5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
247 lines
6.4 KiB
C
247 lines
6.4 KiB
C
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/amigaints.h>
|
|
#include <asm/amigahw.h>
|
|
#include <asm/irq.h>
|
|
|
|
#include "scsi.h"
|
|
#include <scsi/scsi_host.h>
|
|
#include "wd33c93.h"
|
|
#include "a3000.h"
|
|
|
|
#include<linux/stat.h>
|
|
|
|
#define DMA(ptr) ((a3000_scsiregs *)((ptr)->base))
|
|
#define HDATA(ptr) ((struct WD33C93_hostdata *)((ptr)->hostdata))
|
|
|
|
static struct Scsi_Host *a3000_host = NULL;
|
|
|
|
static int a3000_release(struct Scsi_Host *instance);
|
|
|
|
static irqreturn_t a3000_intr (int irq, void *dummy)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int status = DMA(a3000_host)->ISTR;
|
|
|
|
if (!(status & ISTR_INT_P))
|
|
return IRQ_NONE;
|
|
if (status & ISTR_INTS)
|
|
{
|
|
spin_lock_irqsave(a3000_host->host_lock, flags);
|
|
wd33c93_intr (a3000_host);
|
|
spin_unlock_irqrestore(a3000_host->host_lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
printk("Non-serviced A3000 SCSI-interrupt? ISTR = %02x\n", status);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static int dma_setup(struct scsi_cmnd *cmd, int dir_in)
|
|
{
|
|
unsigned short cntr = CNTR_PDMD | CNTR_INTEN;
|
|
unsigned long addr = virt_to_bus(cmd->SCp.ptr);
|
|
|
|
/*
|
|
* if the physical address has the wrong alignment, or if
|
|
* physical address is bad, or if it is a write and at the
|
|
* end of a physical memory chunk, then allocate a bounce
|
|
* buffer
|
|
*/
|
|
if (addr & A3000_XFER_MASK)
|
|
{
|
|
HDATA(a3000_host)->dma_bounce_len = (cmd->SCp.this_residual + 511)
|
|
& ~0x1ff;
|
|
HDATA(a3000_host)->dma_bounce_buffer =
|
|
kmalloc (HDATA(a3000_host)->dma_bounce_len, GFP_KERNEL);
|
|
|
|
/* can't allocate memory; use PIO */
|
|
if (!HDATA(a3000_host)->dma_bounce_buffer) {
|
|
HDATA(a3000_host)->dma_bounce_len = 0;
|
|
return 1;
|
|
}
|
|
|
|
if (!dir_in) {
|
|
/* copy to bounce buffer for a write */
|
|
memcpy (HDATA(a3000_host)->dma_bounce_buffer,
|
|
cmd->SCp.ptr, cmd->SCp.this_residual);
|
|
}
|
|
|
|
addr = virt_to_bus(HDATA(a3000_host)->dma_bounce_buffer);
|
|
}
|
|
|
|
/* setup dma direction */
|
|
if (!dir_in)
|
|
cntr |= CNTR_DDIR;
|
|
|
|
/* remember direction */
|
|
HDATA(a3000_host)->dma_dir = dir_in;
|
|
|
|
DMA(a3000_host)->CNTR = cntr;
|
|
|
|
/* setup DMA *physical* address */
|
|
DMA(a3000_host)->ACR = addr;
|
|
|
|
if (dir_in)
|
|
/* invalidate any cache */
|
|
cache_clear (addr, cmd->SCp.this_residual);
|
|
else
|
|
/* push any dirty cache */
|
|
cache_push (addr, cmd->SCp.this_residual);
|
|
|
|
/* start DMA */
|
|
mb(); /* make sure setup is completed */
|
|
DMA(a3000_host)->ST_DMA = 1;
|
|
mb(); /* make sure DMA has started before next IO */
|
|
|
|
/* return success */
|
|
return 0;
|
|
}
|
|
|
|
static void dma_stop(struct Scsi_Host *instance, struct scsi_cmnd *SCpnt,
|
|
int status)
|
|
{
|
|
/* disable SCSI interrupts */
|
|
unsigned short cntr = CNTR_PDMD;
|
|
|
|
if (!HDATA(instance)->dma_dir)
|
|
cntr |= CNTR_DDIR;
|
|
|
|
DMA(instance)->CNTR = cntr;
|
|
mb(); /* make sure CNTR is updated before next IO */
|
|
|
|
/* flush if we were reading */
|
|
if (HDATA(instance)->dma_dir) {
|
|
DMA(instance)->FLUSH = 1;
|
|
mb(); /* don't allow prefetch */
|
|
while (!(DMA(instance)->ISTR & ISTR_FE_FLG))
|
|
barrier();
|
|
mb(); /* no IO until FLUSH is done */
|
|
}
|
|
|
|
/* clear a possible interrupt */
|
|
