kernel-fxtec-pro1x/drivers/edac/edac_mc.c
Nigel Cunningham 7dfb71030f [PATCH] Add include/linux/freezer.h and move definitions from sched.h
Move process freezing functions from include/linux/sched.h to freezer.h, so
that modifications to the freezer or the kernel configuration don't require
recompiling just about everything.

[akpm@osdl.org: fix ueagle driver]
Signed-off-by: Nigel Cunningham <nigel@suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:27 -08:00

1839 lines
46 KiB
C

/*
* edac_mc kernel module
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* Modified by Dave Peterson and Doug Thompson
*
*/
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/sysdev.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_mc.h"
#define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
#ifdef CONFIG_EDAC_DEBUG
/* Values of 0 to 4 will generate output */
int edac_debug_level = 1;
EXPORT_SYMBOL_GPL(edac_debug_level);
#endif
/* EDAC Controls, setable by module parameter, and sysfs */
static int log_ue = 1;
static int log_ce = 1;
static int panic_on_ue;
static int poll_msec = 1000;
/* lock to memory controller's control array */
static DECLARE_MUTEX(mem_ctls_mutex);
static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
static struct task_struct *edac_thread;
#ifdef CONFIG_PCI
static int check_pci_parity = 0; /* default YES check PCI parity */
static int panic_on_pci_parity; /* default no panic on PCI Parity */
static atomic_t pci_parity_count = ATOMIC_INIT(0);
static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
static struct completion edac_pci_kobj_complete;
#endif /* CONFIG_PCI */
/* START sysfs data and methods */
static const char *mem_types[] = {
[MEM_EMPTY] = "Empty",
[MEM_RESERVED] = "Reserved",
[MEM_UNKNOWN] = "Unknown",
[MEM_FPM] = "FPM",
[MEM_EDO] = "EDO",
[MEM_BEDO] = "BEDO",
[MEM_SDR] = "Unbuffered-SDR",
[MEM_RDR] = "Registered-SDR",
[MEM_DDR] = "Unbuffered-DDR",
[MEM_RDDR] = "Registered-DDR",
[MEM_RMBS] = "RMBS"
};
static const char *dev_types[] = {
[DEV_UNKNOWN] = "Unknown",
[DEV_X1] = "x1",
[DEV_X2] = "x2",
[DEV_X4] = "x4",
[DEV_X8] = "x8",
[DEV_X16] = "x16",
[DEV_X32] = "x32",
[DEV_X64] = "x64"
};
static const char *edac_caps[] = {
[EDAC_UNKNOWN] = "Unknown",
[EDAC_NONE] = "None",
[EDAC_RESERVED] = "Reserved",
[EDAC_PARITY] = "PARITY",
[EDAC_EC] = "EC",
[EDAC_SECDED] = "SECDED",
[EDAC_S2ECD2ED] = "S2ECD2ED",
[EDAC_S4ECD4ED] = "S4ECD4ED",
[EDAC_S8ECD8ED] = "S8ECD8ED",
[EDAC_S16ECD16ED] = "S16ECD16ED"
};
/* sysfs object: /sys/devices/system/edac */
static struct sysdev_class edac_class = {
set_kset_name("edac"),
};
/* sysfs object:
* /sys/devices/system/edac/mc
*/
static struct kobject edac_memctrl_kobj;
/* We use these to wait for the reference counts on edac_memctrl_kobj and
* edac_pci_kobj to reach 0.
