direction = DMA_TO_DEVICE;
} else if (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) {
ScsiPassThruReq->sr_data_direction = DMA_FROM_DEVICE;
} else
// maybe this means a bug in the user app
ScsiPassThruReq->sr_data_direction = DMA_BIDIRECTIONAL;
ScsiPassThruReq->sr_cmd_len = 0; // set correctly by scsi_do_req()
ScsiPassThruReq->sr_sense_buffer[0] = 0;
ScsiPassThruReq->sr_sense_buffer[2] = 0;
// We copy the scheme used by sd.c:spinup_disk() to submit commands
// to our own HBA. We do this in order to stall the
// thread calling the IOCTL until it completes, and use
// the same "_quecommand" function for synchronizing
// FC Link events with our "worker thread".
privatedata = ScsiPassThruReq->upper_private_data;
privatedata->bus = vendor_cmd->bus;
privatedata->pdrive = vendor_cmd->pdrive;
// eventually gets us to our own _quecommand routine
scsi_wait_req(ScsiPassThruReq,
&vendor_cmd->cdb[0], buf, vendor_cmd->len,
10*HZ, // timeout
1); // retries
result = ScsiPassThruReq->sr_result;
// copy any sense data back to caller
if( result != 0 )
{
memcpy( vendor_cmd->sense_data, // see struct def - size=40
ScsiPassThruReq->sr_sense_buffer,
sizeof(ScsiPassThruReq->sr_sense_buffer) <
sizeof(vendor_cmd->sense_data) ?
sizeof(ScsiPassThruReq->sr_sense_buffer) :
sizeof(vendor_cmd->sense_data)
);
}
SDpnt = ScsiPassThruReq->sr_device;
/* upper_private_data is already freed in call_scsi_done() */
scsi_release_request(ScsiPassThruReq); // "de-allocate"
ScsiPassThruReq = NULL;
// need to pass data back to user (space)?
if( (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) &&
vendor_cmd->len )
if( copy_to_user( vendor_cmd->bufp, buf, vendor_cmd->len))
result = -EFAULT;
kfree(buf);
return result;
}
case CPQFCTS_GETPCIINFO:
{
cpqfc_pci_info_struct pciinfo;
if( !arg)
return -EINVAL;
pciinfo.bus = cpqfcHBAdata->PciDev->bus->number;
pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn;
pciinfo.board_id = cpqfcHBAdata->PciDev->device |
(cpqfcHBAdata->PciDev->vendor <<16);
if(copy_to_user( arg, &pciinfo, sizeof(cpqfc_pci_info_struct)))
return( -EFAULT);
return 0;
}
case CPQFCTS_GETDRIVVER:
{
DriverVer_type DriverVer =
CPQFCTS_DRIVER_VER( VER_MAJOR,VER_MINOR,VER_SUBMINOR);
if( !arg)
return -EINVAL;
if(copy_to_user( arg, &DriverVer, sizeof(DriverVer)))
return( -EFAULT);
return 0;
}
case CPQFC_IOCTL_FC_TARGET_ADDRESS:
// can we find an FC device mapping to this SCSI target?
/* DumCmnd.channel = ScsiDev->channel; */ // For searching
/* DumCmnd.target = ScsiDev->id; */
/* DumCmnd.lun = ScsiDev->lun; */
DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL);
if (!DumCmnd)
return -ENOMEM;
pLoggedInPort = fcFindLoggedInPort( fcChip,
DumCmnd, // search Scsi Nexus
0, // DON'T search linked list for FC port id
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
scsi_put_command (DumCmnd);
if (pLoggedInPort == NULL) {
result = -ENXIO;
break;
}
result = access_ok(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress)) ? 0 : -EFAULT;
if (result) break;
put_user(pLoggedInPort->port_id,
&((Scsi_FCTargAddress *) arg)->host_port_id);
for( i=3,j=0; i>=0; i--) // copy the LOGIN port's WWN
put_user(pLoggedInPort->u.ucWWN[i],
&((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
for( i=7; i>3; i--) // copy the LOGIN port's WWN
put_user(pLoggedInPort->u.ucWWN[i],
&((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
break;
case CPQFC_IOCTL_FC_TDR:
result = cpqfcTS_TargetDeviceReset( ScsiDev, 0);
break;
default:
result = -EINVAL;
break;
}
LEAVE("cpqfcTS_ioctl");
return result;
}
/* "Release" the Host Bus Adapter...
disable interrupts, stop the HBA, release the interrupt,
and free all resources */
int cpqfcTS_release(struct Scsi_Host *HostAdapter)
{
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
ENTER("cpqfcTS_release");
DEBUG_PCI( printk(" cpqfcTS: delete timer...\n"));
del_timer( &cpqfcHBAdata->cpqfcTStimer);
// disable the hardware...
