kernel-fxtec-pro1x/fs/ubifs/tnc.c
Sheng Yong 235c362bd0 UBIFS: extend debug/message capabilities
In the case where we have more than one volumes on different UBI
devices, it may be not that easy to tell which volume prints the
messages.  Add ubi number and volume id in ubifs_msg/warn/error
to help debug. These two values are passed by struct ubifs_info.

For those where ubifs_info is not initialized yet, ubifs_* is
replaced by pr_*. For those where ubifs_info is not avaliable,
ubifs_info is passed to the calling function as a const parameter.

The output looks like,

[   95.444879] UBIFS (ubi0:1): background thread "ubifs_bgt0_1" started, PID 696
[   95.484688] UBIFS (ubi0:1): UBIFS: mounted UBI device 0, volume 1, name "test1"
[   95.484694] UBIFS (ubi0:1): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[   95.484699] UBIFS (ubi0:1): FS size: 30220288 bytes (28 MiB, 238 LEBs), journal size 1523712 bytes (1 MiB, 12 LEBs)
[   95.484703] UBIFS (ubi0:1): reserved for root: 1427378 bytes (1393 KiB)
[   95.484709] UBIFS (ubi0:1): media format: w4/r0 (latest is w4/r0), UUID 40DFFC0E-70BE-4193-8905-F7D6DFE60B17, small LPT model
[   95.489875] UBIFS (ubi1:0): background thread "ubifs_bgt1_0" started, PID 699
[   95.529713] UBIFS (ubi1:0): UBIFS: mounted UBI device 1, volume 0, name "test2"
[   95.529718] UBIFS (ubi1:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[   95.529724] UBIFS (ubi1:0): FS size: 19808256 bytes (18 MiB, 156 LEBs), journal size 1015809 bytes (0 MiB, 8 LEBs)
[   95.529727] UBIFS (ubi1:0): reserved for root: 935592 bytes (913 KiB)
[   95.529733] UBIFS (ubi1:0): media format: w4/r0 (latest is w4/r0), UUID EEB7779D-F419-4CA9-811B-831CAC7233D4, small LPT model

[  954.264767] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node type (255 but expected 6)
[  954.367030] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node at LEB 0:0, LEB mapping status 1

Signed-off-by: Sheng Yong <shengyong1@huawei.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2015-03-25 11:08:41 +02:00

3327 lines
87 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
*/
/*
* This file implements TNC (Tree Node Cache) which caches indexing nodes of
* the UBIFS B-tree.
*
* At the moment the locking rules of the TNC tree are quite simple and
* straightforward. We just have a mutex and lock it when we traverse the
* tree. If a znode is not in memory, we read it from flash while still having
* the mutex locked.
*/
#include <linux/crc32.h>
#include <linux/slab.h>
#include "ubifs.h"
/*
* Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
* @NAME_LESS: name corresponding to the first argument is less than second
* @NAME_MATCHES: names match
* @NAME_GREATER: name corresponding to the second argument is greater than
* first
* @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
*
* These constants were introduce to improve readability.
*/
enum {
NAME_LESS = 0,
NAME_MATCHES = 1,
NAME_GREATER = 2,
NOT_ON_MEDIA = 3,
};
/**
* insert_old_idx - record an index node obsoleted since the last commit start.
* @c: UBIFS file-system description object
* @lnum: LEB number of obsoleted index node
* @offs: offset of obsoleted index node
*
* Returns %0 on success, and a negative error code on failure.
*
* For recovery, there must always be a complete intact version of the index on
* flash at all times. That is called the "old index". It is the index as at the
* time of the last successful commit. Many of the index nodes in the old index
* may be dirty, but they must not be erased until the next successful commit
* (at which point that index becomes the old index).
*
* That means that the garbage collection and the in-the-gaps method of
* committing must be able to determine if an index node is in the old index.
* Most of the old index nodes can be found by looking up the TNC using the
* 'lookup_znode()' function. However, some of the old index nodes may have
* been deleted from the current index or may have been changed so much that
* they cannot be easily found. In those cases, an entry is added to an RB-tree.
* That is what this function does. The RB-tree is ordered by LEB number and
* offset because they uniquely identify the old index node.
*/
static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
{
struct ubifs_old_idx *old_idx, *o;
struct rb_node **p, *parent = NULL;
old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
if (unlikely(!old_idx))
return -ENOMEM;
old_idx->lnum = lnum;
old_idx->offs = offs;
p = &c->old_idx.rb_node;
while (*p) {
parent = *p;
o = rb_entry(parent, struct ubifs_old_idx, rb);
if (lnum < o->lnum)
p = &(*p)->rb_left;
else if (lnum > o->lnum)
p = &(*p)->rb_right;
else if (offs < o->offs)
p = &(*p)->rb_left;
else if (offs > o->offs)
p = &(*p)->rb_right;
else {
ubifs_err(c, "old idx added twice!");
kfree(old_idx);
return 0;
}
}
rb_link_node(&old_idx->rb, parent, p);
rb_insert_color(&old_idx->rb, &c->old_idx);
return 0;
}
/**
* insert_old_idx_znode - record a znode obsoleted since last commit start.
* @c: UBIFS file-system description object
* @znode: znode of obsoleted index node
*
* Returns %0 on success, and a negative error code on failure.
*/
int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
{
if (znode->parent) {
struct ubifs_zbranch *zbr;
zbr = &znode->parent->zbranch[znode->iip];
if (zbr->len)
return insert_old_idx(c, zbr->lnum, zbr->offs);
} else
if (c->zroot.len)
return insert_old_idx(c, c->zroot.lnum,
c->zroot.offs);
return 0;
}
/**
* ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
* @c: UBIFS file-system description object
* @znode: znode of obsoleted index node
*
* Returns %0 on success, and a negative error code on failure.
*/
static int ins_clr_old_idx_znode(struct ubifs_info *c,
struct ubifs_znode *znode)
{
int err;
if (znode->parent) {
struct ubifs_zbranch *zbr;
zbr = &znode->parent->zbranch[znode->iip];
if (zbr->len) {
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (err)
return err;
zbr->lnum = 0;
zbr->offs = 0;
zbr->len = 0;
}
} else
if (c->zroot.len) {
err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
if (err)
return err;
c->zroot.lnum = 0;
c->zroot.offs = 0;
c->zroot.len = 0;
}
return 0;
}
/**
* destroy_old_idx - destroy the old_idx RB-tree.
* @c: UBIFS file-system description object
*
* During start commit, the old_idx RB-tree is used to avoid overwriting index
* nodes that were in the index last commit but have since been deleted. This
* is necessary for recovery i.e. the old index must be kept intact until the
* new index is successfully written. The old-idx RB-tree is used for the
* in-the-gaps method of writing index nodes and is destroyed every commit.
*/
void destroy_old_idx(struct ubifs_info *c)
{
struct ubifs_old_idx *old_idx, *n;
rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
kfree(old_idx);
c->old_idx = RB_ROOT;
}
/**
* copy_znode - copy a dirty znode.
* @c: UBIFS file-system description object
* @znode: znode to copy
*
* A dirty znode being committed may not be changed, so it is copied.
*/
static struct ubifs_znode *copy_znode(struct ubifs_info *c,
struct ubifs_znode *znode)
{
struct ubifs_znode *zn;
zn = kmalloc(c->max_znode_sz, GFP_NOFS);
if (unlikely(!zn))
return ERR_PTR(-ENOMEM);
memcpy(zn, znode, c->max_znode_sz);
zn->cnext = NULL;
__set_bit(DIRTY_ZNODE, &zn->flags);
__clear_bit(COW_ZNODE, &zn->flags);
ubifs_assert(!ubifs_zn_obsolete(znode));
__set_bit(OBSOLETE_ZNODE, &znode->flags);
if (znode->level != 0) {
int i;
const int n = zn->child_cnt;
/* The children now have new parent */
for (i = 0; i < n; i++) {
struct ubifs_zbranch *zbr = &zn->zbranch[i];
if (zbr->znode)
zbr->znode->parent = zn;
}
}
atomic_long_inc(&c->dirty_zn_cnt);
return zn;
}
/**
* add_idx_dirt - add dirt due to a dirty znode.
* @c: UBIFS file-system description object
* @lnum: LEB number of index node
* @dirt: size of index node
*
* This function updates lprops dirty space and the new size of the index.
*/
static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
{
c->calc_idx_sz -= ALIGN(dirt, 8);
return ubifs_add_dirt(c, lnum, dirt);
}
/**
* dirty_cow_znode - ensure a znode is not being committed.
* @c: UBIFS file-system description object
* @zbr: branch of znode to check
*
* Returns dirtied znode on success or negative error code on failure.
*/
static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
struct ubifs_zbranch *zbr)
{
struct ubifs_znode *znode = zbr->znode;
struct ubifs_znode *zn;
int err;
if (!ubifs_zn_cow(znode)) {
/* znode is not being committed */
if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
atomic_long_inc(&c->dirty_zn_cnt);
atomic_long_dec(&c->clean_zn_cnt);
atomic_long_dec(&ubifs_clean_zn_cnt);
err = add_idx_dirt(c, zbr->lnum, zbr->len);
if (unlikely(err))
return ERR_PTR(err);
}
return znode;
}
zn = copy_znode(c, znode);
if (IS_ERR(zn))
return zn;
if (zbr->len) {
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err);
err = add_idx_dirt(c, zbr->lnum, zbr->len);
} else
err = 0;
zbr->znode = zn;
zbr->lnum = 0;
zbr->offs = 0;
zbr->len = 0;
if (unlikely(err))
return ERR_PTR(err);
return zn;
}
/**
* lnc_add - add a leaf node to the leaf node cache.
* @c: UBIFS file-system description object
* @zbr: zbranch of leaf node
* @node: leaf node
*
* Leaf nodes are non-index nodes directory entry nodes or data nodes. The
* purpose of the leaf node cache is to save re-reading the same leaf node over
* and over again. Most things are cached by VFS, however the file system must
* cache directory entries for readdir and for resolving hash collisions. The
* present implementation of the leaf node cache is extremely simple, and
* allows for error returns that are not used but that may be needed if a more
* complex implementation is created.
*
* Note, this function does not add the @node object to LNC directly, but
* allocates a copy of the object and adds the copy to LNC. The reason for this
* is that @node has been allocated outside of the TNC subsystem and will be
* used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
* may be changed at any time, e.g. freed by the shrinker.