*/
static struct completion edac_memctrl_kobj_complete;
/*
* /sys/devices/system/edac/mc;
* data structures and methods
*/
static ssize_t memctrl_int_show(void *ptr, char *buffer)
{
int *value = (int*) ptr;
return sprintf(buffer, "%u\n", *value);
}
static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
{
int *value = (int*) ptr;
if (isdigit(*buffer))
*value = simple_strtoul(buffer, NULL, 0);
return count;
}
struct memctrl_dev_attribute {
struct attribute attr;
void *value;
ssize_t (*show)(void *,char *);
ssize_t (*store)(void *, const char *, size_t);
};
/* Set of show/store abstract level functions for memory control object */
static ssize_t memctrl_dev_show(struct kobject *kobj,
struct attribute *attr, char *buffer)
{
struct memctrl_dev_attribute *memctrl_dev;
memctrl_dev = (struct memctrl_dev_attribute*)attr;
if (memctrl_dev->show)
return memctrl_dev->show(memctrl_dev->value, buffer);
return -EIO;
}
static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct memctrl_dev_attribute *memctrl_dev;
memctrl_dev = (struct memctrl_dev_attribute*)attr;
if (memctrl_dev->store)
return memctrl_dev->store(memctrl_dev->value, buffer, count);
return -EIO;
}
static struct sysfs_ops memctrlfs_ops = {
.show = memctrl_dev_show,
.store = memctrl_dev_store
};
#define MEMCTRL_ATTR(_name,_mode,_show,_store) \
struct memctrl_dev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = &_name, \
.show = _show, \
.store = _store, \
};
#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
struct memctrl_dev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = _data, \
.show = _show, \
.store = _store, \
};
/* csrow<id> control files */
MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
/* Base Attributes of the memory ECC object */
static struct memctrl_dev_attribute *memctrl_attr[] = {
&attr_panic_on_ue,
&attr_log_ue,
&attr_log_ce,
&attr_poll_msec,
NULL,
};
/* Main MC kobject release() function */
static void edac_memctrl_master_release(struct kobject *kobj)
{
debugf1("%s()\n", __func__);
complete(&edac_memctrl_kobj_complete);
}
static struct kobj_type ktype_memctrl = {
.release = edac_memctrl_master_release,
.sysfs_ops = &memctrlfs_ops,
.default_attrs = (struct attribute **) memctrl_attr,
};
/* Initialize the main sysfs entries for edac:
* /sys/devices/system/edac
*
* and children
*
* Return: 0 SUCCESS
* !0 FAILURE
*/
static int edac_sysfs_memctrl_setup(void)
{
int err = 0;
debugf1("%s()\n", __func__);
/* create the /sys/devices/system/edac directory */
err = sysdev_class_register(&edac_class);
if (err) {
debugf1("%s() error=%d\n", __func__, err);
return err;
}
/* Init the MC's kobject */
memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
edac_memctrl_kobj.parent = &edac_class.kset.kobj;
edac_memctrl_kobj.ktype = &ktype_memctrl;
/* generate sysfs "..../edac/mc" */
err = kobject_set_name(&edac_memctrl_kobj,"mc");
if (err)
goto fail;
/* FIXME: maybe new sysdev_create_subdir() */
err = kobject_register(&edac_memctrl_kobj);
if (err) {
debugf1("Failed to register '.../edac/mc'\n");
goto fail;
}
debugf1("Registered '.../edac/mc' kobject\n");
return 0;
fail:
sysdev_class_unregister(&edac_class);
return err;
}
/*
* MC teardown:
* the '..../edac/mc' kobject followed by '..../edac' itself
*/
static void edac_sysfs_memctrl_teardown(void)
{
debugf0("MC: " __FILE__ ": %s()\n", __func__);
/* Unregister the MC's kobject and wait for reference count to reach
* 0.
*/
init_completion(&edac_memctrl_kobj_complete);
kobject_unregister(&edac_memctrl_kobj);
wait_for_completion(&edac_memctrl_kobj_complete);
/* Unregister the 'edac' object */
sysdev_class_unregister(&edac_class);
}
#ifdef CONFIG_PCI
static ssize_t edac_pci_int_show(void *ptr, char *buffer)
{
int *value = ptr;
return sprintf(buffer,"%d\n",*value);
}
static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
{
int *value = ptr;
if (isdigit(*buffer))
*value = simple_strtoul(buffer,NULL,0);
return count;
}
struct edac_pci_dev_attribute {
struct attribute attr;
void *value;
ssize_t (*show)(void *,char *);
ssize_t (*store)(void *, const char *,size_t);
};
/* Set of show/store abstract level functions for PCI Parity object */
static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct edac_pci_dev_attribute *edac_pci_dev;
edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
if (edac_pci_dev->show)
return edac_pci_dev->show(edac_pci_dev->value, buffer);
return -EIO;
}
static ssize_t edac_pci_dev_store(struct kobject *kobj,
struct attribute *attr, const char *buffer, size_t count)
{
struct edac_pci_dev_attribute *edac_pci_dev;
edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
if (edac_pci_dev->show)
return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
return -EIO;
}
static struct sysfs_ops edac_pci_sysfs_ops = {
.show = edac_pci_dev_show,
.store = edac_pci_dev_store
};
#define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = &_name, \
.show = _show, \
.store = _store, \
};
#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = _data, \
.show = _show, \
.store = _store, \
};
/* PCI Parity control files */
EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
edac_pci_int_store);
EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
edac_pci_int_store);
EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
/* Base Attributes of the memory ECC object */
static struct edac_pci_dev_attribute *edac_pci_attr[] = {
&edac_pci_attr_check_pci_parity,
&edac_pci_attr_panic_on_pci_parity,
&edac_pci_attr_pci_parity_count,
NULL,
};
/* No memory to release */
static void edac_pci_release(struct kobject *kobj)
{
debugf1("%s()\n", __func__);
complete(&edac_pci_kobj_complete);
}
static struct kobj_type ktype_edac_pci = {
.release = edac_pci_release,
.sysfs_ops = &edac_pci_sysfs_ops,
.default_attrs = (struct attribute **) edac_pci_attr,
};
/**
* edac_sysfs_pci_setup()
*
*/
static int edac_sysfs_pci_setup(void)
{
int err;
debugf1("%s()\n", __func__);
memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
edac_pci_kobj.parent = &edac_class.kset.kobj;
edac_pci_kobj.ktype = &ktype_edac_pci;
err = kobject_set_name(&edac_pci_kobj, "pci");
if (!err) {
/* Instanstiate the csrow object */
/* FIXME: maybe new sysdev_create_subdir() */
err = kobject_register(&edac_pci_kobj);
if (err)
debugf1("Failed to register '.../edac/pci'\n");
else
debugf1("Registered '.../edac/pci' kobject\n");
}
return err;
}
static void edac_sysfs_pci_teardown(void)
{
debugf0("%s()\n", __func__);
init_completion(&edac_pci_kobj_complete);
kobject_unregister(&edac_pci_kobj);
wait_for_completion(&edac_pci_kobj_complete);
}
static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
{
int where;
u16 status;
where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
pci_read_config_word(dev, where, &status);
/* If we get back 0xFFFF then we must suspect that the card has been
* pulled but the Linux PCI layer has not yet finished cleaning up.