DEBUG_PCI( printk(" disable hardware, destroy queues, free mem\n"));
cpqfcHBAdata->fcChip.ResetTachyon( cpqfcHBAdata, CLEAR_FCPORTS);
// kill kernel thread
if( cpqfcHBAdata->worker_thread ) // (only if exists)
{
DECLARE_MUTEX_LOCKED(sem); // synchronize thread kill
cpqfcHBAdata->notify_wt = &sem;
DEBUG_PCI( printk(" killing kernel thread\n"));
send_sig( SIGKILL, cpqfcHBAdata->worker_thread, 1);
down( &sem);
cpqfcHBAdata->notify_wt = NULL;
}
cpqfc_free_private_data_pool(cpqfcHBAdata);
// free Linux resources
DEBUG_PCI( printk(" cpqfcTS: freeing resources...\n"));
free_irq( HostAdapter->irq, HostAdapter);
scsi_unregister( HostAdapter);
release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff);
release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff);
/* we get "vfree: bad address" executing this - need to investigate...
if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) !=
cpqfcHBAdata->fcChip.Registers.ReMapMemBase)
vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase);
*/
pci_disable_device( cpqfcHBAdata->PciDev);
LEAVE("cpqfcTS_release");
return 0;
}
const char * cpqfcTS_info(struct Scsi_Host *HostAdapter)
{
static char buf[300];
CPQFCHBA *cpqfcHBA;
int BusSpeed, BusWidth;
// get the pointer to our Scsi layer HBA buffer
cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata;
BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR &0x4) > 0 ?
64 : 32;
if( cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000)
BusSpeed = 66;
else
BusSpeed = 33;
sprintf(buf,
"%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d",
cpqfcHBA->fcChip.Name,
cpqfcHBA->fcChip.Registers.wwn_hi,
cpqfcHBA->fcChip.Registers.wwn_lo,
cpqfcHBA->PciDev->bus->number,
cpqfcHBA->PciDev->device,
HostAdapter->irq,
cpqfcHBA->fcChip.Registers.IOBaseL,
cpqfcHBA->fcChip.Registers.MemBase,
BusWidth,
BusSpeed,
VER_MAJOR, VER_MINOR, VER_SUBMINOR
);
cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
return buf;
}
//
// /proc/scsi support. The following routines allow us to do 'normal'
// sprintf like calls to return the currently requested piece (buflenght
// chars, starting at bufoffset) of the file. Although procfs allows for
// a 1 Kb bytes overflow after te supplied buffer, I consider it bad
// programming to use it to make programming a little simpler. This piece
// of coding is borrowed from ncr53c8xx.c with some modifications
//
struct info_str
{
char *buffer; // Pointer to output buffer
int buflength; // It's length
int bufoffset; // File offset corresponding with buf[0]
int buffillen; // Current filled length
int filpos; // Current file offset
};
static void copy_mem_info(struct info_str *info, char *data, int datalen)
{
if (info->filpos < info->bufoffset) { // Current offset before buffer offset
if (info->filpos + datalen <= info->bufoffset) {
info->filpos += datalen; // Discard if completely before buffer
return;
} else { // Partial copy, set to begin
data += (info->bufoffset - info->filpos);
datalen -= (info->bufoffset - info->filpos);
info->filpos = info->bufoffset;
}
}
info->filpos += datalen; // Update current offset
if (info->buffillen == info->buflength) // Buffer full, discard
return;
if (info->buflength - info->buffillen < datalen) // Overflows buffer ?
datalen = info->buflength - info->buffillen;
memcpy(info->buffer + info->buffillen, data, datalen);
info->buffillen += datalen;
}
static int copy_info(struct info_str *info, char *fmt, ...)
{
va_list args;
char buf[400];
int len;
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
copy_mem_info(info, buf, len);
return len;
}
// Routine to get data for /proc RAM filesystem
//
int cpqfcTS_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length,
int inout)
{
struct scsi_cmnd *DumCmnd;
struct scsi_device *ScsiDev;
int Chan, Targ, i;
struct info_str info;
CPQFCHBA *cpqfcHBA;
PTACHYON fcChip;
PFC_LOGGEDIN_PORT pLoggedInPort;
char buf[81];
if (inout) return -EINVAL;
// get the pointer to our Scsi layer HBA buffer
cpqfcHBA = (CPQFCHBA *)host->hostdata;
fcChip = &cpqfcHBA->fcChip;
*start = buffer;
info.buffer = buffer;
info.buflength = length;
info.bufoffset = offset;
info.filpos = 0;
info.buffillen = 0;
copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR);
cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[0]);
cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
copy_info(&info, "%s\n", buf);
#define DISPLAY_WWN_INFO
#ifdef DISPLAY_WWN_INFO
ScsiDev = scsi_get_host_dev (host);
if (!ScsiDev)
return -ENOMEM;
DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL);
if (!DumCmnd) {
scsi_free_host_dev (ScsiDev);
return -ENOMEM;
}
copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n");
for ( Chan=0; Chan <= host->max_channel; Chan++) {
DumCmnd->device->channel = Chan;
for (Targ=0; Targ <= host->max_id; Targ++) {
DumCmnd->device->id = Targ;
if ((pLoggedInPort = fcFindLoggedInPort( fcChip,
DumCmnd, // search Scsi Nexus
0, // DON'T search list for FC port id
NULL, // DON'T search list for FC WWN
NULL))){ // DON'T care about end of list
copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ",
host->host_no, Chan, Targ);
for( i=3; i>=0; i--) // copy the LOGIN port's WWN
copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
for( i=7; i>3; i--) // copy the LOGIN port's WWN
copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id);
}
}
}
scsi_put_command (DumCmnd);
scsi_free_host_dev (ScsiDev);
#endif
// Unfortunately, the proc_info buffer isn't big enough
// for everything we would like...
