kernel-fxtec-pro1x/arch/sparc64/kernel/pci_sun4v.c
David S. Miller e3999574b4 [SPARC64]: Generic sun4v_build_irq().
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:12:40 -08:00

1043 lines
24 KiB
C

/* pci_sun4v.c: SUN4V specific PCI controller support.
*
* Copyright (C) 2006 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <asm/pbm.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/upa.h>
#include <asm/pstate.h>
#include <asm/oplib.h>
#include <asm/hypervisor.h>
#include "pci_impl.h"
#include "iommu_common.h"
#include "pci_sun4v.h"
#define PGLIST_NENTS 2048
struct sun4v_pglist {
u64 pglist[PGLIST_NENTS];
};
static DEFINE_PER_CPU(struct sun4v_pglist, iommu_pglists);
static long pci_arena_alloc(struct pci_iommu_arena *arena, unsigned long npages)
{
unsigned long n, i, start, end, limit;
int pass;
limit = arena->limit;
start = arena->hint;
pass = 0;
again:
n = find_next_zero_bit(arena->map, limit, start);
end = n + npages;
if (unlikely(end >= limit)) {
if (likely(pass < 1)) {
limit = start;
start = 0;
pass++;
goto again;
} else {
/* Scanned the whole thing, give up. */
return -1;
}
}
for (i = n; i < end; i++) {
if (test_bit(i, arena->map)) {
start = i + 1;
goto again;
}
}
for (i = n; i < end; i++)
__set_bit(i, arena->map);
arena->hint = end;
return n;
}
static void pci_arena_free(struct pci_iommu_arena *arena, unsigned long base, unsigned long npages)
{
unsigned long i;
for (i = base; i < (base + npages); i++)
__clear_bit(i, arena->map);
}
static void *pci_4v_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long devhandle, flags, order, first_page, npages, n;
void *ret;
long entry;
u64 *pglist;
int cpu;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= MAX_ORDER)
return NULL;
npages = size >> IO_PAGE_SHIFT;
if (npages > PGLIST_NENTS)
return NULL;
first_page = __get_free_pages(GFP_ATOMIC, order);
if (first_page == 0UL)
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
pcp = pdev->sysdata;
devhandle = pcp->pbm->devhandle;
iommu = pcp->pbm->iommu;
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L)) {
free_pages(first_page, order);
return NULL;
}
*dma_addrp = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = (void *) first_page;
first_page = __pa(first_page);
cpu = get_cpu();
pglist = &__get_cpu_var(iommu_pglists).pglist[0];
for (n = 0; n < npages; n++)
pglist[n] = first_page + (n * PAGE_SIZE);
do {
unsigned long num;
num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
npages,
(HV_PCI_MAP_ATTR_READ |
HV_PCI_MAP_ATTR_WRITE),
__pa(pglist));
entry += num;
npages -= num;
pglist += num;
} while (npages != 0);
put_cpu();
return ret;
}
static void pci_4v_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, order, npages, entry, devhandle;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t pci_4v_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr, devhandle;
u32 bus_addr, ret;
unsigned long prot;
long entry;
u64 *pglist;
int cpu;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
if (unlikely(direction == PCI_DMA_NONE))
goto bad;
oaddr = (unsigned long)ptr;
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
if (unlikely(npages > PGLIST_NENTS))
goto bad;
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L))
goto bad;
bus_addr = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
prot = HV_PCI_MAP_ATTR_READ;
if (direction != PCI_DMA_TODEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
cpu = get_cpu();
pglist = &__get_cpu_var(iommu_pglists).pglist[0];
for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE)
pglist[i] = base_paddr;
do {
unsigned long num;
num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
npages, prot,
__pa(pglist));
entry += num;
npages -= num;
pglist += num;
} while (npages != 0);
put_cpu();
return ret;
bad:
if (printk_ratelimit())
WARN_ON(1);
return PCI_DMA_ERROR_CODE;
}
static void pci_4v_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages, devhandle;