* We don't want to report on such devices
*/
if (status == 0xFFFF) {
u32 sanity;
pci_read_config_dword(dev, 0, &sanity);
if (sanity == 0xFFFFFFFF)
return 0;
}
status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
PCI_STATUS_PARITY;
if (status)
/* reset only the bits we are interested in */
pci_write_config_word(dev, where, status);
return status;
}
typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
/* Clear any PCI parity errors logged by this device. */
static void edac_pci_dev_parity_clear(struct pci_dev *dev)
{
u8 header_type;
get_pci_parity_status(dev, 0);
/* read the device TYPE, looking for bridges */
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
get_pci_parity_status(dev, 1);
}
/*
* PCI Parity polling
*
*/
static void edac_pci_dev_parity_test(struct pci_dev *dev)
{
u16 status;
u8 header_type;
/* read the STATUS register on this device
*/
status = get_pci_parity_status(dev, 0);
debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
/* check the status reg for errors */
if (status) {
if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
edac_printk(KERN_CRIT, EDAC_PCI,
"Signaled System Error on %s\n",
pci_name(dev));
if (status & (PCI_STATUS_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI,
"Master Data Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
if (status & (PCI_STATUS_DETECTED_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI,
"Detected Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
}
/* read the device TYPE, looking for bridges */
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* On bridges, need to examine secondary status register */
status = get_pci_parity_status(dev, 1);
debugf2("PCI SEC_STATUS= 0x%04x %s\n",
status, dev->dev.bus_id );
/* check the secondary status reg for errors */
if (status) {
if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Signaled System Error on %s\n",
pci_name(dev));
if (status & (PCI_STATUS_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Master Data Parity Error on "
"%s\n", pci_name(dev));
atomic_inc(&pci_parity_count);
}
if (status & (PCI_STATUS_DETECTED_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Detected Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
}
}
}
/*
* pci_dev parity list iterator
* Scan the PCI device list for one iteration, looking for SERRORs
* Master Parity ERRORS or Parity ERRORs on primary or secondary devices
*/
static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
{
struct pci_dev *dev = NULL;
/* request for kernel access to the next PCI device, if any,
* and while we are looking at it have its reference count
* bumped until we are done with it
*/
while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
fn(dev);
}
}
static void do_pci_parity_check(void)
{
unsigned long flags;
int before_count;
debugf3("%s()\n", __func__);
if (!check_pci_parity)
return;
before_count = atomic_read(&pci_parity_count);
/* scan all PCI devices looking for a Parity Error on devices and
* bridges
*/
local_irq_save(flags);
edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
local_irq_restore(flags);
/* Only if operator has selected panic on PCI Error */
if (panic_on_pci_parity) {
/* If the count is different 'after' from 'before' */
if (before_count != atomic_read(&pci_parity_count))
panic("EDAC: PCI Parity Error");
}
}
static inline void clear_pci_parity_errors(void)
{
/* Clear any PCI bus parity errors that devices initially have logged
* in their registers.