// For FC stats, compile this and turn off WWN stuff above
//#define DISPLAY_FC_STATS
#ifdef DISPLAY_FC_STATS
// get the Fibre Channel statistics
{
int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ;
int days,hours,minutes,secs;
days = DeltaSecs / (3600*24); // days
hours = (DeltaSecs% (3600*24)) / 3600; // hours
minutes = (DeltaSecs%3600 /60); // minutes
secs = DeltaSecs%60; // secs
copy_info( &info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n",
days, hours, minutes, secs);
}
cpqfcHBA->fcStatsTime = jiffies; // (for next delta)
copy_info( &info, " LinkUp %9u LinkDown %u\n",
fcChip->fcStats.linkUp, fcChip->fcStats.linkDown);
copy_info( &info, " Loss of Signal %9u Loss of Sync %u\n",
fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync);
copy_info( &info, " Discarded Frames %9u Bad CRC Frame %u\n",
fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC);
copy_info( &info, " TACH LinkFailTX %9u TACH LinkFailRX %u\n",
fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX);
copy_info( &info, " TACH RxEOFa %9u TACH Elastic Store %u\n",
fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores);
copy_info( &info, " BufferCreditWait %9uus TACH FM Inits %u\n",
fcChip->fcStats.BB0_Timer*10, fcChip->fcStats.FMinits );
copy_info( &info, " FC-2 Timeouts %9u FC-2 Logouts %u\n",
fcChip->fcStats.timeouts, fcChip->fcStats.logouts);
copy_info( &info, " FC-2 Aborts %9u FC-4 Aborts %u\n",
fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted);
// clear the counters
cpqfcTSClearLinkStatusCounters( fcChip);
#endif
return info.buffillen;
}
#if DEBUG_CMND
UCHAR *ScsiToAscii( UCHAR ScsiCommand)
{
/*++
Routine Description:
Converts a SCSI command to a text string for debugging purposes.
Arguments:
ScsiCommand -- hex value SCSI Command
Return Value:
An ASCII, null-terminated string if found, else returns NULL.
Original code from M. McGowen, Compaq
--*/
switch (ScsiCommand)
{
case 0x00:
return( "Test Unit Ready" );
case 0x01:
return( "Rezero Unit or Rewind" );
case 0x02:
return( "Request Block Address" );
case 0x03:
return( "Requese Sense" );
case 0x04:
return( "Format Unit" );
case 0x05:
return( "Read Block Limits" );
case 0x07:
return( "Reassign Blocks" );
case 0x08:
return( "Read (6)" );
case 0x0a:
return( "Write (6)" );
case 0x0b:
return( "Seek (6)" );
case 0x12:
return( "Inquiry" );
case 0x15:
return( "Mode Select (6)" );
case 0x16:
return( "Reserve" );
case 0x17:
return( "Release" );
case 0x1a:
return( "ModeSen(6)" );
case 0x1b:
return( "Start/Stop Unit" );
case 0x1c:
return( "Receive Diagnostic Results" );
case 0x1d:
return( "Send Diagnostic" );
case 0x25:
return( "Read Capacity" );
case 0x28:
return( "Read (10)" );
case 0x2a:
return( "Write (10)" );
case 0x2b:
return( "Seek (10)" );
case 0x2e:
return( "Write and Verify" );
case 0x2f:
return( "Verify" );
case 0x34:
return( "Pre-Fetch" );
case 0x35:
return( "Synchronize Cache" );
case 0x37:
return( "Read Defect Data (10)" );
case 0x3b:
return( "Write Buffer" );
case 0x3c:
return( "Read Buffer" );
case 0x3e:
return( "Read Long" );
case 0x3f:
return( "Write Long" );
case 0x41:
return( "Write Same" );
case 0x4c:
return( "Log Select" );
case 0x4d:
return( "Log Sense" );
case 0x56:
return( "Reserve (10)" );
case 0x57:
return( "Release (10)" );
case 0xa0:
return( "ReportLuns" );
case 0xb7:
return( "Read Defect Data (12)" );
case 0xca:
return( "Peripheral Device Addressing SCSI Passthrough" );
case 0xcb:
return( "Compaq Array Firmware Passthrough" );
default:
return( NULL );
}
} // end ScsiToAscii()
void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd)
{
printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n",
ScsiToAscii( cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len);
if( cmd->cmnd[0] == 0) // Test Unit Ready?
{
int i;
printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n",
cmd->request_bufflen, cmd->use_sg, cmd->bufflen);
printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n",
cmd->request_buffer, cmd->sglist_len, cmd->buffer);
for (i = 0; i < cmd->cmd_len; i++)
printk("0x%02x ", cmd->cmnd[i]);
printk("\n");
}
}
#endif /* DEBUG_CMND */
static void QueCmndOnBoardLock( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
{
int i;
for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++)
{ // find spare slot
if( cpqfcHBAdata->BoardLockCmnd[i] == NULL )
{
cpqfcHBAdata->BoardLockCmnd[i] = Cmnd;
// printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
// i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
break;
}
}
if( i >= CPQFCTS_REQ_QUEUE_LEN)
{
printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd);
}
}
static void QueLinkDownCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
{
int indx;
// Remember the command ptr so we can return; we'll complete when
// the device comes back, causing immediate retry
for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++)//, SCptr++)
{
if( cpqfcHBAdata->LinkDnCmnd[indx] == NULL ) // available?