long entry;
if (unlikely(direction == PCI_DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline void fill_sg(long entry, unsigned long devhandle,
struct scatterlist *sg,
int nused, int nelems, unsigned long prot)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg + nelems;
int i, cpu, pglist_ent;
u64 *pglist;
cpu = get_cpu();
pglist = &__get_cpu_var(iommu_pglists).pglist[0];
pglist_ent = 0;
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg++;
}
pteval = (pteval & IOPTE_PAGE);
while (len > 0) {
pglist[pglist_ent++] = pteval;
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg++;
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg < sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg++;
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg++;
}
BUG_ON(pglist_ent == 0);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
pglist_ent);
entry += num;
pglist_ent -= num;
} while (pglist_ent != 0);
put_cpu();
}
static int pci_4v_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages, prot, devhandle;
u32 dma_base;
struct scatterlist *sgtmp;
long entry;
int used;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
sglist->dma_address =
pci_4v_map_single(pdev,
(page_address(sglist->page) + sglist->offset),
sglist->length, direction);
if (unlikely(sglist->dma_address == PCI_DMA_ERROR_CODE))
return 0;
sglist->dma_length = sglist->length;
return 1;
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
if (unlikely(direction == PCI_DMA_NONE))
goto bad;
/* Step 1: Prepare scatter list. */
npages = prepare_sg(sglist, nelems);
if (unlikely(npages > PGLIST_NENTS))
goto bad;
/* Step 2: Allocate a cluster and context, if necessary. */
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L))
goto bad;
dma_base = iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT);
/* Step 3: Normalize DMA addresses. */
used = nelems;
sgtmp = sglist;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp++;
used--;
}
used = nelems - used;
/* Step 4: Create the mappings. */
prot = HV_PCI_MAP_ATTR_READ;
if (direction != PCI_DMA_TODEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
fill_sg(entry, devhandle, sglist, used, nelems, prot);
return used;
bad:
if (printk_ratelimit())
WARN_ON(1);
return 0;
}
static void pci_4v_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, i, npages, devhandle;
long entry;
u32 bus_addr;
if (unlikely(direction == PCI_DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
bus_addr = sglist->dma_address & IO_PAGE_MASK;
for (i = 1; i < nelems; i++)
if (sglist[i].dma_length == 0)
break;
i--;
npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) -
bus_addr) >> IO_PAGE_SHIFT;
entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void pci_4v_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
/* Nothing to do... */
}
static void pci_4v_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
/* Nothing to do... */
}
struct pci_iommu_ops pci_sun4v_iommu_ops = {
.alloc_consistent = pci_4v_alloc_consistent,
.free_consistent = pci_4v_free_consistent,
.map_single = pci_4v_map_single,
.unmap_single = pci_4v_unmap_single,
.map_sg = pci_4v_map_sg,
.unmap_sg = pci_4v_unmap_sg,
.dma_sync_single_for_cpu = pci_4v_dma_sync_single_for_cpu,
.dma_sync_sg_for_cpu = pci_4v_dma_sync_sg_for_cpu,
};
/* SUN4V PCI configuration space accessors. */
static inline int pci_sun4v_out_of_range(struct pci_pbm_info *pbm, unsigned int bus)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return 0;
}
static int pci_sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (pci_sun4v_out_of_range(pbm, bus)) {
ret = ~0UL;
} else {
ret = pci_sun4v_config_get(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size);
#if 0
printk("read_pci_cfg: devh[%x] device[%08x] where[%x] sz[%d] "
"== [%016lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, ret);
#endif
}
switch (size) {
case 1:
*value = ret & 0xff;
break;
case 2:
*value = ret & 0xffff;
break;
case 4:
*value = ret & 0xffffffff;
break;
};
return PCIBIOS_SUCCESSFUL;
}
static int pci_sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (pci_sun4v_out_of_range(pbm, bus)) {
/* Do nothing. */
} else {
ret = pci_sun4v_config_put(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value);
#if 0
printk("write_pci_cfg: devh[%x] device[%08x] where[%x] sz[%d] "
"val[%08x] == [%016lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value, ret);
#endif
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pci_sun4v_ops = {
.read = pci_sun4v_read_pci_cfg,
.write = pci_sun4v_write_pci_cfg,
};
static void pbm_scan_bus(struct pci_controller_info *p,
struct pci_pbm_info *pbm)
{
struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL);
if (!cookie) {
prom_printf("%s: Critical allocation failure.\n", pbm->name);
prom_halt();
}
/* All we care about is the PBM. */
memset(cookie, 0, sizeof(*cookie));
cookie->pbm = pbm;
pbm->pci_bus = pci_scan_bus(pbm->pci_first_busno,
p->pci_ops,
pbm);
#if 0
pci_fixup_host_bridge_self(pbm->pci_bus);
pbm->pci_bus->self->sysdata = cookie;
#endif
pci_fill_in_pbm_cookies(pbm->pci_bus, pbm,
prom_getchild(pbm->prom_node));
pci_record_assignments(pbm, pbm->pci_bus);
pci_assign_unassigned(pbm, pbm->pci_bus);
pci_fixup_irq(pbm, pbm->pci_bus);
pci_determine_66mhz_disposition(pbm, pbm->pci_bus);
pci_setup_busmastering(pbm, pbm->pci_bus);
}
static void pci_sun4v_scan_bus(struct pci_controller_info *p)
{
if (p->pbm_A.prom_node) {
p->pbm_A.is_66mhz_capable =
prom_getbool(p->pbm_A.prom_node, "66mhz-capable");
pbm_scan_bus(p, &p->pbm_A);
}
if (p->pbm_B.prom_node) {
p->pbm_B.is_66mhz_capable =
prom_getbool(p->pbm_B.prom_node, "66mhz-capable");
pbm_scan_bus(p, &p->pbm_B);
}
/* XXX register error interrupt handlers XXX */
}
static unsigned int pci_sun4v_irq_build(struct pci_pbm_info *pbm,
struct pci_dev *pdev,
unsigned int devino)
{
u32 devhandle = pbm->devhandle;
int pil;
pil = 4;
if (pdev) {
switch ((pdev->class >> 16) & 0xff) {
case PCI_BASE_CLASS_STORAGE:
pil = 4;
break;
case PCI_BASE_CLASS_NETWORK:
pil = 6;
break;
case PCI_BASE_CLASS_DISPLAY:
pil = 9;
break;
case PCI_BASE_CLASS_MULTIMEDIA:
case PCI_BASE_CLASS_MEMORY:
case PCI_BASE_CLASS_BRIDGE:
case PCI_BASE_CLASS_SERIAL:
pil = 10;
break;
default:
pil = 4;
break;
};
}
BUG_ON(PIL_RESERVED(pil));
return sun4v_build_irq(devhandle, devino, pil, IBF_PCI);
}
static void pci_sun4v_base_address_update(struct pci_dev *pdev, int resource)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm = pcp->pbm;
struct resource *res, *root;
u32 reg;
int where, size, is_64bit;
res = &pdev->resource[resource];
if (resource < 6) {
where = PCI_BASE_ADDRESS_0 + (resource * 4);
} else if (resource == PCI_ROM_RESOURCE) {
where = pdev->rom_base_reg;
} else {
/* Somebody might have asked allocation of a non-standard resource */
return;
}
/* XXX 64-bit MEM handling is not %100 correct... XXX */
is_64bit = 0;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else {
root = &pbm->mem_space;
if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
== PCI_BASE_ADDRESS_MEM_TYPE_64)
is_64bit = 1;
}
size = res->end - res->start;
pci_read_config_dword(pdev, where, &reg);
reg = ((reg & size) |
(((u32)(res->start - root->start)) & ~size));
if (resource == PCI_ROM_RESOURCE) {
reg |= PCI_ROM_ADDRESS_ENABLE;
res->flags |= IORESOURCE_ROM_ENABLE;
}
pci_write_config_dword(pdev, where, reg);
/* This knows that the upper 32-bits of the address
* must be zero. Our PCI common layer enforces this.
*/
if (is_64bit)
pci_write_config_dword(pdev, where + 4, 0);
}
static void pci_sun4v_resource_adjust(struct pci_dev *pdev,
struct resource *res,
struct resource *root)
{
res->start += root->start;
res->end += root->start;
}
/* Use ranges property to determine where PCI MEM, I/O, and Config
* space are for this PCI bus module.