*/
edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
}
#else /* CONFIG_PCI */
/* pre-process these away */
#define do_pci_parity_check()
#define clear_pci_parity_errors()
#define edac_sysfs_pci_teardown()
#define edac_sysfs_pci_setup() (0)
#endif /* CONFIG_PCI */
/* EDAC sysfs CSROW data structures and methods
*/
/* Set of more default csrow<id> attribute show/store functions */
static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", csrow->ue_count);
}
static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", csrow->ce_count);
}
static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
}
static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", mem_types[csrow->mtype]);
}
static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", dev_types[csrow->dtype]);
}
static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
}
/* show/store functions for DIMM Label attributes */
static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
char *data, int channel)
{
return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
csrow->channels[channel].label);
}
static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
const char *data,
size_t count,
int channel)
{
ssize_t max_size = 0;
max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
strncpy(csrow->channels[channel].label, data, max_size);
csrow->channels[channel].label[max_size] = '\0';
return max_size;
}
/* show function for dynamic chX_ce_count attribute */
static ssize_t channel_ce_count_show(struct csrow_info *csrow,
char *data,
int channel)
{
return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
}
/* csrow specific attribute structure */
struct csrowdev_attribute {
struct attribute attr;
ssize_t (*show)(struct csrow_info *,char *,int);
ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
int private;
};
#define to_csrow(k) container_of(k, struct csrow_info, kobj)
#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
/* Set of show/store higher level functions for default csrow attributes */
static ssize_t csrowdev_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct csrow_info *csrow = to_csrow(kobj);
struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
if (csrowdev_attr->show)
return csrowdev_attr->show(csrow,
buffer,
csrowdev_attr->private);
return -EIO;
}
static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct csrow_info *csrow = to_csrow(kobj);
struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
if (csrowdev_attr->store)
return csrowdev_attr->store(csrow,
buffer,
count,
csrowdev_attr->private);
return -EIO;
}
static struct sysfs_ops csrowfs_ops = {
.show = csrowdev_show,
.store = csrowdev_store
};
#define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
struct csrowdev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.private = _private, \
};
/* default cwrow<id>/attribute files */
CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
/* default attributes of the CSROW<id> object */
static struct csrowdev_attribute *default_csrow_attr[] = {
&attr_dev_type,
&attr_mem_type,
&attr_edac_mode,
&attr_size_mb,
&attr_ue_count,
&attr_ce_count,
NULL,
};
/* possible dynamic channel DIMM Label attribute files */
CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
0 );
CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
1 );
CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
2 );
CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
3 );
CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
4 );
CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
5 );
/* Total possible dynamic DIMM Label attribute file table */
static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
&attr_ch0_dimm_label,
&attr_ch1_dimm_label,
&attr_ch2_dimm_label,
&attr_ch3_dimm_label,
&attr_ch4_dimm_label,
&attr_ch5_dimm_label
};
/* possible dynamic channel ce_count attribute files */
CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
0 );
CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
1 );
CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
2 );
CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
3 );
CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
4 );
CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
5 );
/* Total possible dynamic ce_count attribute file table */
static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
&attr_ch0_ce_count,
&attr_ch1_ce_count,
&attr_ch2_ce_count,
&attr_ch3_ce_count,
&attr_ch4_ce_count,
&attr_ch5_ce_count
};
#define EDAC_NR_CHANNELS 6
/* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
static int edac_create_channel_files(struct kobject *kobj, int chan)
{
int err=-ENODEV;
if (chan >= EDAC_NR_CHANNELS)
return err;
/* create the DIMM label attribute file */
err = sysfs_create_file(kobj,
(struct attribute *) dynamic_csrow_dimm_attr[chan]);
if (!err) {
/* create the CE Count attribute file */
err = sysfs_create_file(kobj,
(struct attribute *) dynamic_csrow_ce_count_attr[chan]);
} else {
debugf1("%s() dimm labels and ce_count files created", __func__);
}
return err;
}
/* No memory to release for this kobj */
static void edac_csrow_instance_release(struct kobject *kobj)
{
struct csrow_info *cs;
cs = container_of(kobj, struct csrow_info, kobj);
complete(&cs->kobj_complete);
}
/* the kobj_type instance for a CSROW */
static struct kobj_type ktype_csrow = {
.release = edac_csrow_instance_release,
.sysfs_ops = &csrowfs_ops,
.default_attrs = (struct attribute **) default_csrow_attr,
};
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_object(
struct kobject *edac_mci_kobj,
struct csrow_info *csrow,
int index)
{
int err = 0;
int chan;
memset(&csrow->kobj, 0, sizeof(csrow->kobj));
/* generate ..../edac/mc/mc<id>/csrow<index> */
csrow->kobj.parent = edac_mci_kobj;
csrow->kobj.ktype = &ktype_csrow;
/* name this instance of csrow<id> */
err = kobject_set_name(&csrow->kobj,"csrow%d",index);
if (err)
goto error_exit;
/* Instanstiate the csrow object */
err = kobject_register(&csrow->kobj);
if (!err) {
/* Create the dyanmic attribute files on this csrow,
* namely, the DIMM labels and the channel ce_count
*/
for (chan = 0; chan < csrow->nr_channels; chan++) {
err = edac_create_channel_files(&csrow->kobj,chan);
if (err)
break;
}
}
error_exit:
return err;
}
/* default sysfs methods and data structures for the main MCI kobject */