{
#ifdef DUMMYCMND_DBG
printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd,indx);
#endif
cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd;
break;
}
}
if( indx >= CPQFCTS_REQ_QUEUE_LEN ) // no space for Cmnd??
{
// this will result in an _abort call later (with possible trouble)
printk("no buffer for LinkDnCmnd!! %p\n", Cmnd);
}
}
// The file <scsi/scsi_host.h> says not to call scsi_done from
// inside _queuecommand, so we'll do it from the heartbeat timer
// (clarification: Turns out it's ok to call scsi_done from queuecommand
// for cases that don't go to the hardware like scsi cmds destined
// for LUNs we know don't exist, so this code might be simplified...)
static void QueBadTargetCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
{
int i;
// printk(" can't find target %d\n", Cmnd->target);
for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++)
{ // find spare slot
if( cpqfcHBAdata->BadTargetCmnd[i] == NULL )
{
cpqfcHBAdata->BadTargetCmnd[i] = Cmnd;
// printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
// i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
break;
}
}
}
// This is the "main" entry point for Linux Scsi commands --
// it all starts here.
int cpqfcTS_queuecommand(Scsi_Cmnd *Cmnd, void (* done)(Scsi_Cmnd *))
{
struct Scsi_Host *HostAdapter = Cmnd->device->host;
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
TachFCHDR_GCMND fchs; // only use for FC destination id field
PFC_LOGGEDIN_PORT pLoggedInPort;
ULONG ulStatus, SESTtype;
LONG ExchangeID;
ENTER("cpqfcTS_queuecommand");
PCI_TRACEO( (ULONG)Cmnd, 0x98)
Cmnd->scsi_done = done;
#ifdef DEBUG_CMND
cpqfcTS_print_scsi_cmd( Cmnd);
#endif
// prevent board contention with kernel thread...
if( cpqfcHBAdata->BoardLock )
{
// printk(" @BrdLck Hld@ ");
QueCmndOnBoardLock( cpqfcHBAdata, Cmnd);
}
else
{
// in the current system (2.2.12), this routine is called
// after spin_lock_irqsave(), so INTs are disabled. However,
// we might have something pending in the LinkQ, which
// might cause the WorkerTask to run. In case that
// happens, make sure we lock it out.
PCI_TRACE( 0x98)
CPQ_SPINLOCK_HBA( cpqfcHBAdata)
PCI_TRACE( 0x98)
// can we find an FC device mapping to this SCSI target?
pLoggedInPort = fcFindLoggedInPort( fcChip,
Cmnd, // search Scsi Nexus
0, // DON'T search linked list for FC port id
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
if( pLoggedInPort == NULL ) // not found!
{
// printk(" @Q bad targ cmnd %p@ ", Cmnd);
QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
}
else if (Cmnd->device->lun >= CPQFCTS_MAX_LUN)
{
printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->device->lun);
QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
}
else // we know what FC device to send to...
{
// does this device support FCP target functions?
// (determined by PRLI field)
if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) )
{
printk(" Doesn't support TARGET functions port_id %Xh\n",
pLoggedInPort->port_id );
QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
}
// In this case (previous login OK), the device is temporarily
// unavailable waiting for re-login, in which case we expect it
// to be back in between 25 - 500ms.
// If the FC port doesn't log back in within several seconds
// (i.e. implicit "logout"), or we get an explicit logout,
// we set "device_blocked" in Scsi_Device struct; in this
// case 30 seconds will elapse before Linux/Scsi sends another
// command to the device.
else if( pLoggedInPort->prli != TRUE )
{
// printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n",
// Cmnd->channel, Cmnd->target, pLoggedInPort->port_id);
QueLinkDownCmnd( cpqfcHBAdata, Cmnd);
// Need to use "blocked" flag??
// Cmnd->device->device_blocked = TRUE; // just let it timeout
}
else // device supports TARGET functions, and is logged in...
{
// (context of fchs is to "reply" to...)
fchs.s_id = pLoggedInPort->port_id; // destination FC address
// what is the data direction? For data TO the device,
// we need IWE (Intiator Write Entry). Otherwise, IRE.
if( Cmnd->cmnd[0] == WRITE_10 ||
Cmnd->cmnd[0] == WRITE_6 ||
Cmnd->cmnd[0] == WRITE_BUFFER ||
Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE || // CPQ specific
Cmnd->cmnd[0] == MODE_SELECT )
{
SESTtype = SCSI_IWE; // data from HBA to Device
}
else
SESTtype = SCSI_IRE; // data from Device to HBA
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
SESTtype, // e.g. Initiator Read Entry (IRE)
&fchs, // we are originator; only use d_id
Cmnd, // Linux SCSI command (with scatter/gather list)
&ExchangeID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup?