*/
static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
const void *node)
{
int err;
void *lnc_node;
const struct ubifs_dent_node *dent = node;
ubifs_assert(!zbr->leaf);
ubifs_assert(zbr->len != 0);
ubifs_assert(is_hash_key(c, &zbr->key));
err = ubifs_validate_entry(c, dent);
if (err) {
dump_stack();
ubifs_dump_node(c, dent);
return err;
}
lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
if (!lnc_node)
/* We don't have to have the cache, so no error */
return 0;
zbr->leaf = lnc_node;
return 0;
}
/**
* lnc_add_directly - add a leaf node to the leaf-node-cache.
* @c: UBIFS file-system description object
* @zbr: zbranch of leaf node
* @node: leaf node
*
* This function is similar to 'lnc_add()', but it does not create a copy of
* @node but inserts @node to TNC directly.
*/
static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *node)
{
int err;
ubifs_assert(!zbr->leaf);
ubifs_assert(zbr->len != 0);
err = ubifs_validate_entry(c, node);
if (err) {
dump_stack();
ubifs_dump_node(c, node);
return err;
}
zbr->leaf = node;
return 0;
}
/**
* lnc_free - remove a leaf node from the leaf node cache.
* @zbr: zbranch of leaf node
* @node: leaf node
*/
static void lnc_free(struct ubifs_zbranch *zbr)
{
if (!zbr->leaf)
return;
kfree(zbr->leaf);
zbr->leaf = NULL;
}
/**
* tnc_read_node_nm - read a "hashed" leaf node.
* @c: UBIFS file-system description object
* @zbr: key and position of the node
* @node: node is returned here
*
* This function reads a "hashed" node defined by @zbr from the leaf node cache
* (in it is there) or from the hash media, in which case the node is also
* added to LNC. Returns zero in case of success or a negative negative error
* code in case of failure.
*/
static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *node)
{
int err;
ubifs_assert(is_hash_key(c, &zbr->key));
if (zbr->leaf) {
/* Read from the leaf node cache */
ubifs_assert(zbr->len != 0);
memcpy(node, zbr->leaf, zbr->len);
return 0;
}
err = ubifs_tnc_read_node(c, zbr, node);
if (err)
return err;
/* Add the node to the leaf node cache */
err = lnc_add(c, zbr, node);
return err;
}
/**
* try_read_node - read a node if it is a node.
* @c: UBIFS file-system description object
* @buf: buffer to read to
* @type: node type
* @len: node length (not aligned)
* @lnum: LEB number of node to read
* @offs: offset of node to read
*
* This function tries to read a node of known type and length, checks it and
* stores it in @buf. This function returns %1 if a node is present and %0 if
* a node is not present. A negative error code is returned for I/O errors.
* This function performs that same function as ubifs_read_node except that
* it does not require that there is actually a node present and instead
* the return code indicates if a node was read.
*
* Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
* is true (it is controlled by corresponding mount option). However, if
* @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
* R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
* because during mounting or re-mounting from R/O mode to R/W mode we may read
* journal nodes (when replying the journal or doing the recovery) and the
* journal nodes may potentially be corrupted, so checking is required.
*/
static int try_read_node(const struct ubifs_info *c, void *buf, int type,
int len, int lnum, int offs)
{
int err, node_len;
struct ubifs_ch *ch = buf;
uint32_t crc, node_crc;
dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
if (err) {
ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
type, lnum, offs, err);
return err;
}
if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
return 0;
if (ch->node_type != type)
return 0;
node_len = le32_to_cpu(ch->len);
if (node_len != len)
return 0;
if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
!c->remounting_rw)
return 1;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
node_crc = le32_to_cpu(ch->crc);
if (crc != node_crc)
return 0;
return 1;
}
/**
* fallible_read_node - try to read a leaf node.
* @c: UBIFS file-system description object
* @key: key of node to read
* @zbr: position of node
* @node: node returned
*
* This function tries to read a node and returns %1 if the node is read, %0
* if the node is not present, and a negative error code in the case of error.
*/
static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_zbranch *zbr, void *node)
{
int ret;
dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
zbr->offs);
if (ret == 1) {
union ubifs_key node_key;
struct ubifs_dent_node *dent = node;
/* All nodes have key in the same place */
key_read(c, &dent->key, &node_key);
if (keys_cmp(c, key, &node_key) != 0)
ret = 0;
}
if (ret == 0 && c->replaying)
dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
zbr->lnum, zbr->offs, zbr->len);
return ret;
}
/**
* matches_name - determine if a direntry or xattr entry matches a given name.
* @c: UBIFS file-system description object
* @zbr: zbranch of dent
* @nm: name to match
*
* This function checks if xentry/direntry referred by zbranch @zbr matches name
* @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
* @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
* of failure, a negative error code is returned.
*/
static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
const struct qstr *nm)
{
struct ubifs_dent_node *dent;
int nlen, err;
/* If possible, match against the dent in the leaf node cache */
if (!zbr->leaf) {
dent = kmalloc(zbr->len, GFP_NOFS);
if (!dent)
return -ENOMEM;
err = ubifs_tnc_read_node(c, zbr, dent);
if (err)
goto out_free;
/* Add the node to the leaf node cache */
err = lnc_add_directly(c, zbr, dent);
if (err)
goto out_free;
} else
dent = zbr->leaf;
nlen = le16_to_cpu(dent->nlen);
err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
if (err == 0) {
if (nlen == nm->len)
return NAME_MATCHES;
else if (nlen < nm->len)
return NAME_LESS;
else
return NAME_GREATER;
} else if (err < 0)
return NAME_LESS;
else
return NAME_GREATER;
out_free:
kfree(dent);
return err;
}
/**
* get_znode - get a TNC znode that may not be loaded yet.
* @c: UBIFS file-system description object
* @znode: parent znode
* @n: znode branch slot number
*
* This function returns the znode or a negative error code.
*/
static struct ubifs_znode *get_znode(struct ubifs_info *c,
struct ubifs_znode *znode, int n)
{
struct ubifs_zbranch *zbr;
zbr = &znode->zbranch[n];
if (zbr->znode)
znode = zbr->znode;
else
znode = ubifs_load_znode(c, zbr, znode, n);
return znode;
}
/**
* tnc_next - find next TNC entry.
* @c: UBIFS file-system description object
* @zn: znode is passed and returned here
* @n: znode branch slot number is passed and returned here
*
* This function returns %0 if the next TNC entry is found, %-ENOENT if there is
* no next entry, or a negative error code otherwise.
*/
static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
{
struct ubifs_znode *znode = *zn;
int nn = *n;
nn += 1;
if (nn < znode->child_cnt) {
*n = nn;
return 0;
}
while (1) {
struct ubifs_znode *zp;
zp = znode->parent;
if (!zp)
return -ENOENT;
nn = znode->iip + 1;
znode = zp;
if (nn < znode->child_cnt) {
znode = get_znode(c, znode, nn);
if (IS_ERR(znode))
return PTR_ERR(znode);
while (znode->level != 0) {
znode = get_znode(c, znode, 0);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
nn = 0;
break;
}
}
*zn = znode;
*n = nn;
return 0;
}
/**
* tnc_prev - find previous TNC entry.
* @c: UBIFS file-system description object
* @zn: znode is returned here
* @n: znode branch slot number is passed and returned here
*
* This function returns %0 if the previous TNC entry is found, %-ENOENT if
* there is no next entry, or a negative error code otherwise.
*/
static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
{
struct ubifs_znode *znode = *zn;
int nn = *n;
if (nn > 0) {
*n = nn - 1;
return 0;
}
while (1) {
struct ubifs_znode *zp;
zp = znode->parent;
if (!zp)
return -ENOENT;
nn = znode->iip - 1;
znode = zp;
if (nn >= 0) {
znode = get_znode(c, znode, nn);
if (IS_ERR(znode))
return PTR_ERR(znode);
while (znode->level != 0) {
nn = znode->child_cnt - 1;
znode = get_znode(c, znode, nn);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
nn = znode->child_cnt - 1;
break;
}
}
*zn = znode;
*n = nn;
return 0;
}
/**
* resolve_collision - resolve a collision.
* @c: UBIFS file-system description object
* @key: key of a directory or extended attribute entry
* @zn: znode is returned here
* @n: zbranch number is passed and returned here
* @nm: name of the entry
*
* This function is called for "hashed" keys to make sure that the found key
* really corresponds to the looked up node (directory or extended attribute
* entry). It returns %1 and sets @zn and @n if the collision is resolved.
* %0 is returned if @nm is not found and @zn and @n are set to the previous
* entry, i.e. to the entry after which @nm could follow if it were in TNC.
* This means that @n may be set to %-1 if the leftmost key in @zn is the
* previous one. A negative error code is returned on failures.
*/
static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode **zn, int *n,
const struct qstr *nm)
{
int err;
err = matches_name(c, &(*zn)->zbranch[*n], nm);
if (unlikely(err < 0))
return err;
if (err == NAME_MATCHES)
return 1;
if (err == NAME_GREATER) {
/* Look left */
while (1) {
err = tnc_prev(c, zn, n);
if (err == -ENOENT) {
ubifs_assert(*n == 0);
*n = -1;
return 0;
}
if (err < 0)
return err;
if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
/*
* We have found the branch after which we would
* like to insert, but inserting in this znode
* may still be wrong. Consider the following 3
* znodes, in the case where we are resolving a
* collision with Key2.
*
* znode zp
* ----------------------
* level 1 | Key0 | Key1 |
* -----------------------
* | |
* znode za | | znode zb
* ------------ ------------
* level 0 | Key0 | | Key2 |
* ------------ ------------
*
* The lookup finds Key2 in znode zb. Lets say
* there is no match and the name is greater so
* we look left. When we find Key0, we end up
* here. If we return now, we will insert into
* znode za at slot n = 1. But that is invalid
* according to the parent's keys. Key2 must
* be inserted into znode zb.
*
* Note, this problem is not relevant for the
* case when we go right, because
* 'tnc_insert()' would correct the parent key.
*/
if (*n == (*zn)->child_cnt - 1) {
err = tnc_next(c, zn, n);
if (err) {
/* Should be impossible */
ubifs_assert(0);
if (err == -ENOENT)
err = -EINVAL;
return err;
}
ubifs_assert(*n == 0);
*n = -1;
}
return 0;
}
err = matches_name(c, &(*zn)->zbranch[*n], nm);
if (err < 0)
return err;
if (err == NAME_LESS)
return 0;
if (err == NAME_MATCHES)
return 1;
ubifs_assert(err == NAME_GREATER);
}
} else {
int nn = *n;
struct ubifs_znode *znode = *zn;
/* Look right */
while (1) {
err = tnc_next(c, &znode, &nn);
if (err == -ENOENT)
return 0;
if (err < 0)
return err;
if (keys_cmp(c, &znode->zbranch[nn].key, key))
return 0;
err = matches_name(c, &znode->zbranch[nn], nm);
if (err < 0)
return err;
if (err == NAME_GREATER)
return 0;
*zn = znode;
*n = nn;
if (err == NAME_MATCHES)
return 1;
ubifs_assert(err == NAME_LESS);
}
}
}
/**
* fallible_matches_name - determine if a dent matches a given name.
