kernel-fxtec-pro1x/drivers/hwtracing/coresight/coresight-etm3x.c
Mathieu Poirier 01081f5ab9 coresight: moving to new "hwtracing" directory
Keeping drivers related to HW tracing on ARM, i.e coresight,
under "drivers/coresight" doesn't make sense when other
architectures start rolling out technologies of the same
nature.

As such creating a new "drivers/hwtracing" directory where all
drivers of the same kind can reside, reducing namespace
pollution under "drivers/".

Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-04-03 16:17:04 +02:00

1932 lines
47 KiB
C

/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include "coresight-etm.h"
static int boot_enable;
module_param_named(boot_enable, boot_enable, int, S_IRUGO);
/* The number of ETM/PTM currently registered */
static int etm_count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];
static inline void etm_writel(struct etm_drvdata *drvdata,
u32 val, u32 off)
{
if (drvdata->use_cp14) {
if (etm_writel_cp14(off, val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
writel_relaxed(val, drvdata->base + off);
}
}
static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
{
u32 val;
if (drvdata->use_cp14) {
if (etm_readl_cp14(off, &val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
val = readl_relaxed(drvdata->base + off);
}
return val;
}
/*
* Memory mapped writes to clear os lock are not supported on some processors
* and OS lock must be unlocked before any memory mapped access on such
* processors, otherwise memory mapped reads/writes will be invalid.
*/
static void etm_os_unlock(void *info)
{
struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
/* Writing any value to ETMOSLAR unlocks the trace registers */
etm_writel(drvdata, 0x0, ETMOSLAR);
isb();
}
static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
/* Ensure pending cp14 accesses complete before setting pwrdwn */
mb();
isb();
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
}
static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_set_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr |= ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_clr_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
/* Ensure pending cp14 accesses complete before clearing pwrup */
mb();
isb();
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr &= ~ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
}
/**
* coresight_timeout_etm - loop until a bit has changed to a specific state.
* @drvdata: etm's private data structure.
* @offset: address of a register, starting from @addr.
* @position: the position of the bit of interest.
* @value: the value the bit should have.
*
* Basically the same as @coresight_timeout except for the register access
* method where we have to account for CP14 configurations.
* Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
* TIMEOUT_US has elapsed, which ever happens first.
*/
static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
int position, int value)
{
int i;
u32 val;
for (i = TIMEOUT_US; i > 0; i--) {
val = etm_readl(drvdata, offset);
/* Waiting on the bit to go from 0 to 1 */
if (value) {
if (val & BIT(position))
return 0;
/* Waiting on the bit to go from 1 to 0 */
} else {
if (!(val & BIT(position)))
return 0;
}
/*
* Delay is arbitrary - the specification doesn't say how long
* we are expected to wait. Extra check required to make sure
* we don't wait needlessly on the last iteration.
*/
if (i - 1)
udelay(1);
}
return -EAGAIN;
}
static void etm_set_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_clr_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_set_default(struct etm_drvdata *drvdata)
{
int i;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->enable_event = ETM_HARD_WIRE_RES_A;
drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_val[i] = 0x0;
}
drvdata->seq_curr_state = 0x0;
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask = 0x0;
}
static void etm_enable_hw(void *info)
{
int i;
u32 etmcr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* Turn engine on */
etm_clr_pwrdwn(drvdata);
/* Apply power to trace registers */
etm_set_pwrup(drvdata);
/* Make sure all registers are accessible */
etm_os_unlock(drvdata);
etm_set_prog(drvdata);
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
etmcr |= drvdata->port_size;
etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
}
for (i = 0; i < drvdata->nr_cntr; i++) {
etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
etm_writel(drvdata, drvdata->cntr_rld_event[i],
ETMCNTRLDEVRn(i));
etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
}
etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
for (i = 0; i < drvdata->nr_ext_out; i++)
etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
/* No external input selected */
etm_writel(drvdata, 0x0, ETMEXTINSELR);
etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
/* No auxiliary control selected */
etm_writel(drvdata, 0x0, ETMAUXCR);
etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
/* No VMID comparator value selected */
etm_writel(drvdata, 0x0, ETMVMIDCVR);
/* Ensures trace output is enabled from this ETM */
etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
etm_clr_prog(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm_trace_id_simple(struct etm_drvdata *drvdata)
{
if (!drvdata->enable)
return drvdata->traceid;
return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
}
static int etm_trace_id(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
int trace_id = -1;
if (!drvdata->enable)
return drvdata->traceid;
if (clk_prepare_enable(drvdata->clk))
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return trace_id;
}
static int etm_enable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err_clk;
spin_lock(&drvdata->spinlock);
/*
* Configure the ETM only if the CPU is online. If it isn't online
* hw configuration will take place when 'CPU_STARTING' is received
* in @etm_cpu_callback.
*/
if (cpu_online(drvdata->cpu)) {
ret = smp_call_function_single(drvdata->cpu,
etm_enable_hw, drvdata, 1);
if (ret)
goto err;
}
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
dev_info(drvdata->dev, "ETM tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
err_clk:
return ret;
}
static void etm_disable_hw(void *info)
{
int i;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
etm_set_prog(drvdata);
/* Program trace enable to low by using always false event */
etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
/* Read back sequencer and counters for post trace analysis */
drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
for (i = 0; i < drvdata->nr_cntr; i++)
drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
etm_set_pwrdwn(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm_disable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing etm_disable_hw on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm_source_ops = {
.trace_id = etm_trace_id,
.enable = etm_enable,
.disable = etm_disable,
};
static const struct coresight_ops etm_cs_ops = {
.source_ops = &etm_source_ops,
};
static ssize_t nr_addr_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_addr_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_addr_cmp);
static ssize_t nr_cntr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{ unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_cntr;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_cntr);
static ssize_t nr_ctxid_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_ctxid_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ctxid_cmp);
static ssize_t etmsr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags, val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = etm_readl(drvdata, ETMSR);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(etmsr);
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int i, ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val) {
spin_lock(&drvdata->spinlock);
drvdata->mode = ETM_MODE_EXCLUDE;