{
if( cpqfcHBAdata->BoardLock )
{
TriggerHBA( fcChip->Registers.ReMapMemBase, 0);
printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID);
}
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
if( !ulStatus )
{
PCI_TRACEO( ExchangeID, 0xB8)
// submitted to Tach's Outbound Que (ERQ PI incremented)
// waited for completion for ELS type (Login frames issued
// synchronously)
}
else
// check reason for Exchange not being started - we might
// want to Queue and start later, or fail with error
{
printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus );
}
} // end good BuildExchange status
else // SEST table probably full -- why? hardware hang?
{
printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus);
}
} // end can't do FCP-SCSI target functions
} // end can't find target (FC device)
CPQ_SPINUNLOCK_HBA( cpqfcHBAdata)
}
PCI_TRACEO( (ULONG)Cmnd, 0x9C)
LEAVE("cpqfcTS_queuecommand");
return 0;
}
// Entry point for upper Scsi layer intiated abort. Typically
// this is called if the command (for hard disk) fails to complete
// in 30 seconds. This driver intends to complete all disk commands
// within Exchange ".timeOut" seconds (now 7) with target status, or
// in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes
// immediate retry.
// If any disk commands get the _abort call, except for the case that
// the physical device was removed or unavailable due to hardware
// errors, it should be considered a driver error and reported to
// the author.
int cpqfcTS_abort(Scsi_Cmnd *Cmnd)
{
// printk(" cpqfcTS_abort called?? \n");
return 0;
}
int cpqfcTS_eh_abort(Scsi_Cmnd *Cmnd)
{
struct Scsi_Host *HostAdapter = Cmnd->device->host;
// get the pointer to our Scsi layer HBA buffer
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
int i;
ENTER("cpqfcTS_eh_abort");
Cmnd->result = DID_ABORT <<16; // assume we'll find it
printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd);
// See if we can find a Cmnd pointer that matches...
// The most likely case is we accepted the command
// from Linux Scsi (e.g. ceated a SEST entry) and it
// got lost somehow. If we can't find any reference
// to the passed pointer, we can only presume it
// got completed as far as our driver is concerned.
// If we found it, we will try to abort it through
// common mechanism. If FC ABTS is successful (ACC)
// or is rejected (RJT) by target, we will call
// Scsi "done" quickly. Otherwise, the ABTS will timeout
// and we'll call "done" later.
// Search the SEST exchanges for a matching Cmnd ptr.
for( i=0; i< TACH_SEST_LEN; i++)
{
if( Exchanges->fcExchange[i].Cmnd == Cmnd )
{
// found it!
printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type);
Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default
Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later)
// Since we need to immediately return the aborted Cmnd to Scsi
// upper layers, we can't make future reference to any of its
// fields (e.g the Nexus).
cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i);
break;
}
}
if( i >= TACH_SEST_LEN ) // didn't find Cmnd ptr in chip's SEST?
{
// now search our non-SEST buffers (i.e. Cmnd waiting to
// start on the HBA or waiting to complete with error for retry).
// first check BadTargetCmnd
for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++)
{
if( cpqfcHBAdata->BadTargetCmnd[i] == Cmnd )
{
cpqfcHBAdata->BadTargetCmnd[i] = NULL;
printk("in BadTargetCmnd Q\n");
goto Done; // exit
}
}
// if not found above...
for( i=0; i < CPQFCTS_REQ_QUEUE_LEN; i++)
{
if( cpqfcHBAdata->LinkDnCmnd[i] == Cmnd )
{
cpqfcHBAdata->LinkDnCmnd[i] = NULL;
printk("in LinkDnCmnd Q\n");
goto Done;
}
}
for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++)
{ // find spare slot
if( cpqfcHBAdata->BoardLockCmnd[i] == Cmnd )
{
cpqfcHBAdata->BoardLockCmnd[i] = NULL;
printk("in BoardLockCmnd Q\n");
goto Done;
}
}
Cmnd->result = DID_ERROR <<16; // Hmmm...
printk("Not found! ");
// panic("_abort");
}
Done:
// panic("_abort");
LEAVE("cpqfcTS_eh_abort");
return 0; // (see scsi.h)
}
// FCP-SCSI Target Device Reset
// See dpANS Fibre Channel Protocol for SCSI
// X3.269-199X revision 12, pg 25
#ifdef SUPPORT_RESET
int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev,
unsigned int reset_flags)
{
int timeout = 10*HZ;
int retries = 1;
char scsi_cdb[12];
int result;
Scsi_Cmnd * SCpnt;
Scsi_Device * SDpnt;
// FIXME, cpqfcTS_TargetDeviceReset needs to be fixed
// similarly to how the passthrough ioctl was fixed
// around the 2.5.30 kernel. Scsi_Cmnd replaced with
// Scsi_Request, etc.
// For now, so people don't fall into a hole...
// printk(" ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags);
if (ScsiDev->host->eh_active) return FAILED;
memset( scsi_cdb, 0, sizeof( scsi_cdb));
scsi_cdb[0] = RELEASE;
SCpnt = scsi_get_command(ScsiDev, GFP_KERNEL);
{
CPQFC_DECLARE_COMPLETION(wait);
SCpnt->SCp.buffers_residual = FCP_TARGET_RESET;
// FIXME: this would panic, SCpnt->request would be NULL.