* @c: UBIFS file-system description object
* @zbr: zbranch of dent
* @nm: name to match
*
* This is a "fallible" version of 'matches_name()' function which does not
* panic if the direntry/xentry referred by @zbr does not exist on the media.
*
* This function checks if xentry/direntry referred by zbranch @zbr matches name
* @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
* is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
* if xentry/direntry referred by @zbr does not exist on the media. A negative
* error code is returned in case of failure.
*/
static int fallible_matches_name(struct ubifs_info *c,
struct ubifs_zbranch *zbr,
const struct qstr *nm)
{
struct ubifs_dent_node *dent;
int nlen, err;
/* If possible, match against the dent in the leaf node cache */
if (!zbr->leaf) {
dent = kmalloc(zbr->len, GFP_NOFS);
if (!dent)
return -ENOMEM;
err = fallible_read_node(c, &zbr->key, zbr, dent);
if (err < 0)
goto out_free;
if (err == 0) {
/* The node was not present */
err = NOT_ON_MEDIA;
goto out_free;
}
ubifs_assert(err == 1);
err = lnc_add_directly(c, zbr, dent);
if (err)
goto out_free;
} else
dent = zbr->leaf;
nlen = le16_to_cpu(dent->nlen);
err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
if (err == 0) {
if (nlen == nm->len)
return NAME_MATCHES;
else if (nlen < nm->len)
return NAME_LESS;
else
return NAME_GREATER;
} else if (err < 0)
return NAME_LESS;
else
return NAME_GREATER;
out_free:
kfree(dent);
return err;
}
/**
* fallible_resolve_collision - resolve a collision even if nodes are missing.
* @c: UBIFS file-system description object
* @key: key
* @zn: znode is returned here
* @n: branch number is passed and returned here
* @nm: name of directory entry
* @adding: indicates caller is adding a key to the TNC
*
* This is a "fallible" version of the 'resolve_collision()' function which
* does not panic if one of the nodes referred to by TNC does not exist on the
* media. This may happen when replaying the journal if a deleted node was
* Garbage-collected and the commit was not done. A branch that refers to a node
* that is not present is called a dangling branch. The following are the return
* codes for this function:
* o if @nm was found, %1 is returned and @zn and @n are set to the found
* branch;
* o if we are @adding and @nm was not found, %0 is returned;
* o if we are not @adding and @nm was not found, but a dangling branch was
* found, then %1 is returned and @zn and @n are set to the dangling branch;
* o a negative error code is returned in case of failure.
*/
static int fallible_resolve_collision(struct ubifs_info *c,
const union ubifs_key *key,
struct ubifs_znode **zn, int *n,
const struct qstr *nm, int adding)
{
struct ubifs_znode *o_znode = NULL, *znode = *zn;
int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
if (unlikely(cmp < 0))
return cmp;
if (cmp == NAME_MATCHES)
return 1;
if (cmp == NOT_ON_MEDIA) {
o_znode = znode;
o_n = nn;
/*
* We are unlucky and hit a dangling branch straight away.
* Now we do not really know where to go to find the needed
* branch - to the left or to the right. Well, let's try left.
*/
unsure = 1;
} else if (!adding)
unsure = 1; /* Remove a dangling branch wherever it is */
if (cmp == NAME_GREATER || unsure) {
/* Look left */
while (1) {
err = tnc_prev(c, zn, n);
if (err == -ENOENT) {
ubifs_assert(*n == 0);
*n = -1;
break;
}
if (err < 0)
return err;
if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
/* See comments in 'resolve_collision()' */
if (*n == (*zn)->child_cnt - 1) {
err = tnc_next(c, zn, n);
if (err) {
/* Should be impossible */
ubifs_assert(0);
if (err == -ENOENT)
err = -EINVAL;
return err;
}
ubifs_assert(*n == 0);
*n = -1;
}
break;
}
err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
if (err < 0)
return err;
if (err == NAME_MATCHES)
return 1;
if (err == NOT_ON_MEDIA) {
o_znode = *zn;
o_n = *n;
continue;
}
if (!adding)
continue;
if (err == NAME_LESS)
break;
else
unsure = 0;
}
}
if (cmp == NAME_LESS || unsure) {
/* Look right */
*zn = znode;
*n = nn;
while (1) {
err = tnc_next(c, &znode, &nn);
if (err == -ENOENT)
break;
if (err < 0)
return err;
if (keys_cmp(c, &znode->zbranch[nn].key, key))
break;
err = fallible_matches_name(c, &znode->zbranch[nn], nm);
if (err < 0)
return err;
if (err == NAME_GREATER)
break;
*zn = znode;
*n = nn;
if (err == NAME_MATCHES)
return 1;
if (err == NOT_ON_MEDIA) {
o_znode = znode;
o_n = nn;
}
}
}
/* Never match a dangling branch when adding */
if (adding || !o_znode)
return 0;
dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
o_znode->zbranch[o_n].len);
*zn = o_znode;
*n = o_n;
return 1;
}
/**
* matches_position - determine if a zbranch matches a given position.
* @zbr: zbranch of dent
* @lnum: LEB number of dent to match
* @offs: offset of dent to match
*
* This function returns %1 if @lnum:@offs matches, and %0 otherwise.
*/
static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
{
if (zbr->lnum == lnum && zbr->offs == offs)
return 1;
else
return 0;
}
/**
* resolve_collision_directly - resolve a collision directly.
* @c: UBIFS file-system description object
* @key: key of directory entry
* @zn: znode is passed and returned here
* @n: zbranch number is passed and returned here
* @lnum: LEB number of dent node to match
* @offs: offset of dent node to match
*
* This function is used for "hashed" keys to make sure the found directory or
* extended attribute entry node is what was looked for. It is used when the
* flash address of the right node is known (@lnum:@offs) which makes it much
* easier to resolve collisions (no need to read entries and match full
* names). This function returns %1 and sets @zn and @n if the collision is
* resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
* previous directory entry. Otherwise a negative error code is returned.
*/
static int resolve_collision_directly(struct ubifs_info *c,
const union ubifs_key *key,
struct ubifs_znode **zn, int *n,
int lnum, int offs)
{
struct ubifs_znode *znode;
int nn, err;
znode = *zn;
nn = *n;
if (matches_position(&znode->zbranch[nn], lnum, offs))
return 1;
/* Look left */
while (1) {
err = tnc_prev(c, &znode, &nn);
if (err == -ENOENT)
break;
if (err < 0)
return err;
if (keys_cmp(c, &znode->zbranch[nn].key, key))
break;
if (matches_position(&znode->zbranch[nn], lnum, offs)) {
*zn = znode;
*n = nn;
return 1;
}
}
/* Look right */
znode = *zn;
nn = *n;
while (1) {
err = tnc_next(c, &znode, &nn);
if (err == -ENOENT)
return 0;
if (err < 0)
return err;
if (keys_cmp(c, &znode->zbranch[nn].key, key))
return 0;
*zn = znode;
*n = nn;
if (matches_position(&znode->zbranch[nn], lnum, offs))
return 1;
}
}
/**
* dirty_cow_bottom_up - dirty a znode and its ancestors.
* @c: UBIFS file-system description object
* @znode: znode to dirty
*
* If we do not have a unique key that resides in a znode, then we cannot
* dirty that znode from the top down (i.e. by using lookup_level0_dirty)
* This function records the path back to the last dirty ancestor, and then
* dirties the znodes on that path.
*/
static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
struct ubifs_znode *znode)
{
struct ubifs_znode *zp;
int *path = c->bottom_up_buf, p = 0;
ubifs_assert(c->zroot.znode);
ubifs_assert(znode);
if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
kfree(c->bottom_up_buf);
c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
GFP_NOFS);
if (!c->bottom_up_buf)
return ERR_PTR(-ENOMEM);
path = c->bottom_up_buf;
}
if (c->zroot.znode->level) {
/* Go up until parent is dirty */
while (1) {
int n;
zp = znode->parent;
if (!zp)
break;
n = znode->iip;
ubifs_assert(p < c->zroot.znode->level);
path[p++] = n;
if (!zp->cnext && ubifs_zn_dirty(znode))
break;
znode = zp;
}
}
/* Come back down, dirtying as we go */
while (1) {
struct ubifs_zbranch *zbr;
zp = znode->parent;
if (zp) {
ubifs_assert(path[p - 1] >= 0);
ubifs_assert(path[p - 1] < zp->child_cnt);
zbr = &zp->zbranch[path[--p]];
znode = dirty_cow_znode(c, zbr);
} else {
ubifs_assert(znode == c->zroot.znode);
znode = dirty_cow_znode(c, &c->zroot);
}
if (IS_ERR(znode) || !p)
break;
ubifs_assert(path[p - 1] >= 0);
ubifs_assert(path[p - 1] < znode->child_cnt);
znode = znode->zbranch[path[p - 1]].znode;
}
return znode;
}
/**
* ubifs_lookup_level0 - search for zero-level znode.
* @c: UBIFS file-system description object
* @key: key to lookup
* @zn: znode is returned here
* @n: znode branch slot number is returned here
*
* This function looks up the TNC tree and search for zero-level znode which
* refers key @key. The found zero-level znode is returned in @zn. There are 3
* cases:
* o exact match, i.e. the found zero-level znode contains key @key, then %1
* is returned and slot number of the matched branch is stored in @n;
* o not exact match, which means that zero-level znode does not contain
* @key, then %0 is returned and slot number of the closest branch is stored
* in @n;
* o @key is so small that it is even less than the lowest key of the
* leftmost zero-level node, then %0 is returned and %0 is stored in @n.
*
* Note, when the TNC tree is traversed, some znodes may be absent, then this
* function reads corresponding indexing nodes and inserts them to TNC. In
* case of failure, a negative error code is returned.