static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
int row, chan;
mci->ue_noinfo_count = 0;
mci->ce_noinfo_count = 0;
mci->ue_count = 0;
mci->ce_count = 0;
for (row = 0; row < mci->nr_csrows; row++) {
struct csrow_info *ri = &mci->csrows[row];
ri->ue_count = 0;
ri->ce_count = 0;
for (chan = 0; chan < ri->nr_channels; chan++)
ri->channels[chan].ce_count = 0;
}
mci->start_time = jiffies;
return count;
}
/* default attribute files for the MCI object */
static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ue_count);
}
static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ce_count);
}
static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ce_noinfo_count);
}
static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ue_noinfo_count);
}
static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
}
static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%s\n", mci->ctl_name);
}
static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
{
int total_pages, csrow_idx;
for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
csrow_idx++) {
struct csrow_info *csrow = &mci->csrows[csrow_idx];
if (!csrow->nr_pages)
continue;
total_pages += csrow->nr_pages;
}
return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
}
struct mcidev_attribute {
struct attribute attr;
ssize_t (*show)(struct mem_ctl_info *,char *);
ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
};
#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
/* MCI show/store functions for top most object */
static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
if (mcidev_attr->show)
return mcidev_attr->show(mem_ctl_info, buffer);
return -EIO;
}
static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
if (mcidev_attr->store)
return mcidev_attr->store(mem_ctl_info, buffer, count);
return -EIO;
}
static struct sysfs_ops mci_ops = {
.show = mcidev_show,
.store = mcidev_store
};
#define MCIDEV_ATTR(_name,_mode,_show,_store) \
struct mcidev_attribute mci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
};
/* default Control file */
MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
/* default Attribute files */
MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
static struct mcidev_attribute *mci_attr[] = {
&mci_attr_reset_counters,
&mci_attr_mc_name,
&mci_attr_size_mb,
&mci_attr_seconds_since_reset,
&mci_attr_ue_noinfo_count,
&mci_attr_ce_noinfo_count,
&mci_attr_ue_count,
&mci_attr_ce_count,
NULL
};
/*
* Release of a MC controlling instance
*/
static void edac_mci_instance_release(struct kobject *kobj)
{
struct mem_ctl_info *mci;
mci = to_mci(kobj);
debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
complete(&mci->kobj_complete);
}
static struct kobj_type ktype_mci = {
.release = edac_mci_instance_release,
.sysfs_ops = &mci_ops,
.default_attrs = (struct attribute **) mci_attr,
};
#define EDAC_DEVICE_SYMLINK "device"
/*
* Create a new Memory Controller kobject instance,
* mc<id> under the 'mc' directory
*
* Return:
* 0 Success
* !0 Failure
*/
static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
{
int i;
int err;
struct csrow_info *csrow;
struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
/* set the name of the mc<id> object */
err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
if (err)
return err;
/* link to our parent the '..../edac/mc' object */
edac_mci_kobj->parent = &edac_memctrl_kobj;
edac_mci_kobj->ktype = &ktype_mci;
/* register the mc<id> kobject */
err = kobject_register(edac_mci_kobj);
if (err)
return err;
/* create a symlink for the device */
err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
EDAC_DEVICE_SYMLINK);
if (err)
goto fail0;
/* Make directories for each CSROW object
* under the mc<id> kobject
*/
for (i = 0; i < mci->nr_csrows; i++) {
csrow = &mci->csrows[i];
/* Only expose populated CSROWs */
if (csrow->nr_pages > 0) {
err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
if (err)
goto fail1;
}
}
return 0;
/* CSROW error: backout what has already been registered, */
fail1:
for ( i--; i >= 0; i--) {
if (csrow->nr_pages > 0) {
init_completion(&csrow->kobj_complete);
kobject_unregister(&mci->csrows[i].kobj);
wait_for_completion(&csrow->kobj_complete);
}
}
fail0:
init_completion(&mci->kobj_complete);
kobject_unregister(edac_mci_kobj);
wait_for_completion(&mci->kobj_complete);
return err;
}
/*
* remove a Memory Controller instance
*/
static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{
int i;
debugf0("%s()\n", __func__);
/* remove all csrow kobjects */
for (i = 0; i < mci->nr_csrows; i++) {
if (mci->csrows[i].nr_pages > 0) {
init_completion(&mci->csrows[i].kobj_complete);
kobject_unregister(&mci->csrows[i].kobj);
wait_for_completion(&mci->csrows[i].kobj_complete);
}
}
sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
init_completion(&mci->kobj_complete);
kobject_unregister(&mci->edac_mci_kobj);
wait_for_completion(&mci->kobj_complete);
}
/* END OF sysfs data and methods */
#ifdef CONFIG_EDAC_DEBUG
void edac_mc_dump_channel(struct channel_info *chan)
{
debugf4("\tchannel = %p\n", chan);
debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
debugf4("\tchannel->label = '%s'\n", chan->label);
debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
void edac_mc_dump_csrow(struct csrow_info *csrow)
{
debugf4("\tcsrow = %p\n", csrow);
debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
debugf4("\tcsrow->first_page = 0x%lx\n",
csrow->first_page);
debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
debugf4("\tcsrow->nr_channels = %d\n",
csrow->nr_channels);
debugf4("\tcsrow->channels = %p\n", csrow->channels);
debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
debugf3("\tmci = %p\n", mci);
debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
debugf4("\tmci->edac_check = %p\n", mci->edac_check);
debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
mci->nr_csrows, mci->csrows);
debugf3("\tdev = %p\n", mci->dev);
debugf3("\tmod_name:ctl_name = %s:%s\n",
mci->mod_name, mci->ctl_name);
debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
#endif /* CONFIG_EDAC_DEBUG */
/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
* Adjust 'ptr' so that its alignment is at least as stringent as what the
* compiler would provide for X and return the aligned result.