SCpnt->request->CPQFC_WAITING = &wait;
scsi_do_cmd(SCpnt, scsi_cdb, NULL, 0, my_ioctl_done, timeout, retries);
CPQFC_WAIT_FOR_COMPLETION(&wait);
SCpnt->request->CPQFC_WAITING = NULL;
}
if(driver_byte(SCpnt->result) != 0)
switch(SCpnt->sense_buffer[2] & 0xf) {
case ILLEGAL_REQUEST:
if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0;
else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n");
break;
case NOT_READY: // This happens if there is no disc in drive
if(dev->removable && (cmd[0] != TEST_UNIT_READY)){
printk(KERN_INFO "Device not ready. Make sure there is a disc in the drive.\n");
break;
}
case UNIT_ATTENTION:
if (dev->removable){
dev->changed = 1;
SCpnt->result = 0; // This is no longer considered an error
// gag this error, VFS will log it anyway /axboe
// printk(KERN_INFO "Disc change detected.\n");
break;
};
default: // Fall through for non-removable media
printk("SCSI error: host %d id %d lun %d return code = %x\n",
dev->host->host_no,
dev->id,
dev->lun,
SCpnt->result);
printk("\tSense class %x, sense error %x, extended sense %x\n",
sense_class(SCpnt->sense_buffer[0]),
sense_error(SCpnt->sense_buffer[0]),
SCpnt->sense_buffer[2] & 0xf);
};
result = SCpnt->result;
SDpnt = SCpnt->device;
scsi_put_command(SCpnt);
SCpnt = NULL;
// printk(" LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n");
return SUCCESS;
}
#else
int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev,
unsigned int reset_flags)
{
return -ENOTSUPP;
}
#endif /* SUPPORT_RESET */
int cpqfcTS_eh_device_reset(Scsi_Cmnd *Cmnd)
{
int retval;
Scsi_Device *SDpnt = Cmnd->device;
// printk(" ENTERING cpqfcTS_eh_device_reset() \n");
spin_unlock_irq(Cmnd->device->host->host_lock);
retval = cpqfcTS_TargetDeviceReset( SDpnt, 0);
spin_lock_irq(Cmnd->device->host->host_lock);
return retval;
}
int cpqfcTS_reset(Scsi_Cmnd *Cmnd, unsigned int reset_flags)
{
ENTER("cpqfcTS_reset");
LEAVE("cpqfcTS_reset");
return SCSI_RESET_ERROR; /* Bus Reset Not supported */
}
/* This function determines the bios parameters for a given
harddisk. These tend to be numbers that are made up by the
host adapter. Parameters:
size, device number, list (heads, sectors,cylinders).
(from hosts.h)
*/
int cpqfcTS_biosparam(struct scsi_device *sdev, struct block_device *n,
sector_t capacity, int ip[])
{
int size = capacity;
ENTER("cpqfcTS_biosparam");
ip[0] = 64;
ip[1] = 32;
ip[2] = size >> 11;
if( ip[2] > 1024 )
{
ip[0] = 255;
ip[1] = 63;
ip[2] = size / (ip[0] * ip[1]);
}
LEAVE("cpqfcTS_biosparam");
return 0;
}
irqreturn_t cpqfcTS_intr_handler( int irq,
void *dev_id,
struct pt_regs *regs)
{
unsigned long flags, InfLoopBrk=0;
struct Scsi_Host *HostAdapter = dev_id;
CPQFCHBA *cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata;
int MoreMessages = 1; // assume we have something to do
UCHAR IntPending;
int handled = 0;
ENTER("intr_handler");
spin_lock_irqsave( HostAdapter->host_lock, flags);
// is this our INT?
IntPending = readb( cpqfcHBA->fcChip.Registers.INTPEND.address);
// broken boards can generate messages forever, so
// prevent the infinite loop
#define INFINITE_IMQ_BREAK 10000
if( IntPending )
{
handled = 1;
// mask our HBA interrupts until we handle it...
writeb( 0, cpqfcHBA->fcChip.Registers.INTEN.address);
if( IntPending & 0x4) // "INT" - Tach wrote to IMQ
{
while( (++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages ==1) )
{
MoreMessages = CpqTsProcessIMQEntry( HostAdapter); // ret 0 when done
}
if( InfLoopBrk >= INFINITE_IMQ_BREAK )
{
printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n");
printk("or investigate alternate causes (e.g. physical FC layer)\n");
}
else // working normally - re-enable INTs and continue
writeb( 0x1F, cpqfcHBA->fcChip.Registers.INTEN.address);
} // (...ProcessIMQEntry() clears INT by writing IMQ consumer)
else // indications of errors or problems...
// these usually indicate critical system hardware problems.