*/
int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode **zn, int *n)
{
int err, exact;
struct ubifs_znode *znode;
unsigned long time = get_seconds();
dbg_tnck(key, "search key ");
ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
znode = c->zroot.znode;
if (unlikely(!znode)) {
znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
znode->time = time;
while (1) {
struct ubifs_zbranch *zbr;
exact = ubifs_search_zbranch(c, znode, key, n);
if (znode->level == 0)
break;
if (*n < 0)
*n = 0;
zbr = &znode->zbranch[*n];
if (zbr->znode) {
znode->time = time;
znode = zbr->znode;
continue;
}
/* znode is not in TNC cache, load it from the media */
znode = ubifs_load_znode(c, zbr, znode, *n);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
*zn = znode;
if (exact || !is_hash_key(c, key) || *n != -1) {
dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
return exact;
}
/*
* Here is a tricky place. We have not found the key and this is a
* "hashed" key, which may collide. The rest of the code deals with
* situations like this:
*
* | 3 | 5 |
* / \
* | 3 | 5 | | 6 | 7 | (x)
*
* Or more a complex example:
*
* | 1 | 5 |
* / \
* | 1 | 3 | | 5 | 8 |
* \ /
* | 5 | 5 | | 6 | 7 | (x)
*
* In the examples, if we are looking for key "5", we may reach nodes
* marked with "(x)". In this case what we have do is to look at the
* left and see if there is "5" key there. If there is, we have to
* return it.
*
* Note, this whole situation is possible because we allow to have
* elements which are equivalent to the next key in the parent in the
* children of current znode. For example, this happens if we split a
* znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
* like this:
* | 3 | 5 |
* / \
* | 3 | 5 | | 5 | 6 | 7 |
* ^
* And this becomes what is at the first "picture" after key "5" marked
* with "^" is removed. What could be done is we could prohibit
* splitting in the middle of the colliding sequence. Also, when
* removing the leftmost key, we would have to correct the key of the
* parent node, which would introduce additional complications. Namely,
* if we changed the leftmost key of the parent znode, the garbage
* collector would be unable to find it (GC is doing this when GC'ing
* indexing LEBs). Although we already have an additional RB-tree where
* we save such changed znodes (see 'ins_clr_old_idx_znode()') until
* after the commit. But anyway, this does not look easy to implement
* so we did not try this.
*/
err = tnc_prev(c, &znode, n);
if (err == -ENOENT) {
dbg_tnc("found 0, lvl %d, n -1", znode->level);
*n = -1;
return 0;
}
if (unlikely(err < 0))
return err;
if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
dbg_tnc("found 0, lvl %d, n -1", znode->level);
*n = -1;
return 0;
}
dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
*zn = znode;
return 1;
}
/**
* lookup_level0_dirty - search for zero-level znode dirtying.
* @c: UBIFS file-system description object
* @key: key to lookup
* @zn: znode is returned here
* @n: znode branch slot number is returned here
*
* This function looks up the TNC tree and search for zero-level znode which
* refers key @key. The found zero-level znode is returned in @zn. There are 3
* cases:
* o exact match, i.e. the found zero-level znode contains key @key, then %1
* is returned and slot number of the matched branch is stored in @n;
* o not exact match, which means that zero-level znode does not contain @key
* then %0 is returned and slot number of the closed branch is stored in
* @n;
* o @key is so small that it is even less than the lowest key of the
* leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
*
* Additionally all znodes in the path from the root to the located zero-level
* znode are marked as dirty.
*
* Note, when the TNC tree is traversed, some znodes may be absent, then this
* function reads corresponding indexing nodes and inserts them to TNC. In
* case of failure, a negative error code is returned.
*/
static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode **zn, int *n)
{
int err, exact;
struct ubifs_znode *znode;
unsigned long time = get_seconds();
dbg_tnck(key, "search and dirty key ");
znode = c->zroot.znode;
if (unlikely(!znode)) {
znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
znode = dirty_cow_znode(c, &c->zroot);
if (IS_ERR(znode))
return PTR_ERR(znode);
znode->time = time;
while (1) {
struct ubifs_zbranch *zbr;
exact = ubifs_search_zbranch(c, znode, key, n);
if (znode->level == 0)
break;
if (*n < 0)
*n = 0;
zbr = &znode->zbranch[*n];
if (zbr->znode) {
znode->time = time;
znode = dirty_cow_znode(c, zbr);
if (IS_ERR(znode))
return PTR_ERR(znode);
continue;
}
/* znode is not in TNC cache, load it from the media */
znode = ubifs_load_znode(c, zbr, znode, *n);
if (IS_ERR(znode))
return PTR_ERR(znode);
znode = dirty_cow_znode(c, zbr);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
*zn = znode;
if (exact || !is_hash_key(c, key) || *n != -1) {
dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
return exact;
}
/*
* See huge comment at 'lookup_level0_dirty()' what is the rest of the
* code.
*/
err = tnc_prev(c, &znode, n);
if (err == -ENOENT) {
*n = -1;
dbg_tnc("found 0, lvl %d, n -1", znode->level);
return 0;
}
if (unlikely(err < 0))
return err;
if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
*n = -1;
dbg_tnc("found 0, lvl %d, n -1", znode->level);
return 0;
}
if (znode->cnext || !ubifs_zn_dirty(znode)) {
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode))
return PTR_ERR(znode);
}
dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
*zn = znode;
return 1;
}
/**
* maybe_leb_gced - determine if a LEB may have been garbage collected.
* @c: UBIFS file-system description object
* @lnum: LEB number
* @gc_seq1: garbage collection sequence number
*
* This function determines if @lnum may have been garbage collected since
* sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
* %0 is returned.
*/
static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
{
int gc_seq2, gced_lnum;
gced_lnum = c->gced_lnum;
smp_rmb();
gc_seq2 = c->gc_seq;
/* Same seq means no GC */
if (gc_seq1 == gc_seq2)
return 0;
/* Different by more than 1 means we don't know */
if (gc_seq1 + 1 != gc_seq2)
return 1;
/*
* We have seen the sequence number has increased by 1. Now we need to
* be sure we read the right LEB number, so read it again.
*/
smp_rmb();
if (gced_lnum != c->gced_lnum)
return 1;
/* Finally we can check lnum */
if (gced_lnum == lnum)
return 1;
return 0;
}
/**
* ubifs_tnc_locate - look up a file-system node and return it and its location.
* @c: UBIFS file-system description object
* @key: node key to lookup
* @node: the node is returned here
* @lnum: LEB number is returned here
* @offs: offset is returned here
*
* This function looks up and reads node with key @key. The caller has to make
* sure the @node buffer is large enough to fit the node. Returns zero in case
* of success, %-ENOENT if the node was not found, and a negative error code in
* case of failure. The node location can be returned in @lnum and @offs.
*/
int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
void *node, int *lnum, int *offs)
{
int found, n, err, safely = 0, gc_seq1;
struct ubifs_znode *znode;
struct ubifs_zbranch zbr, *zt;
again:
mutex_lock(&c->tnc_mutex);
found = ubifs_lookup_level0(c, key, &znode, &n);
if (!found) {
err = -ENOENT;
goto out;
} else if (found < 0) {
err = found;
goto out;
}
zt = &znode->zbranch[n];
if (lnum) {
*lnum = zt->lnum;
*offs = zt->offs;
}
if (is_hash_key(c, key)) {
/*
* In this case the leaf node cache gets used, so we pass the
* address of the zbranch and keep the mutex locked
*/
err = tnc_read_node_nm(c, zt, node);
goto out;
}
if (safely) {
err = ubifs_tnc_read_node(c, zt, node);
goto out;
}
/* Drop the TNC mutex prematurely and race with garbage collection */
zbr = znode->zbranch[n];
gc_seq1 = c->gc_seq;
mutex_unlock(&c->tnc_mutex);
if (ubifs_get_wbuf(c, zbr.lnum)) {
/* We do not GC journal heads */
err = ubifs_tnc_read_node(c, &zbr, node);
return err;
}
err = fallible_read_node(c, key, &zbr, node);
if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
/*
* The node may have been GC'ed out from under us so try again
* while keeping the TNC mutex locked.
*/
safely = 1;
goto again;
}
return 0;
out:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
* @c: UBIFS file-system description object
* @bu: bulk-read parameters and results
*
* Lookup consecutive data node keys for the same inode that reside
* consecutively in the same LEB. This function returns zero in case of success
* and a negative error code in case of failure.
*
* Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
* makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
* maximum possible amount of nodes for bulk-read.
*/
int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
{
int n, err = 0, lnum = -1, uninitialized_var(offs);
int uninitialized_var(len);
unsigned int block = key_block(c, &bu->key);
struct ubifs_znode *znode;
bu->cnt = 0;
bu->blk_cnt = 0;
bu->eof = 0;
mutex_lock(&c->tnc_mutex);
/* Find first key */
err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
if (err < 0)
goto out;
if (err) {
/* Key found */
len = znode->zbranch[n].len;
/* The buffer must be big enough for at least 1 node */
if (len > bu->buf_len) {
err = -EINVAL;
goto out;
}
/* Add this key */
bu->zbranch[bu->cnt++] = znode->zbranch[n];
bu->blk_cnt += 1;
lnum = znode->zbranch[n].lnum;
offs = ALIGN(znode->zbranch[n].offs + len, 8);
}
while (1) {
struct ubifs_zbranch *zbr;
union ubifs_key *key;
unsigned int next_block;
/* Find next key */
err = tnc_next(c, &znode, &n);
if (err)
goto out;
zbr = &znode->zbranch[n];
key = &zbr->key;
/* See if there is another data key for this file */
if (key_inum(c, key) != key_inum(c, &bu->key) ||
key_type(c, key) != UBIFS_DATA_KEY) {
err = -ENOENT;
goto out;
}
if (lnum < 0) {
/* First key found */
lnum = zbr->lnum;
offs = ALIGN(zbr->offs + zbr->len, 8);
len = zbr->len;
if (len > bu->buf_len) {
err = -EINVAL;
goto out;
}
} else {
/*
* The data nodes must be in consecutive positions in
* the same LEB.
*/
if (zbr->lnum != lnum || zbr->offs != offs)
goto out;
offs += ALIGN(zbr->len, 8);
len = ALIGN(len, 8) + zbr->len;
/* Must not exceed buffer length */
if (len > bu->buf_len)
goto out;
}
/* Allow for holes */
next_block = key_block(c, key);
bu->blk_cnt += (next_block - block - 1);
if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
goto out;
block = next_block;
/* Add this key */
bu->zbranch[bu->cnt++] = *zbr;
bu->blk_cnt += 1;
/* See if we have room for more */
if (bu->cnt >= UBIFS_MAX_BULK_READ)
goto out;
if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
goto out;
}
out:
if (err == -ENOENT) {
bu->eof = 1;
err = 0;
}
bu->gc_seq = c->gc_seq;
mutex_unlock(&c->tnc_mutex);
if (err)
return err;
/*
* An enormous hole could cause bulk-read to encompass too many
* page cache pages, so limit the number here.