*/
static void pci_sun4v_determine_mem_io_space(struct pci_pbm_info *pbm)
{
int i, saw_mem, saw_io;
saw_mem = saw_io = 0;
for (i = 0; i < pbm->num_pbm_ranges; i++) {
struct linux_prom_pci_ranges *pr = &pbm->pbm_ranges[i];
unsigned long a;
int type;
type = (pr->child_phys_hi >> 24) & 0x3;
a = (((unsigned long)pr->parent_phys_hi << 32UL) |
((unsigned long)pr->parent_phys_lo << 0UL));
switch (type) {
case 1:
/* 16-bit IO space, 16MB */
pbm->io_space.start = a;
pbm->io_space.end = a + ((16UL*1024UL*1024UL) - 1UL);
pbm->io_space.flags = IORESOURCE_IO;
saw_io = 1;
break;
case 2:
/* 32-bit MEM space, 2GB */
pbm->mem_space.start = a;
pbm->mem_space.end = a + (0x80000000UL - 1UL);
pbm->mem_space.flags = IORESOURCE_MEM;
saw_mem = 1;
break;
case 3:
/* XXX 64-bit MEM handling XXX */
default:
break;
};
}
if (!saw_io || !saw_mem) {
prom_printf("%s: Fatal error, missing %s PBM range.\n",
pbm->name,
(!saw_io ? "IO" : "MEM"));
prom_halt();
}
printk("%s: PCI IO[%lx] MEM[%lx]\n",
pbm->name,
pbm->io_space.start,
pbm->mem_space.start);
}
static void pbm_register_toplevel_resources(struct pci_controller_info *p,
struct pci_pbm_info *pbm)
{
pbm->io_space.name = pbm->mem_space.name = pbm->name;
request_resource(&ioport_resource, &pbm->io_space);
request_resource(&iomem_resource, &pbm->mem_space);
pci_register_legacy_regions(&pbm->io_space,
&pbm->mem_space);
}
static void probe_existing_entries(struct pci_pbm_info *pbm,
struct pci_iommu *iommu)
{
struct pci_iommu_arena *arena = &iommu->arena;
unsigned long i, devhandle;
devhandle = pbm->devhandle;
for (i = 0; i < arena->limit; i++) {
unsigned long ret, io_attrs, ra;
ret = pci_sun4v_iommu_getmap(devhandle,
HV_PCI_TSBID(0, i),
&io_attrs, &ra);
if (ret == HV_EOK)
__set_bit(i, arena->map);
}
}
static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
{
struct pci_iommu *iommu = pbm->iommu;
unsigned long num_tsb_entries, sz;
u32 vdma[2], dma_mask, dma_offset;
int err, tsbsize;
err = prom_getproperty(pbm->prom_node, "virtual-dma",
(char *)&vdma[0], sizeof(vdma));
if (err == 0 || err == -1) {
/* No property, use default values. */
vdma[0] = 0x80000000;
vdma[1] = 0x80000000;
}
dma_mask = vdma[0];
switch (vdma[1]) {
case 0x20000000:
dma_mask |= 0x1fffffff;
tsbsize = 64;
break;
case 0x40000000:
dma_mask |= 0x3fffffff;
tsbsize = 128;
break;
case 0x80000000:
dma_mask |= 0x7fffffff;
tsbsize = 128;
break;
default:
prom_printf("PCI-SUN4V: strange virtual-dma size.\n");
prom_halt();
};
num_tsb_entries = tsbsize / sizeof(iopte_t);
dma_offset = vdma[0];
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->page_table_map_base = dma_offset;
iommu->dma_addr_mask = dma_mask;
/* Allocate and initialize the free area map. */
sz = num_tsb_entries / 8;
sz = (sz + 7UL) & ~7UL;
iommu->arena.map = kmalloc(sz, GFP_KERNEL);
if (!iommu->arena.map) {
prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
prom_halt();
}
memset(iommu->arena.map, 0, sz);
iommu->arena.limit = num_tsb_entries;
probe_existing_entries(pbm, iommu);
}
/* Don't get this from the root nexus, get it from the "pci@0" node below. */
static void pci_sun4v_get_bus_range(struct pci_pbm_info *pbm)
{
unsigned int busrange[2];
int prom_node = pbm->prom_node;
int err;
prom_node = prom_getchild(prom_node);
if (prom_node == 0) {
prom_printf("%s: Fatal error, no child OBP node.\n", pbm->name);
prom_halt();
}
err = prom_getproperty(prom_node, "bus-range",