{
if( IntPending & 0x10 )
printk(" cpqfcTS adapter external memory parity error detected\n");
if( IntPending & 0x8 )
printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n");
if( IntPending & 0x2 )
printk(" cpqfcTS adapter DMA error detected\n");
if( IntPending & 0x1 ) {
UCHAR IntStat;
printk(" cpqfcTS adapter PCI error detected\n");
IntStat = readb( cpqfcHBA->fcChip.Registers.INTSTAT.address);
printk("cpqfc: ISR = 0x%02x\n", IntStat);
if (IntStat & 0x1) {
__u16 pcistat;
/* read the pci status register */
pci_read_config_word(cpqfcHBA->PciDev, 0x06, &pcistat);
printk("PCI status register is 0x%04x\n", pcistat);
if (pcistat & 0x8000) printk("Parity Error Detected.\n");
if (pcistat & 0x4000) printk("Signalled System Error\n");
if (pcistat & 0x2000) printk("Received Master Abort\n");
if (pcistat & 0x1000) printk("Received Target Abort\n");
if (pcistat & 0x0800) printk("Signalled Target Abort\n");
}
if (IntStat & 0x4) printk("(INT)\n");
if (IntStat & 0x8)
printk("CRS: PCI master address crossed 46 bit bouandary\n");
if (IntStat & 0x10) printk("MRE: external memory parity error.\n");
}
}
}
spin_unlock_irqrestore( HostAdapter->host_lock, flags);
LEAVE("intr_handler");
return IRQ_RETVAL(handled);
}
int cpqfcTSDecodeGBICtype( PTACHYON fcChip, char cErrorString[])
{
// Verify GBIC type (if any) and correct Tachyon Port State Machine
// (GBIC) module definition is:
// GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0. The input states appear
// to be inverted -- i.e., a setting of 111 is read when there is NO
// GBIC present. The Module Def (MD) spec says 000 is "no GBIC"
// Hard code the bit states to detect Copper,
// Long wave (single mode), Short wave (multi-mode), and absent GBIC
ULONG ulBuff;
sprintf( cErrorString, "\nGBIC detected: ");
ulBuff = fcChip->Registers.TYstatus.value & 0x13;
switch( ulBuff )
{
case 0x13: // GPIO4, GPIO1, GPIO0 = 111; no GBIC!
sprintf( &cErrorString[ strlen( cErrorString)],
"NONE! ");
return FALSE;
case 0x11: // Copper GBIC detected
sprintf( &cErrorString[ strlen( cErrorString)],
"Copper. ");
break;
case 0x10: // Long-wave (single mode) GBIC detected
sprintf( &cErrorString[ strlen( cErrorString)],
"Long-wave. ");
break;
case 0x1: // Short-wave (multi mode) GBIC detected
sprintf( &cErrorString[ strlen( cErrorString)],
"Short-wave. ");
break;
default: // unknown GBIC - presumably it will work (?)
sprintf( &cErrorString[ strlen( cErrorString)],
"Unknown. ");
break;
} // end switch GBIC detection
return TRUE;
}
int cpqfcTSGetLPSM( PTACHYON fcChip, char cErrorString[])
{
// Tachyon's Frame Manager LPSM in LinkDown state?
// (For non-loop port, check PSM instead.)
// return string with state and FALSE is Link Down
int LinkUp;
if( fcChip->Registers.FMstatus.value & 0x80 )
LinkUp = FALSE;
else
LinkUp = TRUE;
sprintf( &cErrorString[ strlen( cErrorString)],
" LPSM %Xh ",
(fcChip->Registers.FMstatus.value >>4) & 0xf );
switch( fcChip->Registers.FMstatus.value & 0xF0)
{
// bits set in LPSM
case 0x10:
sprintf( &cErrorString[ strlen( cErrorString)], "ARB");
break;
case 0x20:
sprintf( &cErrorString[ strlen( cErrorString)], "ARBwon");
break;
case 0x30:
sprintf( &cErrorString[ strlen( cErrorString)], "OPEN");
break;
case 0x40:
sprintf( &cErrorString[ strlen( cErrorString)], "OPENed");
break;
case 0x50:
sprintf( &cErrorString[ strlen( cErrorString)], "XmitCLS");
break;
case 0x60:
sprintf( &cErrorString[ strlen( cErrorString)], "RxCLS");
break;
case 0x70:
sprintf( &cErrorString[ strlen( cErrorString)], "Xfer");
break;
case 0x80:
sprintf( &cErrorString[ strlen( cErrorString)], "Init");
break;
case 0x90:
sprintf( &cErrorString[ strlen( cErrorString)], "O-IInitFin");
break;
case 0xa0:
sprintf( &cErrorString[ strlen( cErrorString)], "O-IProtocol");
break;
case 0xb0:
sprintf( &cErrorString[ strlen( cErrorString)], "O-ILipRcvd");
break;
case 0xc0:
sprintf( &cErrorString[ strlen( cErrorString)], "HostControl");
break;
case 0xd0:
sprintf( &cErrorString[ strlen( cErrorString)], "LoopFail");
break;
case 0xe0:
sprintf( &cErrorString[ strlen( cErrorString)], "Offline");
break;
case 0xf0:
sprintf( &cErrorString[ strlen( cErrorString)], "OldPort");
break;
case 0:
default:
sprintf( &cErrorString[ strlen( cErrorString)], "Monitor");
break;
}
return LinkUp;
}
#include "linux/slab.h"
// Dynamic memory allocation alignment routines
// HP's Tachyon Fibre Channel Controller chips require
// certain memory queues and register pointers to be aligned
// on various boundaries, usually the size of the Queue in question.