*/
if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
bu->blk_cnt = UBIFS_MAX_BULK_READ;
/*
* Ensure that bulk-read covers a whole number of page cache
* pages.
*/
if (UBIFS_BLOCKS_PER_PAGE == 1 ||
!(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
return 0;
if (bu->eof) {
/* At the end of file we can round up */
bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
return 0;
}
/* Exclude data nodes that do not make up a whole page cache page */
block = key_block(c, &bu->key) + bu->blk_cnt;
block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
while (bu->cnt) {
if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
break;
bu->cnt -= 1;
}
return 0;
}
/**
* read_wbuf - bulk-read from a LEB with a wbuf.
* @wbuf: wbuf that may overlap the read
* @buf: buffer into which to read
* @len: read length
* @lnum: LEB number from which to read
* @offs: offset from which to read
*
* This functions returns %0 on success or a negative error code on failure.
*/
static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
int offs)
{
const struct ubifs_info *c = wbuf->c;
int rlen, overlap;
dbg_io("LEB %d:%d, length %d", lnum, offs, len);
ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(!(offs & 7) && offs < c->leb_size);
ubifs_assert(offs + len <= c->leb_size);
spin_lock(&wbuf->lock);
overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
if (!overlap) {
/* We may safely unlock the write-buffer and read the data */
spin_unlock(&wbuf->lock);
return ubifs_leb_read(c, lnum, buf, offs, len, 0);
}
/* Don't read under wbuf */
rlen = wbuf->offs - offs;
if (rlen < 0)
rlen = 0;
/* Copy the rest from the write-buffer */
memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
spin_unlock(&wbuf->lock);
if (rlen > 0)
/* Read everything that goes before write-buffer */
return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
return 0;
}
/**
* validate_data_node - validate data nodes for bulk-read.
* @c: UBIFS file-system description object
* @buf: buffer containing data node to validate
* @zbr: zbranch of data node to validate
*
* This functions returns %0 on success or a negative error code on failure.
*/
static int validate_data_node(struct ubifs_info *c, void *buf,
struct ubifs_zbranch *zbr)
{
union ubifs_key key1;
struct ubifs_ch *ch = buf;
int err, len;
if (ch->node_type != UBIFS_DATA_NODE) {
ubifs_err(c, "bad node type (%d but expected %d)",
ch->node_type, UBIFS_DATA_NODE);
goto out_err;
}
err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
if (err) {
ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
goto out;
}
len = le32_to_cpu(ch->len);
if (len != zbr->len) {
ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
goto out_err;
}
/* Make sure the key of the read node is correct */
key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
if (!keys_eq(c, &zbr->key, &key1)) {
ubifs_err(c, "bad key in node at LEB %d:%d",
zbr->lnum, zbr->offs);
dbg_tnck(&zbr->key, "looked for key ");
dbg_tnck(&key1, "found node's key ");
goto out_err;
}
return 0;
out_err:
err = -EINVAL;
out:
ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
ubifs_dump_node(c, buf);
dump_stack();
return err;
}
/**
* ubifs_tnc_bulk_read - read a number of data nodes in one go.
* @c: UBIFS file-system description object
* @bu: bulk-read parameters and results
*
* This functions reads and validates the data nodes that were identified by the
* 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
* -EAGAIN to indicate a race with GC, or another negative error code on
* failure.
*/
int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
{
int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
struct ubifs_wbuf *wbuf;
void *buf;
len = bu->zbranch[bu->cnt - 1].offs;
len += bu->zbranch[bu->cnt - 1].len - offs;
if (len > bu->buf_len) {
ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
return -EINVAL;
}
/* Do the read */
wbuf = ubifs_get_wbuf(c, lnum);
if (wbuf)
err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
else
err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
/* Check for a race with GC */
if (maybe_leb_gced(c, lnum, bu->gc_seq))
return -EAGAIN;
if (err && err != -EBADMSG) {
ubifs_err(c, "failed to read from LEB %d:%d, error %d",
lnum, offs, err);
dump_stack();
dbg_tnck(&bu->key, "key ");
return err;
}
/* Validate the nodes read */
buf = bu->buf;
for (i = 0; i < bu->cnt; i++) {
err = validate_data_node(c, buf, &bu->zbranch[i]);
if (err)
return err;
buf = buf + ALIGN(bu->zbranch[i].len, 8);
}
return 0;
}
/**
* do_lookup_nm- look up a "hashed" node.
* @c: UBIFS file-system description object
* @key: node key to lookup
* @node: the node is returned here
* @nm: node name
*
* This function look up and reads a node which contains name hash in the key.
* Since the hash may have collisions, there may be many nodes with the same
* key, so we have to sequentially look to all of them until the needed one is
* found. This function returns zero in case of success, %-ENOENT if the node
* was not found, and a negative error code in case of failure.
*/
static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
void *node, const struct qstr *nm)
{
int found, n, err;
struct ubifs_znode *znode;
dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
mutex_lock(&c->tnc_mutex);
found = ubifs_lookup_level0(c, key, &znode, &n);
if (!found) {
err = -ENOENT;
goto out_unlock;
} else if (found < 0) {
err = found;
goto out_unlock;
}
ubifs_assert(n >= 0);
err = resolve_collision(c, key, &znode, &n, nm);
dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
if (unlikely(err < 0))
goto out_unlock;
if (err == 0) {
err = -ENOENT;
goto out_unlock;
}
err = tnc_read_node_nm(c, &znode->zbranch[n], node);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_lookup_nm - look up a "hashed" node.
* @c: UBIFS file-system description object
* @key: node key to lookup
* @node: the node is returned here
* @nm: node name
*
* This function look up and reads a node which contains name hash in the key.
* Since the hash may have collisions, there may be many nodes with the same
* key, so we have to sequentially look to all of them until the needed one is
* found. This function returns zero in case of success, %-ENOENT if the node
* was not found, and a negative error code in case of failure.
*/
int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
void *node, const struct qstr *nm)
{
int err, len;
const struct ubifs_dent_node *dent = node;
/*
* We assume that in most of the cases there are no name collisions and
* 'ubifs_tnc_lookup()' returns us the right direntry.
*/
err = ubifs_tnc_lookup(c, key, node);
if (err)
return err;
len = le16_to_cpu(dent->nlen);
if (nm->len == len && !memcmp(dent->name, nm->name, len))
return 0;
/*
* Unluckily, there are hash collisions and we have to iterate over
* them look at each direntry with colliding name hash sequentially.
*/
return do_lookup_nm(c, key, node, nm);
}
/**
* correct_parent_keys - correct parent znodes' keys.
* @c: UBIFS file-system description object
* @znode: znode to correct parent znodes for
*
* This is a helper function for 'tnc_insert()'. When the key of the leftmost
* zbranch changes, keys of parent znodes have to be corrected. This helper
* function is called in such situations and corrects the keys if needed.
*/
static void correct_parent_keys(const struct ubifs_info *c,
struct ubifs_znode *znode)
{
union ubifs_key *key, *key1;
ubifs_assert(znode->parent);
ubifs_assert(znode->iip == 0);
key = &znode->zbranch[0].key;
key1 = &znode->parent->zbranch[0].key;
while (keys_cmp(c, key, key1) < 0) {
key_copy(c, key, key1);
znode = znode->parent;
znode->alt = 1;
if (!znode->parent || znode->iip)
break;
key1 = &znode->parent->zbranch[0].key;
}
}
/**
* insert_zbranch - insert a zbranch into a znode.
* @znode: znode into which to insert
* @zbr: zbranch to insert
* @n: slot number to insert to
*
* This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
* znode's array of zbranches and keeps zbranches consolidated, so when a new
* zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
* slot, zbranches starting from @n have to be moved right.
*/
static void insert_zbranch(struct ubifs_znode *znode,
const struct ubifs_zbranch *zbr, int n)
{
int i;
ubifs_assert(ubifs_zn_dirty(znode));
if (znode->level) {
for (i = znode->child_cnt; i > n; i--) {
znode->zbranch[i] = znode->zbranch[i - 1];
if (znode->zbranch[i].znode)
znode->zbranch[i].znode->iip = i;
}
if (zbr->znode)
zbr->znode->iip = n;
} else
for (i = znode->child_cnt; i > n; i--)
znode->zbranch[i] = znode->zbranch[i - 1];
znode->zbranch[n] = *zbr;
znode->child_cnt += 1;
/*
* After inserting at slot zero, the lower bound of the key range of
* this znode may have changed. If this znode is subsequently split
* then the upper bound of the key range may change, and furthermore
* it could change to be lower than the original lower bound. If that
* happens, then it will no longer be possible to find this znode in the
* TNC using the key from the index node on flash. That is bad because
* if it is not found, we will assume it is obsolete and may overwrite
* it. Then if there is an unclean unmount, we will start using the
* old index which will be broken.
*
* So we first mark znodes that have insertions at slot zero, and then
* if they are split we add their lnum/offs to the old_idx tree.
*/
if (n == 0)
znode->alt = 1;
}
/**
* tnc_insert - insert a node into TNC.
* @c: UBIFS file-system description object
* @znode: znode to insert into
* @zbr: branch to insert
* @n: slot number to insert new zbranch to
*
* This function inserts a new node described by @zbr into znode @znode. If
* znode does not have a free slot for new zbranch, it is split. Parent znodes
* are splat as well if needed. Returns zero in case of success or a negative
* error code in case of failure.
*/
static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
struct ubifs_zbranch *zbr, int n)
{
struct ubifs_znode *zn, *zi, *zp;
int i, keep, move, appending = 0;
union ubifs_key *key = &zbr->key, *key1;
ubifs_assert(n >= 0 && n <= c->fanout);
/* Implement naive insert for now */
again:
zp = znode->parent;
if (znode->child_cnt < c->fanout) {
ubifs_assert(n != c->fanout);
dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
insert_zbranch(znode, zbr, n);
/* Ensure parent's key is correct */
if (n == 0 && zp && znode->iip == 0)
correct_parent_keys(c, znode);
return 0;
}
/*
* Unfortunately, @znode does not have more empty slots and we have to
* split it.