*
* If 'size' is a constant, the compiler will optimize this whole function
* down to either a no-op or the addition of a constant to the value of 'ptr'.
*/
static inline char * align_ptr(void *ptr, unsigned size)
{
unsigned align, r;
/* Here we assume that the alignment of a "long long" is the most
* stringent alignment that the compiler will ever provide by default.
* As far as I know, this is a reasonable assumption.
*/
if (size > sizeof(long))
align = sizeof(long long);
else if (size > sizeof(int))
align = sizeof(long);
else if (size > sizeof(short))
align = sizeof(int);
else if (size > sizeof(char))
align = sizeof(short);
else
return (char *) ptr;
r = size % align;
if (r == 0)
return (char *) ptr;
return (char *) (((unsigned long) ptr) + align - r);
}
/**
* edac_mc_alloc: Allocate a struct mem_ctl_info structure
* @size_pvt: size of private storage needed
* @nr_csrows: Number of CWROWS needed for this MC
* @nr_chans: Number of channels for the MC
*
* Everything is kmalloc'ed as one big chunk - more efficient.
* Only can be used if all structures have the same lifetime - otherwise
* you have to allocate and initialize your own structures.
*
* Use edac_mc_free() to free mc structures allocated by this function.
*
* Returns:
* NULL allocation failed
* struct mem_ctl_info pointer
*/
struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
unsigned nr_chans)
{
struct mem_ctl_info *mci;
struct csrow_info *csi, *csrow;
struct channel_info *chi, *chp, *chan;
void *pvt;
unsigned size;
int row, chn;
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = (struct mem_ctl_info *) 0;
csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
chi = (struct channel_info *)
align_ptr(&csi[nr_csrows], sizeof(*chi));
pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
size = ((unsigned long) pvt) + sz_pvt;
if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
return NULL;
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
memset(mci, 0, size); /* clear all fields */
mci->csrows = csi;
mci->pvt_info = pvt;
mci->nr_csrows = nr_csrows;
for (row = 0; row < nr_csrows; row++) {
csrow = &csi[row];
csrow->csrow_idx = row;
csrow->mci = mci;
csrow->nr_channels = nr_chans;
chp = &chi[row * nr_chans];
csrow->channels = chp;
for (chn = 0; chn < nr_chans; chn++) {
chan = &chp[chn];
chan->chan_idx = chn;
chan->csrow = csrow;
}
}
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);
/**
* edac_mc_free: Free a previously allocated 'mci' structure
* @mci: pointer to a struct mem_ctl_info structure
*/
void edac_mc_free(struct mem_ctl_info *mci)
{
kfree(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);
static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
struct mem_ctl_info *mci;
struct list_head *item;
debugf3("%s()\n", __func__);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->dev == dev)
return mci;
}
return NULL;
}
/* Return 0 on success, 1 on failure.
* Before calling this function, caller must
* assign a unique value to mci->mc_idx.