// Alignment might be on 2, 4, 8, ... or even 512 byte boundaries.
// Since most O/Ss don't allow this (usually only Cache aligned -
// 32-byte boundary), these routines provide generic alignment (after
// O/S allocation) at any boundary, and store the original allocated
// pointer for deletion (O/S free function). Typically, we expect
// these functions to only be called at HBA initialization and
// removal time (load and unload times)
// ALGORITHM notes:
// Memory allocation varies by compiler and platform. In the worst case,
// we are only assured BYTE alignment, but in the best case, we can
// request allocation on any desired boundary. Our strategy: pad the
// allocation request size (i.e. waste memory) so that we are assured
// of passing desired boundary near beginning of contiguous space, then
// mask out lower address bits.
// We define the following algorithm:
// allocBoundary - compiler/platform specific address alignment
// in number of bytes (default is single byte; i.e. 1)
// n_alloc - number of bytes application wants @ aligned address
// ab - alignment boundary, in bytes (e.g. 4, 32, ...)
// t_alloc - total allocation needed to ensure desired boundary
// mask - to clear least significant address bits for boundary
// Compute:
// t_alloc = n_alloc + (ab - allocBoundary)
// allocate t_alloc bytes @ alloc_address
// mask = NOT (ab - 1)
// (e.g. if ab=32 _0001 1111 -> _1110 0000
// aligned_address = alloc_address & mask
// set n_alloc bytes to 0
// return aligned_address (NULL if failed)
//
// If u32_AlignedAddress is non-zero, then search for BaseAddress (stored
// from previous allocation). If found, invoke call to FREE the memory.
// Return NULL if BaseAddress not found
// we need about 8 allocations per HBA. Figuring at most 10 HBAs per server
// size the dynamic_mem array at 80.
void* fcMemManager( struct pci_dev *pdev, ALIGNED_MEM *dynamic_mem,
ULONG n_alloc, ULONG ab, ULONG u32_AlignedAddress,
dma_addr_t *dma_handle)
{
USHORT allocBoundary=1; // compiler specific - worst case 1
// best case - replace malloc() call
// with function that allocates exactly
// at desired boundary
unsigned long ulAddress;
ULONG t_alloc, i;
void *alloc_address = 0; // def. error code / address not found
LONG mask; // must be 32-bits wide!
ENTER("fcMemManager");
if( u32_AlignedAddress ) // are we freeing existing memory?
{
// printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress);
for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for the base address
{
// printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress);
if( dynamic_mem[i].AlignedAddress == u32_AlignedAddress )
{
alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status
pci_free_consistent(pdev,dynamic_mem[i].size,
alloc_address,
dynamic_mem[i].dma_handle);
dynamic_mem[i].BaseAllocated = 0; // clear for next use
dynamic_mem[i].AlignedAddress = 0;
dynamic_mem[i].size = 0;
break; // quit for loop; done
}
}
}
else if( n_alloc ) // want new memory?
{
dma_addr_t handle;
t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment
// printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc);
// (would like to) allow thread block to free pages
alloc_address = // total bytes (NumberOfBytes)
pci_alloc_consistent(pdev, t_alloc, &handle);
// now mask off least sig. bits of address
if( alloc_address ) // (only if non-NULL)
{
// find place to store ptr, so we
// can free it later...
mask = (LONG)(ab - 1); // mask all low-order bits
mask = ~mask; // invert bits
for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for free slot
{
if( dynamic_mem[i].BaseAllocated == 0) // take 1st available
{
dynamic_mem[i].BaseAllocated = alloc_address;// address from O/S
dynamic_mem[i].dma_handle = handle;
if (dma_handle != NULL)
{
// printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n",
// handle, ab, allocBoundary, mask);
*dma_handle = (dma_addr_t)
((((ULONG)handle) + (ab - allocBoundary)) & mask);
}
dynamic_mem[i].size = t_alloc;
break;
}
}
ulAddress = (unsigned long)alloc_address;
ulAddress += (ab - allocBoundary); // add the alignment bytes-
// then truncate address...
alloc_address = (void*)(ulAddress & mask);
dynamic_mem[i].AlignedAddress =
(ULONG)(ulAddress & mask); // 32bit Tach address
memset( alloc_address, 0, n_alloc ); // clear new memory
}
else // O/S dynamic mem alloc failed!
alloc_address = 0; // (for debugging breakpt)
}
LEAVE("fcMemManager");
return alloc_address; // good (or NULL) address
}
static Scsi_Host_Template driver_template = {
.detect = cpqfcTS_detect,
.release = cpqfcTS_release,
.info = cpqfcTS_info,
.proc_info = cpqfcTS_proc_info,
.ioctl = cpqfcTS_ioctl,
.queuecommand = cpqfcTS_queuecommand,
.eh_device_reset_handler = cpqfcTS_eh_device_reset,
.eh_abort_handler = cpqfcTS_eh_abort,
.bios_param = cpqfcTS_biosparam,
.can_queue = CPQFCTS_REQ_QUEUE_LEN,
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = CPQFCTS_CMD_PER_LUN,
.use_clustering = ENABLE_CLUSTERING,
};
#include "scsi_module.c"