*/
dbg_tnck(key, "splitting level %d, key ", znode->level);
if (znode->alt)
/*
* We can no longer be sure of finding this znode by key, so we
* record it in the old_idx tree.
*/
ins_clr_old_idx_znode(c, znode);
zn = kzalloc(c->max_znode_sz, GFP_NOFS);
if (!zn)
return -ENOMEM;
zn->parent = zp;
zn->level = znode->level;
/* Decide where to split */
if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
/* Try not to split consecutive data keys */
if (n == c->fanout) {
key1 = &znode->zbranch[n - 1].key;
if (key_inum(c, key1) == key_inum(c, key) &&
key_type(c, key1) == UBIFS_DATA_KEY)
appending = 1;
} else
goto check_split;
} else if (appending && n != c->fanout) {
/* Try not to split consecutive data keys */
appending = 0;
check_split:
if (n >= (c->fanout + 1) / 2) {
key1 = &znode->zbranch[0].key;
if (key_inum(c, key1) == key_inum(c, key) &&
key_type(c, key1) == UBIFS_DATA_KEY) {
key1 = &znode->zbranch[n].key;
if (key_inum(c, key1) != key_inum(c, key) ||
key_type(c, key1) != UBIFS_DATA_KEY) {
keep = n;
move = c->fanout - keep;
zi = znode;
goto do_split;
}
}
}
}
if (appending) {
keep = c->fanout;
move = 0;
} else {
keep = (c->fanout + 1) / 2;
move = c->fanout - keep;
}
/*
* Although we don't at present, we could look at the neighbors and see
* if we can move some zbranches there.
*/
if (n < keep) {
/* Insert into existing znode */
zi = znode;
move += 1;
keep -= 1;
} else {
/* Insert into new znode */
zi = zn;
n -= keep;
/* Re-parent */
if (zn->level != 0)
zbr->znode->parent = zn;
}
do_split:
__set_bit(DIRTY_ZNODE, &zn->flags);
atomic_long_inc(&c->dirty_zn_cnt);
zn->child_cnt = move;
znode->child_cnt = keep;
dbg_tnc("moving %d, keeping %d", move, keep);
/* Move zbranch */
for (i = 0; i < move; i++) {
zn->zbranch[i] = znode->zbranch[keep + i];
/* Re-parent */
if (zn->level != 0)
if (zn->zbranch[i].znode) {
zn->zbranch[i].znode->parent = zn;
zn->zbranch[i].znode->iip = i;
}
}
/* Insert new key and branch */
dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
insert_zbranch(zi, zbr, n);
/* Insert new znode (produced by spitting) into the parent */
if (zp) {
if (n == 0 && zi == znode && znode->iip == 0)
correct_parent_keys(c, znode);
/* Locate insertion point */
n = znode->iip + 1;
/* Tail recursion */
zbr->key = zn->zbranch[0].key;
zbr->znode = zn;
zbr->lnum = 0;
zbr->offs = 0;
zbr->len = 0;
znode = zp;
goto again;
}
/* We have to split root znode */
dbg_tnc("creating new zroot at level %d", znode->level + 1);
zi = kzalloc(c->max_znode_sz, GFP_NOFS);
if (!zi)
return -ENOMEM;
zi->child_cnt = 2;
zi->level = znode->level + 1;
__set_bit(DIRTY_ZNODE, &zi->flags);
atomic_long_inc(&c->dirty_zn_cnt);
zi->zbranch[0].key = znode->zbranch[0].key;
zi->zbranch[0].znode = znode;
zi->zbranch[0].lnum = c->zroot.lnum;
zi->zbranch[0].offs = c->zroot.offs;
zi->zbranch[0].len = c->zroot.len;
zi->zbranch[1].key = zn->zbranch[0].key;
zi->zbranch[1].znode = zn;
c->zroot.lnum = 0;
c->zroot.offs = 0;
c->zroot.len = 0;
c->zroot.znode = zi;
zn->parent = zi;
zn->iip = 1;
znode->parent = zi;
znode->iip = 0;
return 0;
}
/**
* ubifs_tnc_add - add a node to TNC.
* @c: UBIFS file-system description object
* @key: key to add
* @lnum: LEB number of node
* @offs: node offset
* @len: node length
*
* This function adds a node with key @key to TNC. The node may be new or it may
* obsolete some existing one. Returns %0 on success or negative error code on
* failure.
*/
int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
int offs, int len)
{
int found, n, err = 0;
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
found = lookup_level0_dirty(c, key, &znode, &n);
if (!found) {
struct ubifs_zbranch zbr;
zbr.znode = NULL;
zbr.lnum = lnum;
zbr.offs = offs;
zbr.len = len;
key_copy(c, key, &zbr.key);
err = tnc_insert(c, znode, &zbr, n + 1);
} else if (found == 1) {
struct ubifs_zbranch *zbr = &znode->zbranch[n];
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
zbr->lnum = lnum;
zbr->offs = offs;
zbr->len = len;
} else
err = found;
if (!err)
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
* @c: UBIFS file-system description object
* @key: key to add
* @old_lnum: LEB number of old node
* @old_offs: old node offset
* @lnum: LEB number of node
* @offs: node offset
* @len: node length
*
* This function replaces a node with key @key in the TNC only if the old node
* is found. This function is called by garbage collection when node are moved.
* Returns %0 on success or negative error code on failure.
*/
int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
int old_lnum, int old_offs, int lnum, int offs, int len)
{
int found, n, err = 0;
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
old_offs, lnum, offs, len);
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
goto out_unlock;
}
if (found == 1) {
struct ubifs_zbranch *zbr = &znode->zbranch[n];
found = 0;
if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
if (err)
goto out_unlock;
zbr->lnum = lnum;
zbr->offs = offs;
zbr->len = len;
found = 1;
} else if (is_hash_key(c, key)) {
found = resolve_collision_directly(c, key, &znode, &n,
old_lnum, old_offs);
dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
found, znode, n, old_lnum, old_offs);
if (found < 0) {
err = found;
goto out_unlock;
}
if (found) {
/* Ensure the znode is dirtied */
if (znode->cnext || !ubifs_zn_dirty(znode)) {
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
}
zbr = &znode->zbranch[n];
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum,
zbr->len);
if (err)
goto out_unlock;
zbr->lnum = lnum;
zbr->offs = offs;
zbr->len = len;
}
}
}
if (!found)
err = ubifs_add_dirt(c, lnum, len);
if (!err)
err = dbg_check_tnc(c, 0);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_add_nm - add a "hashed" node to TNC.
* @c: UBIFS file-system description object
* @key: key to add
* @lnum: LEB number of node
* @offs: node offset
* @len: node length
* @nm: node name
*
* This is the same as 'ubifs_tnc_add()' but it should be used with keys which
* may have collisions, like directory entry keys.
*/
int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
int lnum, int offs, int len, const struct qstr *nm)
{
int found, n, err = 0;
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
lnum, offs, nm->len, nm->name);
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
goto out_unlock;
}
if (found == 1) {
if (c->replaying)
found = fallible_resolve_collision(c, key, &znode, &n,
nm, 1);
else
found = resolve_collision(c, key, &znode, &n, nm);
dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
if (found < 0) {
err = found;
goto out_unlock;
}
/* Ensure the znode is dirtied */
if (znode->cnext || !ubifs_zn_dirty(znode)) {
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
}
if (found == 1) {
struct ubifs_zbranch *zbr = &znode->zbranch[n];
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
zbr->lnum = lnum;
zbr->offs = offs;
zbr->len = len;
goto out_unlock;
}
}
if (!found) {
struct ubifs_zbranch zbr;
zbr.znode = NULL;
zbr.lnum = lnum;
zbr.offs = offs;
zbr.len = len;
key_copy(c, key, &zbr.key);
err = tnc_insert(c, znode, &zbr, n + 1);
if (err)
goto out_unlock;
if (c->replaying) {
/*
* We did not find it in the index so there may be a
* dangling branch still in the index. So we remove it
* by passing 'ubifs_tnc_remove_nm()' the same key but
* an unmatchable name.
*/
struct qstr noname = { .name = "" };
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
if (err)
return err;
return ubifs_tnc_remove_nm(c, key, &noname);
}
}
out_unlock:
if (!err)
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* tnc_delete - delete a znode form TNC.
* @c: UBIFS file-system description object
* @znode: znode to delete from
* @n: zbranch slot number to delete
*
* This function deletes a leaf node from @n-th slot of @znode. Returns zero in
* case of success and a negative error code in case of failure.
*/
static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
{
struct ubifs_zbranch *zbr;
struct ubifs_znode *zp;
int i, err;
/* Delete without merge for now */
ubifs_assert(znode->level == 0);
ubifs_assert(n >= 0 && n < c->fanout);
dbg_tnck(&znode->zbranch[n].key, "deleting key ");
zbr = &znode->zbranch[n];
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
if (err) {
ubifs_dump_znode(c, znode);
return err;
}
/* We do not "gap" zbranch slots */
for (i = n; i < znode->child_cnt - 1; i++)
znode->zbranch[i] = znode->zbranch[i + 1];
znode->child_cnt -= 1;
if (znode->child_cnt > 0)
return 0;
/*
* This was the last zbranch, we have to delete this znode from the
* parent.
*/
do {
ubifs_assert(!ubifs_zn_obsolete(znode));
ubifs_assert(ubifs_zn_dirty(znode));
zp = znode->parent;
n = znode->iip;
atomic_long_dec(&c->dirty_zn_cnt);
err = insert_old_idx_znode(c, znode);
if (err)
return err;
if (znode->cnext) {
__set_bit(OBSOLETE_ZNODE, &znode->flags);
atomic_long_inc(&c->clean_zn_cnt);
atomic_long_inc(&ubifs_clean_zn_cnt);
} else
kfree(znode);
znode = zp;
} while (znode->child_cnt == 1); /* while removing last child */
/* Remove from znode, entry n - 1 */
znode->child_cnt -= 1;
ubifs_assert(znode->level != 0);
for (i = n; i < znode->child_cnt; i++) {
znode->zbranch[i] = znode->zbranch[i + 1];
if (znode->zbranch[i].znode)
znode->zbranch[i].znode->iip = i;
}
/*
* If this is the root and it has only 1 child then
* collapse the tree.