/* I think that this CINT is only necessary if you are
|
|
* using the terminal count features. HM 7 Mar 1994
|
|
*/
|
|
DMA(instance)->CINT = 1;
|
|
|
|
/* stop DMA */
|
|
DMA(instance)->SP_DMA = 1;
|
|
mb(); /* make sure DMA is stopped before next IO */
|
|
|
|
/* restore the CONTROL bits (minus the direction flag) */
|
|
DMA(instance)->CNTR = CNTR_PDMD | CNTR_INTEN;
|
|
mb(); /* make sure CNTR is updated before next IO */
|
|
|
|
/* copy from a bounce buffer, if necessary */
|
|
if (status && HDATA(instance)->dma_bounce_buffer) {
|
|
if (SCpnt) {
|
|
if (HDATA(instance)->dma_dir && SCpnt)
|
|
memcpy (SCpnt->SCp.ptr,
|
|
HDATA(instance)->dma_bounce_buffer,
|
|
SCpnt->SCp.this_residual);
|
|
kfree (HDATA(instance)->dma_bounce_buffer);
|
|
HDATA(instance)->dma_bounce_buffer = NULL;
|
|
HDATA(instance)->dma_bounce_len = 0;
|
|
} else {
|
|
kfree (HDATA(instance)->dma_bounce_buffer);
|
|
HDATA(instance)->dma_bounce_buffer = NULL;
|
|
HDATA(instance)->dma_bounce_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init a3000_detect(struct scsi_host_template *tpnt)
|
|
{
|
|
wd33c93_regs regs;
|
|
|
|
if (!MACH_IS_AMIGA || !AMIGAHW_PRESENT(A3000_SCSI))
|
|
return 0;
|
|
if (!request_mem_region(0xDD0000, 256, "wd33c93"))
|
|
return 0;
|
|
|
|
tpnt->proc_name = "A3000";
|
|
tpnt->proc_info = &wd33c93_proc_info;
|
|
|
|
a3000_host = scsi_register (tpnt, sizeof(struct WD33C93_hostdata));
|
|
if (a3000_host == NULL)
|
|
goto fail_register;
|
|
|
|
a3000_host->base = ZTWO_VADDR(0xDD0000);
|
|
a3000_host->irq = IRQ_AMIGA_PORTS;
|
|
DMA(a3000_host)->DAWR = DAWR_A3000;
|
|
regs.SASR = &(DMA(a3000_host)->SASR);
|
|
regs.SCMD = &(DMA(a3000_host)->SCMD);
|
|
HDATA(a3000_host)->no_sync = 0xff;
|
|
HDATA(a3000_host)->fast = 0;
|
|
HDATA(a3000_host)->dma_mode = CTRL_DMA;
|
|
wd33c93_init(a3000_host, regs, dma_setup, dma_stop, WD33C93_FS_12_15);
|
|
if (request_irq(IRQ_AMIGA_PORTS, a3000_intr, IRQF_SHARED, "A3000 SCSI",
|
|
a3000_intr))
|
|
goto fail_irq;
|
|
DMA(a3000_host)->CNTR = CNTR_PDMD | CNTR_INTEN;
|
|
|
|
return 1;
|
|
|
|
fail_irq:
|
|
wd33c93_release();
|
|
scsi_unregister(a3000_host);
|
|
fail_register:
|
|
release_mem_region(0xDD0000, 256);
|
|
return 0;
|
|
}
|
|
|
|
static int a3000_bus_reset(struct scsi_cmnd *cmd)
|
|
{
|
|
/* FIXME perform bus-specific reset */
|
|
|
|
/* FIXME 2: kill this entire function, which should
|
|
cause mid-layer to call wd33c93_host_reset anyway? */
|
|
|
|
spin_lock_irq(cmd->device->host->host_lock);
|
|
wd33c93_host_reset(cmd);
|
|
spin_unlock_irq(cmd->device->host->host_lock);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
#define HOSTS_C
|
|
|
|
static struct scsi_host_template driver_template = {
|
|
.proc_name = "A3000",
|
|
.name = "Amiga 3000 built-in SCSI",
|
|
.detect = a3000_detect,
|
|
.release = a3000_release,
|
|
.queuecommand = wd33c93_queuecommand,
|
|
.eh_abort_handler = wd33c93_abort,
|
|
.eh_bus_reset_handler = a3000_bus_reset,
|
|
.eh_host_reset_handler = wd33c93_host_reset,
|
|
.can_queue = CAN_QUEUE,
|
|
.this_id = 7,
|
|
.sg_tablesize = SG_ALL,
|
|
.cmd_per_lun = CMD_PER_LUN,
|
|
.use_clustering = ENABLE_CLUSTERING
|
|
};
|
|
|
|
|
|
#include "scsi_module.c"
|
|
|
|
static int a3000_release(struct Scsi_Host *instance)
|
|
{
|
|
wd33c93_release();
|
|
DMA(instance)->CNTR = 0;
|
|
release_mem_region(0xDD0000, 256);
|
|
free_irq(IRQ_AMIGA_PORTS, a3000_intr);
|
|
return 1;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|