(char *)&busrange[0],
sizeof(busrange));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no bus-range.\n", pbm->name);
prom_halt();
}
pbm->pci_first_busno = busrange[0];
pbm->pci_last_busno = busrange[1];
}
static void pci_sun4v_pbm_init(struct pci_controller_info *p, int prom_node, unsigned int devhandle)
{
struct pci_pbm_info *pbm;
int err, i;
if (devhandle & 0x40)
pbm = &p->pbm_B;
else
pbm = &p->pbm_A;
pbm->parent = p;
pbm->prom_node = prom_node;
pbm->pci_first_slot = 1;
pbm->devhandle = devhandle;
sprintf(pbm->name, "SUN4V-PCI%d PBM%c",
p->index, (pbm == &p->pbm_A ? 'A' : 'B'));
printk("%s: devhandle[%x]\n", pbm->name, pbm->devhandle);
prom_getstring(prom_node, "name",
pbm->prom_name, sizeof(pbm->prom_name));
err = prom_getproperty(prom_node, "ranges",
(char *) pbm->pbm_ranges,
sizeof(pbm->pbm_ranges));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no ranges property.\n",
pbm->name);
prom_halt();
}
pbm->num_pbm_ranges =
(err / sizeof(struct linux_prom_pci_ranges));
/* Mask out the top 8 bits of the ranges, leaving the real
* physical address.
*/
for (i = 0; i < pbm->num_pbm_ranges; i++)
pbm->pbm_ranges[i].parent_phys_hi &= 0x0fffffff;
pci_sun4v_determine_mem_io_space(pbm);
pbm_register_toplevel_resources(p, pbm);
err = prom_getproperty(prom_node, "interrupt-map",
(char *)pbm->pbm_intmap,
sizeof(pbm->pbm_intmap));
if (err != -1) {
pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
err = prom_getproperty(prom_node, "interrupt-map-mask",
(char *)&pbm->pbm_intmask,
sizeof(pbm->pbm_intmask));
if (err == -1) {
prom_printf("%s: Fatal error, no "
"interrupt-map-mask.\n", pbm->name);
prom_halt();
}
} else {
pbm->num_pbm_intmap = 0;
memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
}
pci_sun4v_get_bus_range(pbm);
pci_sun4v_iommu_init(pbm);
}
void sun4v_pci_init(int node, char *model_name)
{
struct pci_controller_info *p;
struct pci_iommu *iommu;
struct linux_prom64_registers regs;
unsigned int devhandle;
prom_getproperty(node, "reg", (char *)&regs, sizeof(regs));
devhandle = (regs.phys_addr >> 32UL) & 0x0fffffff;;
for (p = pci_controller_root; p; p = p->next) {
struct pci_pbm_info *pbm;
if (p->pbm_A.prom_node && p->pbm_B.prom_node)
continue;
pbm = (p->pbm_A.prom_node ?
&p->pbm_A :
&p->pbm_B);
if (pbm->devhandle == (devhandle ^ 0x40)) {
pci_sun4v_pbm_init(p, node, devhandle);
return;
}
}
p = kmalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
if (!p) {
prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
prom_halt();
}
memset(p, 0, sizeof(*p));
iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC);
if (!iommu) {
prom_printf("SCHIZO: Fatal memory allocation error.\n");
prom_halt();
}
memset(iommu, 0, sizeof(*iommu));
p->pbm_A.iommu = iommu;
iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC);
if (!iommu) {
prom_printf("SCHIZO: Fatal memory allocation error.\n");
prom_halt();
}
memset(iommu, 0, sizeof(*iommu));
p->pbm_B.iommu = iommu;
p->next = pci_controller_root;
pci_controller_root = p;
p->index = pci_num_controllers++;
p->pbms_same_domain = 0;
p->scan_bus = pci_sun4v_scan_bus;
p->irq_build = pci_sun4v_irq_build;
p->base_address_update = pci_sun4v_base_address_update;
p->resource_adjust = pci_sun4v_resource_adjust;
p->pci_ops = &pci_sun4v_ops;
/* Like PSYCHO and SCHIZO we have a 2GB aligned area
* for memory space.
*/
pci_memspace_mask = 0x7fffffffUL;
pci_sun4v_pbm_init(p, node, devhandle);
}