*/
if (!znode->parent) {
while (znode->child_cnt == 1 && znode->level != 0) {
zp = znode;
zbr = &znode->zbranch[0];
znode = get_znode(c, znode, 0);
if (IS_ERR(znode))
return PTR_ERR(znode);
znode = dirty_cow_znode(c, zbr);
if (IS_ERR(znode))
return PTR_ERR(znode);
znode->parent = NULL;
znode->iip = 0;
if (c->zroot.len) {
err = insert_old_idx(c, c->zroot.lnum,
c->zroot.offs);
if (err)
return err;
}
c->zroot.lnum = zbr->lnum;
c->zroot.offs = zbr->offs;
c->zroot.len = zbr->len;
c->zroot.znode = znode;
ubifs_assert(!ubifs_zn_obsolete(zp));
ubifs_assert(ubifs_zn_dirty(zp));
atomic_long_dec(&c->dirty_zn_cnt);
if (zp->cnext) {
__set_bit(OBSOLETE_ZNODE, &zp->flags);
atomic_long_inc(&c->clean_zn_cnt);
atomic_long_inc(&ubifs_clean_zn_cnt);
} else
kfree(zp);
}
}
return 0;
}
/**
* ubifs_tnc_remove - remove an index entry of a node.
* @c: UBIFS file-system description object
* @key: key of node
*
* Returns %0 on success or negative error code on failure.
*/
int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
{
int found, n, err = 0;
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
dbg_tnck(key, "key ");
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
goto out_unlock;
}
if (found == 1)
err = tnc_delete(c, znode, n);
if (!err)
err = dbg_check_tnc(c, 0);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
* @c: UBIFS file-system description object
* @key: key of node
* @nm: directory entry name
*
* Returns %0 on success or negative error code on failure.
*/
int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
const struct qstr *nm)
{
int n, err;
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
err = lookup_level0_dirty(c, key, &znode, &n);
if (err < 0)
goto out_unlock;
if (err) {
if (c->replaying)
err = fallible_resolve_collision(c, key, &znode, &n,
nm, 0);
else
err = resolve_collision(c, key, &znode, &n, nm);
dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
if (err < 0)
goto out_unlock;
if (err) {
/* Ensure the znode is dirtied */
if (znode->cnext || !ubifs_zn_dirty(znode)) {
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
}
err = tnc_delete(c, znode, n);
}
}
out_unlock:
if (!err)
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* key_in_range - determine if a key falls within a range of keys.
* @c: UBIFS file-system description object
* @key: key to check
* @from_key: lowest key in range
* @to_key: highest key in range
*
* This function returns %1 if the key is in range and %0 otherwise.
*/
static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
union ubifs_key *from_key, union ubifs_key *to_key)
{
if (keys_cmp(c, key, from_key) < 0)
return 0;
if (keys_cmp(c, key, to_key) > 0)
return 0;
return 1;
}
/**
* ubifs_tnc_remove_range - remove index entries in range.
* @c: UBIFS file-system description object
* @from_key: lowest key to remove
* @to_key: highest key to remove
*
* This function removes index entries starting at @from_key and ending at
* @to_key. This function returns zero in case of success and a negative error
* code in case of failure.
*/
int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
union ubifs_key *to_key)
{
int i, n, k, err = 0;
struct ubifs_znode *znode;
union ubifs_key *key;
mutex_lock(&c->tnc_mutex);
while (1) {
/* Find first level 0 znode that contains keys to remove */
err = ubifs_lookup_level0(c, from_key, &znode, &n);
if (err < 0)
goto out_unlock;
if (err)
key = from_key;
else {
err = tnc_next(c, &znode, &n);
if (err == -ENOENT) {
err = 0;
goto out_unlock;
}
if (err < 0)
goto out_unlock;
key = &znode->zbranch[n].key;
if (!key_in_range(c, key, from_key, to_key)) {
err = 0;
goto out_unlock;
}
}
/* Ensure the znode is dirtied */
if (znode->cnext || !ubifs_zn_dirty(znode)) {
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
}
/* Remove all keys in range except the first */
for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
key = &znode->zbranch[i].key;
if (!key_in_range(c, key, from_key, to_key))
break;
lnc_free(&znode->zbranch[i]);
err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
znode->zbranch[i].len);
if (err) {
ubifs_dump_znode(c, znode);
goto out_unlock;
}
dbg_tnck(key, "removing key ");
}
if (k) {
for (i = n + 1 + k; i < znode->child_cnt; i++)
znode->zbranch[i - k] = znode->zbranch[i];
znode->child_cnt -= k;
}
/* Now delete the first */
err = tnc_delete(c, znode, n);
if (err)
goto out_unlock;
}
out_unlock:
if (!err)
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_tnc_remove_ino - remove an inode from TNC.
* @c: UBIFS file-system description object
* @inum: inode number to remove
*
* This function remove inode @inum and all the extended attributes associated
* with the anode from TNC and returns zero in case of success or a negative
* error code in case of failure.
*/
int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
{
union ubifs_key key1, key2;
struct ubifs_dent_node *xent, *pxent = NULL;
struct qstr nm = { .name = NULL };
dbg_tnc("ino %lu", (unsigned long)inum);
/*
* Walk all extended attribute entries and remove them together with
* corresponding extended attribute inodes.
*/
lowest_xent_key(c, &key1, inum);
while (1) {
ino_t xattr_inum;
int err;
xent = ubifs_tnc_next_ent(c, &key1, &nm);
if (IS_ERR(xent)) {
err = PTR_ERR(xent);
if (err == -ENOENT)
break;
return err;
}
xattr_inum = le64_to_cpu(xent->inum);
dbg_tnc("xent '%s', ino %lu", xent->name,
(unsigned long)xattr_inum);
nm.name = xent->name;
nm.len = le16_to_cpu(xent->nlen);
err = ubifs_tnc_remove_nm(c, &key1, &nm);
if (err) {
kfree(xent);
return err;
}
lowest_ino_key(c, &key1, xattr_inum);
highest_ino_key(c, &key2, xattr_inum);
err = ubifs_tnc_remove_range(c, &key1, &key2);
if (err) {
kfree(xent);
return err;
}
kfree(pxent);
pxent = xent;
key_read(c, &xent->key, &key1);
}
kfree(pxent);
lowest_ino_key(c, &key1, inum);
highest_ino_key(c, &key2, inum);
return ubifs_tnc_remove_range(c, &key1, &key2);
}
/**
* ubifs_tnc_next_ent - walk directory or extended attribute entries.
* @c: UBIFS file-system description object
* @key: key of last entry
* @nm: name of last entry found or %NULL
*
* This function finds and reads the next directory or extended attribute entry
* after the given key (@key) if there is one. @nm is used to resolve
* collisions.
*
* If the name of the current entry is not known and only the key is known,
* @nm->name has to be %NULL. In this case the semantics of this function is a
* little bit different and it returns the entry corresponding to this key, not
* the next one. If the key was not found, the closest "right" entry is
* returned.
*
* If the fist entry has to be found, @key has to contain the lowest possible
* key value for this inode and @name has to be %NULL.
*
* This function returns the found directory or extended attribute entry node
* in case of success, %-ENOENT is returned if no entry was found, and a
* negative error code is returned in case of failure.
*/
struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
union ubifs_key *key,
const struct qstr *nm)
{
int n, err, type = key_type(c, key);
struct ubifs_znode *znode;
struct ubifs_dent_node *dent;
struct ubifs_zbranch *zbr;
union ubifs_key *dkey;
dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
ubifs_assert(is_hash_key(c, key));
mutex_lock(&c->tnc_mutex);
err = ubifs_lookup_level0(c, key, &znode, &n);
if (unlikely(err < 0))
goto out_unlock;
if (nm->name) {
if (err) {
/* Handle collisions */
err = resolve_collision(c, key, &znode, &n, nm);
dbg_tnc("rc returned %d, znode %p, n %d",
err, znode, n);
if (unlikely(err < 0))
goto out_unlock;
}
/* Now find next entry */
err = tnc_next(c, &znode, &n);
if (unlikely(err))
goto out_unlock;
} else {
/*
* The full name of the entry was not given, in which case the
* behavior of this function is a little different and it
* returns current entry, not the next one.
*/
if (!err) {
/*
* However, the given key does not exist in the TNC
* tree and @znode/@n variables contain the closest
* "preceding" element. Switch to the next one.
*/
err = tnc_next(c, &znode, &n);
if (err)
goto out_unlock;
}
}
zbr = &znode->zbranch[n];
dent = kmalloc(zbr->len, GFP_NOFS);
if (unlikely(!dent)) {
err = -ENOMEM;
goto out_unlock;
}
/*
* The above 'tnc_next()' call could lead us to the next inode, check
* this.
*/
dkey = &zbr->key;
if (key_inum(c, dkey) != key_inum(c, key) ||
key_type(c, dkey) != type) {
err = -ENOENT;
goto out_free;
}
err = tnc_read_node_nm(c, zbr, dent);
if (unlikely(err))
goto out_free;
mutex_unlock(&c->tnc_mutex);
return dent;
out_free:
kfree(dent);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return ERR_PTR(err);
}
/**
* tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
* @c: UBIFS file-system description object
*
* Destroy left-over obsolete znodes from a failed commit.
*/
static void tnc_destroy_cnext(struct ubifs_info *c)
{
struct ubifs_znode *cnext;
if (!c->cnext)
return;
ubifs_assert(c->cmt_state == COMMIT_BROKEN);
cnext = c->cnext;
do {
struct ubifs_znode *znode = cnext;
cnext = cnext->cnext;
if (ubifs_zn_obsolete(znode))
kfree(znode);
} while (cnext && cnext != c->cnext);
}
/**
* ubifs_tnc_close - close TNC subsystem and free all related resources.
* @c: UBIFS file-system description object
*/
void ubifs_tnc_close(struct ubifs_info *c)
{
tnc_destroy_cnext(c);
if (c->zroot.znode) {
long n, freed;
n = atomic_long_read(&c->clean_zn_cnt);
freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
ubifs_assert(freed == n);
atomic_long_sub(n, &ubifs_clean_zn_cnt);
}
kfree(c->gap_lebs);
kfree(c->ilebs);
destroy_old_idx(c);
}
/**
* left_znode - get the znode to the left.
* @c: UBIFS file-system description object
* @znode: znode
*
* This function returns a pointer to the znode to the left of @znode or NULL if
* there is not one. A negative error code is returned on failure.
*/
static struct ubifs_znode *left_znode(struct ubifs_info *c,
struct ubifs_znode *znode)
{
int level = znode->level;
while (1) {
int n = znode->iip - 1;
/* Go up until we can go left */
znode = znode->parent;
if (!znode)
return NULL;
if (n >= 0) {
/* Now go down the rightmost branch to 'level' */
znode = get_znode(c, znode, n);
if (IS_ERR(znode))
return znode;
while (znode->level != level) {
n = znode->child_cnt - 1;
znode = get_znode(c, znode, n);
if (IS_ERR(znode))
return znode;
}
break;
}
}
return znode;
}
/**
* right_znode - get the znode to the right.