*/
static int add_mc_to_global_list (struct mem_ctl_info *mci)
{
struct list_head *item, *insert_before;
struct mem_ctl_info *p;
insert_before = &mc_devices;
if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
goto fail0;
list_for_each(item, &mc_devices) {
p = list_entry(item, struct mem_ctl_info, link);
if (p->mc_idx >= mci->mc_idx) {
if (unlikely(p->mc_idx == mci->mc_idx))
goto fail1;
insert_before = item;
break;
}
}
list_add_tail_rcu(&mci->link, insert_before);
return 0;
fail0:
edac_printk(KERN_WARNING, EDAC_MC,
"%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
return 1;
fail1:
edac_printk(KERN_WARNING, EDAC_MC,
"bug in low-level driver: attempt to assign\n"
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
return 1;
}
static void complete_mc_list_del(struct rcu_head *head)
{
struct mem_ctl_info *mci;
mci = container_of(head, struct mem_ctl_info, rcu);
INIT_LIST_HEAD(&mci->link);
complete(&mci->complete);
}
static void del_mc_from_global_list(struct mem_ctl_info *mci)
{
list_del_rcu(&mci->link);
init_completion(&mci->complete);
call_rcu(&mci->rcu, complete_mc_list_del);
wait_for_completion(&mci->complete);
}
/**
* edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
* create sysfs entries associated with mci structure
* @mci: pointer to the mci structure to be added to the list
* @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
*
* Return:
* 0 Success
* !0 Failure
*/
/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
{
debugf0("%s()\n", __func__);
mci->mc_idx = mc_idx;
#ifdef CONFIG_EDAC_DEBUG
if (edac_debug_level >= 3)
edac_mc_dump_mci(mci);
if (edac_debug_level >= 4) {
int i;
for (i = 0; i < mci->nr_csrows; i++) {
int j;
edac_mc_dump_csrow(&mci->csrows[i]);
for (j = 0; j < mci->csrows[i].nr_channels; j++)
edac_mc_dump_channel(
&mci->csrows[i].channels[j]);
}
}
#endif
down(&mem_ctls_mutex);
if (add_mc_to_global_list(mci))
goto fail0;
/* set load time so that error rate can be tracked */
mci->start_time = jiffies;
if (edac_create_sysfs_mci_device(mci)) {
edac_mc_printk(mci, KERN_WARNING,
"failed to create sysfs device\n");
goto fail1;
}
/* Report action taken */
edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
mci->mod_name, mci->ctl_name, dev_name(mci->dev));
up(&mem_ctls_mutex);
return 0;
fail1:
del_mc_from_global_list(mci);
fail0:
up(&mem_ctls_mutex);
return 1;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc);
/**
* edac_mc_del_mc: Remove sysfs entries for specified mci structure and
* remove mci structure from global list
* @pdev: Pointer to 'struct device' representing mci structure to remove.
*
* Return pointer to removed mci structure, or NULL if device not found.
*/
struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
{
struct mem_ctl_info *mci;
debugf0("MC: %s()\n", __func__);
down(&mem_ctls_mutex);
if ((mci = find_mci_by_dev(dev)) == NULL) {
up(&mem_ctls_mutex);
return NULL;
}
edac_remove_sysfs_mci_device(mci);
del_mc_from_global_list(mci);
up(&mem_ctls_mutex);
edac_printk(KERN_INFO, EDAC_MC,
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
mci->mod_name, mci->ctl_name, dev_name(mci->dev));
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
{
struct page *pg;
void *virt_addr;
unsigned long flags = 0;
debugf3("%s()\n", __func__);
/* ECC error page was not in our memory. Ignore it. */
if(!pfn_valid(page))
return;
/* Find the actual page structure then map it and fix */
pg = pfn_to_page(page);
if (PageHighMem(pg))
local_irq_save(flags);
virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
/* Perform architecture specific atomic scrub operation */
atomic_scrub(virt_addr + offset, size);
/* Unmap and complete */
kunmap_atomic(virt_addr, KM_BOUNCE_READ);
if (PageHighMem(pg))
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
struct csrow_info *csrows = mci->csrows;
int row, i;
debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
row = -1;
for (i = 0; i < mci->nr_csrows; i++) {
struct csrow_info *csrow = &csrows[i];
if (csrow->nr_pages == 0)
continue;
debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
"mask(0x%lx)\n", mci->mc_idx, __func__,
csrow->first_page, page, csrow->last_page,
csrow->page_mask);
if ((page >= csrow->first_page) &&
(page <= csrow->last_page) &&
((page & csrow->page_mask) ==
(csrow->first_page & csrow->page_mask))) {
row = i;
break;
}
}
if (row == -1)
edac_mc_printk(mci, KERN_ERR,
"could not look up page error address %lx\n",
(unsigned long) page);
return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
/* FIXME - setable log (warning/emerg) levels */
/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
void edac_mc_handle_ce(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
unsigned long syndrome, int row, int channel, const char *msg)
{
unsigned long remapped_page;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (channel >= mci->csrows[row].nr_channels || channel < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel out of range "
"(%d >= %d)\n", channel,
mci->csrows[row].nr_channels);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (log_ce)
/* FIXME - put in DIMM location */
edac_mc_printk(mci, KERN_WARNING,
"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
"0x%lx, row %d, channel %d, label \"%s\": %s\n",
page_frame_number, offset_in_page,
mci->csrows[row].grain, syndrome, row, channel,
mci->csrows[row].channels[channel].label, msg);
mci->ce_count++;
mci->csrows[row].ce_count++;
mci->csrows[row].channels[channel].ce_count++;
if (mci->scrub_mode & SCRUB_SW_SRC) {
/*
* Some MC's can remap memory so that it is still available
* at a different address when PCI devices map into memory.