* @c: UBIFS file-system description object
* @znode: znode
*
* This function returns a pointer to the znode to the right of @znode or NULL
* if there is not one. A negative error code is returned on failure.
*/
static struct ubifs_znode *right_znode(struct ubifs_info *c,
struct ubifs_znode *znode)
{
int level = znode->level;
while (1) {
int n = znode->iip + 1;
/* Go up until we can go right */
znode = znode->parent;
if (!znode)
return NULL;
if (n < znode->child_cnt) {
/* Now go down the leftmost branch to 'level' */
znode = get_znode(c, znode, n);
if (IS_ERR(znode))
return znode;
while (znode->level != level) {
znode = get_znode(c, znode, 0);
if (IS_ERR(znode))
return znode;
}
break;
}
}
return znode;
}
/**
* lookup_znode - find a particular indexing node from TNC.
* @c: UBIFS file-system description object
* @key: index node key to lookup
* @level: index node level
* @lnum: index node LEB number
* @offs: index node offset
*
* This function searches an indexing node by its first key @key and its
* address @lnum:@offs. It looks up the indexing tree by pulling all indexing
* nodes it traverses to TNC. This function is called for indexing nodes which
* were found on the media by scanning, for example when garbage-collecting or
* when doing in-the-gaps commit. This means that the indexing node which is
* looked for does not have to have exactly the same leftmost key @key, because
* the leftmost key may have been changed, in which case TNC will contain a
* dirty znode which still refers the same @lnum:@offs. This function is clever
* enough to recognize such indexing nodes.
*
* Note, if a znode was deleted or changed too much, then this function will
* not find it. For situations like this UBIFS has the old index RB-tree
* (indexed by @lnum:@offs).
*
* This function returns a pointer to the znode found or %NULL if it is not
* found. A negative error code is returned on failure.
*/
static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
union ubifs_key *key, int level,
int lnum, int offs)
{
struct ubifs_znode *znode, *zn;
int n, nn;
ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
/*
* The arguments have probably been read off flash, so don't assume
* they are valid.
*/
if (level < 0)
return ERR_PTR(-EINVAL);
/* Get the root znode */
znode = c->zroot.znode;
if (!znode) {
znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
if (IS_ERR(znode))
return znode;
}
/* Check if it is the one we are looking for */
if (c->zroot.lnum == lnum && c->zroot.offs == offs)
return znode;
/* Descend to the parent level i.e. (level + 1) */
if (level >= znode->level)
return NULL;
while (1) {
ubifs_search_zbranch(c, znode, key, &n);
if (n < 0) {
/*
* We reached a znode where the leftmost key is greater
* than the key we are searching for. This is the same
* situation as the one described in a huge comment at
* the end of the 'ubifs_lookup_level0()' function. And
* for exactly the same reasons we have to try to look
* left before giving up.
*/
znode = left_znode(c, znode);
if (!znode)
return NULL;
if (IS_ERR(znode))
return znode;
ubifs_search_zbranch(c, znode, key, &n);
ubifs_assert(n >= 0);
}
if (znode->level == level + 1)
break;
znode = get_znode(c, znode, n);
if (IS_ERR(znode))
return znode;
}
/* Check if the child is the one we are looking for */
if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
return get_znode(c, znode, n);
/* If the key is unique, there is nowhere else to look */
if (!is_hash_key(c, key))
return NULL;
/*
* The key is not unique and so may be also in the znodes to either
* side.
*/
zn = znode;
nn = n;
/* Look left */
while (1) {
/* Move one branch to the left */
if (n)
n -= 1;
else {
znode = left_znode(c, znode);
if (!znode)
break;
if (IS_ERR(znode))
return znode;
n = znode->child_cnt - 1;
}
/* Check it */
if (znode->zbranch[n].lnum == lnum &&
znode->zbranch[n].offs == offs)
return get_znode(c, znode, n);
/* Stop if the key is less than the one we are looking for */
if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
break;
}
/* Back to the middle */
znode = zn;
n = nn;
/* Look right */
while (1) {
/* Move one branch to the right */
if (++n >= znode->child_cnt) {
znode = right_znode(c, znode);
if (!znode)
break;
if (IS_ERR(znode))
return znode;
n = 0;
}
/* Check it */
if (znode->zbranch[n].lnum == lnum &&
znode->zbranch[n].offs == offs)
return get_znode(c, znode, n);
/* Stop if the key is greater than the one we are looking for */
if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
break;
}
return NULL;
}
/**
* is_idx_node_in_tnc - determine if an index node is in the TNC.
* @c: UBIFS file-system description object
* @key: key of index node
* @level: index node level
* @lnum: LEB number of index node
* @offs: offset of index node
*
* This function returns %0 if the index node is not referred to in the TNC, %1
* if the index node is referred to in the TNC and the corresponding znode is
* dirty, %2 if an index node is referred to in the TNC and the corresponding
* znode is clean, and a negative error code in case of failure.
*
* Note, the @key argument has to be the key of the first child. Also note,
* this function relies on the fact that 0:0 is never a valid LEB number and
* offset for a main-area node.
*/
int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs)
{
struct ubifs_znode *znode;
znode = lookup_znode(c, key, level, lnum, offs);
if (!znode)
return 0;
if (IS_ERR(znode))
return PTR_ERR(znode);
return ubifs_zn_dirty(znode) ? 1 : 2;
}
/**
* is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
* @c: UBIFS file-system description object
* @key: node key
* @lnum: node LEB number
* @offs: node offset
*
* This function returns %1 if the node is referred to in the TNC, %0 if it is
* not, and a negative error code in case of failure.
*
* Note, this function relies on the fact that 0:0 is never a valid LEB number
* and offset for a main-area node.
*/
static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
int lnum, int offs)
{
struct ubifs_zbranch *zbr;
struct ubifs_znode *znode, *zn;
int n, found, err, nn;
const int unique = !is_hash_key(c, key);
found = ubifs_lookup_level0(c, key, &znode, &n);
if (found < 0)
return found; /* Error code */
if (!found)
return 0;
zbr = &znode->zbranch[n];
if (lnum == zbr->lnum && offs == zbr->offs)
return 1; /* Found it */
if (unique)
return 0;
/*
* Because the key is not unique, we have to look left
* and right as well
*/
zn = znode;
nn = n;
/* Look left */
while (1) {
err = tnc_prev(c, &znode, &n);
if (err == -ENOENT)
break;
if (err)
return err;
if (keys_cmp(c, key, &znode->zbranch[n].key))
break;
zbr = &znode->zbranch[n];
if (lnum == zbr->lnum && offs == zbr->offs)
return 1; /* Found it */
}
/* Look right */
znode = zn;
n = nn;
while (1) {
err = tnc_next(c, &znode, &n);
if (err) {
if (err == -ENOENT)
return 0;
return err;
}
if (keys_cmp(c, key, &znode->zbranch[n].key))
break;
zbr = &znode->zbranch[n];
if (lnum == zbr->lnum && offs == zbr->offs)
return 1; /* Found it */
}
return 0;
}
/**
* ubifs_tnc_has_node - determine whether a node is in the TNC.
* @c: UBIFS file-system description object
* @key: node key
* @level: index node level (if it is an index node)
* @lnum: node LEB number
* @offs: node offset
* @is_idx: non-zero if the node is an index node
*
* This function returns %1 if the node is in the TNC, %0 if it is not, and a
* negative error code in case of failure. For index nodes, @key has to be the
* key of the first child. An index node is considered to be in the TNC only if
* the corresponding znode is clean or has not been loaded.
*/
int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs, int is_idx)
{
int err;
mutex_lock(&c->tnc_mutex);
if (is_idx) {
err = is_idx_node_in_tnc(c, key, level, lnum, offs);
if (err < 0)
goto out_unlock;
if (err == 1)
/* The index node was found but it was dirty */
err = 0;
else if (err == 2)
/* The index node was found and it was clean */
err = 1;
else
BUG_ON(err != 0);
} else
err = is_leaf_node_in_tnc(c, key, lnum, offs);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* ubifs_dirty_idx_node - dirty an index node.
* @c: UBIFS file-system description object
* @key: index node key
* @level: index node level
* @lnum: index node LEB number
* @offs: index node offset
*
* This function loads and dirties an index node so that it can be garbage
* collected. The @key argument has to be the key of the first child. This
* function relies on the fact that 0:0 is never a valid LEB number and offset
* for a main-area node. Returns %0 on success and a negative error code on
* failure.
*/
int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs)
{
struct ubifs_znode *znode;
int err = 0;
mutex_lock(&c->tnc_mutex);
znode = lookup_znode(c, key, level, lnum, offs);
if (!znode)
goto out_unlock;
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
znode = dirty_cow_bottom_up(c, znode);
if (IS_ERR(znode)) {
err = PTR_ERR(znode);
goto out_unlock;
}
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* dbg_check_inode_size - check if inode size is correct.
* @c: UBIFS file-system description object
* @inum: inode number
* @size: inode size
*
* This function makes sure that the inode size (@size) is correct and it does
* not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
* if it has a data page beyond @size, and other negative error code in case of
* other errors.
*/
int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
loff_t size)
{
int err, n;
union ubifs_key from_key, to_key, *key;
struct ubifs_znode *znode;
unsigned int block;
if (!S_ISREG(inode->i_mode))
return 0;
if (!dbg_is_chk_gen(c))
return 0;
block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
data_key_init(c, &from_key, inode->i_ino, block);
highest_data_key(c, &to_key, inode->i_ino);
mutex_lock(&c->tnc_mutex);
err = ubifs_lookup_level0(c, &from_key, &znode, &n);
if (err < 0)
goto out_unlock;
if (err) {
key = &from_key;
goto out_dump;
}
err = tnc_next(c, &znode, &n);
if (err == -ENOENT) {
err = 0;
goto out_unlock;
}
if (err < 0)
goto out_unlock;
ubifs_assert(err == 0);
key = &znode->zbranch[n].key;
if (!key_in_range(c, key, &from_key, &to_key))
goto out_unlock;
out_dump:
block = key_block(c, key);
ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
(unsigned long)inode->i_ino, size,
((loff_t)block) << UBIFS_BLOCK_SHIFT);
mutex_unlock(&c->tnc_mutex);
ubifs_dump_inode(c, inode);
dump_stack();
return -EINVAL;
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}