* MC's that can't do this lose the memory where PCI devices
* are mapped. This mapping is MC dependant and so we call
* back into the MC driver for it to map the MC page to
* a physical (CPU) page which can then be mapped to a virtual
* page - which can then be scrubbed.
*/
remapped_page = mci->ctl_page_to_phys ?
mci->ctl_page_to_phys(mci, page_frame_number) :
page_frame_number;
edac_mc_scrub_block(remapped_page, offset_in_page,
mci->csrows[row].grain);
}
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (log_ce)
edac_mc_printk(mci, KERN_WARNING,
"CE - no information available: %s\n", msg);
mci->ce_noinfo_count++;
mci->ce_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
void edac_mc_handle_ue(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
int row, const char *msg)
{
int len = EDAC_MC_LABEL_LEN * 4;
char labels[len + 1];
char *pos = labels;
int chan;
int chars;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
chars = snprintf(pos, len + 1, "%s",
mci->csrows[row].channels[0].label);
len -= chars;
pos += chars;
for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
chan++) {
chars = snprintf(pos, len + 1, ":%s",
mci->csrows[row].channels[chan].label);
len -= chars;
pos += chars;
}
if (log_ue)
edac_mc_printk(mci, KERN_EMERG,
"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
"labels \"%s\": %s\n", page_frame_number,
offset_in_page, mci->csrows[row].grain, row, labels,
msg);
if (panic_on_ue)
panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
"row %d, labels \"%s\": %s\n", mci->mc_idx,
page_frame_number, offset_in_page,
mci->csrows[row].grain, row, labels, msg);
mci->ue_count++;
mci->csrows[row].ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (panic_on_ue)
panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
if (log_ue)
edac_mc_printk(mci, KERN_WARNING,
"UE - no information available: %s\n", msg);
mci->ue_noinfo_count++;
mci->ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
/*
* Iterate over all MC instances and check for ECC, et al, errors
*/
static inline void check_mc_devices(void)
{
struct list_head *item;
struct mem_ctl_info *mci;
debugf3("%s()\n", __func__);
down(&mem_ctls_mutex);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->edac_check != NULL)
mci->edac_check(mci);
}
up(&mem_ctls_mutex);
}
/*
* Check MC status every poll_msec.
* Check PCI status every poll_msec as well.
*
* This where the work gets done for edac.
*
* SMP safe, doesn't use NMI, and auto-rate-limits.
*/
static void do_edac_check(void)
{
debugf3("%s()\n", __func__);
check_mc_devices();
do_pci_parity_check();
}
static int edac_kernel_thread(void *arg)
{
while (!kthread_should_stop()) {
do_edac_check();
/* goto sleep for the interval */
schedule_timeout_interruptible((HZ * poll_msec) / 1000);
try_to_freeze();
}
return 0;
}
/*
* edac_mc_init
* module initialization entry point
*/
static int __init edac_mc_init(void)
{
edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
/*
* Harvest and clear any boot/initialization PCI parity errors
*
* FIXME: This only clears errors logged by devices present at time of
* module initialization. We should also do an initial clear
* of each newly hotplugged device.
*/
clear_pci_parity_errors();
/* Create the MC sysfs entries */
if (edac_sysfs_memctrl_setup()) {
edac_printk(KERN_ERR, EDAC_MC,
"Error initializing sysfs code\n");
return -ENODEV;
}
/* Create the PCI parity sysfs entries */
if (edac_sysfs_pci_setup()) {
edac_sysfs_memctrl_teardown();
edac_printk(KERN_ERR, EDAC_MC,
"EDAC PCI: Error initializing sysfs code\n");
return -ENODEV;
}
/* create our kernel thread */
edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
if (IS_ERR(edac_thread)) {
/* remove the sysfs entries */
edac_sysfs_memctrl_teardown();
edac_sysfs_pci_teardown();
return PTR_ERR(edac_thread);
}
return 0;
}
/*
* edac_mc_exit()
* module exit/termination functioni
*/
static void __exit edac_mc_exit(void)
{
debugf0("%s()\n", __func__);
kthread_stop(edac_thread);
/* tear down the sysfs device */
edac_sysfs_memctrl_teardown();
edac_sysfs_pci_teardown();
}
module_init(edac_mc_init);
module_exit(edac_mc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
"Based on work by Dan Hollis et al");
MODULE_DESCRIPTION("Core library routines for MC reporting");
module_param(panic_on_ue, int, 0644);
MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
#ifdef CONFIG_PCI
module_param(check_pci_parity, int, 0644);
MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
module_param(panic_on_pci_parity, int, 0644);
MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
#endif
module_param(log_ue, int, 0644);
MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
module_param(log_ce, int, 0644);
MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
module_param(poll_msec, int, 0644);
MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
#ifdef CONFIG_EDAC_DEBUG
module_param(edac_debug_level, int, 0644);
MODULE_PARM_DESC(edac_debug_level, "Debug level");
#endif