drvdata->ctrl = 0x0;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->startstop_ctrl = 0x0;
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
drvdata->cntr_idx = 0x0;
etm_set_default(drvdata);
spin_unlock(&drvdata->spinlock);
}
return size;
}
static DEVICE_ATTR_WO(reset);
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->mode;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETM_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
else
drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
if (drvdata->mode & ETM_MODE_CYCACC)
drvdata->ctrl |= ETMCR_CYC_ACC;
else
drvdata->ctrl &= ~ETMCR_CYC_ACC;
if (drvdata->mode & ETM_MODE_STALL) {
if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
dev_warn(drvdata->dev, "stall mode not supported\n");
ret = -EINVAL;
goto err_unlock;
}
drvdata->ctrl |= ETMCR_STALL_MODE;
} else
drvdata->ctrl &= ~ETMCR_STALL_MODE;
if (drvdata->mode & ETM_MODE_TIMESTAMP) {
if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
dev_warn(drvdata->dev, "timestamp not supported\n");
ret = -EINVAL;
goto err_unlock;
}
drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
} else
drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
if (drvdata->mode & ETM_MODE_CTXID)
drvdata->ctrl |= ETMCR_CTXID_SIZE;
else
drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
spin_unlock(&drvdata->spinlock);
return size;
err_unlock:
spin_unlock(&drvdata->spinlock);
return ret;
}
static DEVICE_ATTR_RW(mode);
static ssize_t trigger_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->trigger_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t trigger_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->trigger_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(trigger_event);
static ssize_t enable_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->enable_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t enable_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->enable_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(enable_event);
static ssize_t fifofull_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->fifofull_level;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t fifofull_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->fifofull_level = val;
return size;
}
static DEVICE_ATTR_RW(fifofull_level);
static ssize_t addr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->addr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_idx);
static ssize_t addr_single_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_single_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_single);
static ssize_t addr_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = drvdata->addr_val[idx];
val2 = drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx %#lx\n", val1, val2);
}
static ssize_t addr_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* Lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
drvdata->enable_ctrl1 |= (1 << (idx/2));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_range);
static ssize_t addr_start_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->startstop_ctrl |= (1 << idx);
drvdata->enable_ctrl1 |= BIT(25);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_start);
static ssize_t addr_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->startstop_ctrl |= (1 << (idx + 16));
drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_stop);
static ssize_t addr_acctype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->addr_acctype[drvdata->addr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_acctype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->addr_acctype[drvdata->addr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_acctype);
static ssize_t cntr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->cntr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_idx);
static ssize_t cntr_rld_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_val[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_val);
static ssize_t cntr_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_event);
static ssize_t cntr_rld_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_event);
static ssize_t cntr_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, ret = 0;
u32 val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
spin_lock(&drvdata->spinlock);
for (i = 0; i < drvdata->nr_cntr; i++)
ret += sprintf(buf, "counter %d: %x\n",
i, drvdata->cntr_val[i]);
spin_unlock(&drvdata->spinlock);
return ret;
}
for (i = 0; i < drvdata->nr_cntr; i++) {
val = etm_readl(drvdata, ETMCNTVRn(i));
ret += sprintf(buf, "counter %d: %x\n", i, val);
}
return ret;
}
static ssize_t cntr_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_val);
static ssize_t seq_12_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_12_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_12_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_12_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_12_event);
static ssize_t seq_21_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_21_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_21_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_21_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_21_event);
static ssize_t seq_23_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_23_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_23_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_23_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_23_event);
static ssize_t seq_31_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_31_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_31_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_31_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_31_event);
static ssize_t seq_32_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_32_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_32_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_32_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_32_event);
static ssize_t seq_13_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_13_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_13_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_13_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_13_event);
static ssize_t seq_curr_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->seq_curr_state;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_curr_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val > ETM_SEQ_STATE_MAX_VAL)
return -EINVAL;
drvdata->seq_curr_state = val;
return size;
}
static DEVICE_ATTR_RW(seq_curr_state);
static ssize_t ctxid_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_ctxid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_idx);
static ssize_t ctxid_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->ctxid_val[drvdata->ctxid_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->ctxid_val[drvdata->ctxid_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_val);
static ssize_t ctxid_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_mask;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_mask_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->ctxid_mask = val;
return size;
}
static DEVICE_ATTR_RW(ctxid_mask);
static ssize_t sync_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->sync_freq;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t sync_freq_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->sync_freq = val & ETM_SYNC_MASK;
return size;
}
static DEVICE_ATTR_RW(sync_freq);
static ssize_t timestamp_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->timestamp_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t timestamp_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->timestamp_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(timestamp_event);
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
ret = sprintf(buf,
"ETMCCR: 0x%08x\n"
"ETMCCER: 0x%08x\n"
"ETMSCR: 0x%08x\n"
"ETMIDR: 0x%08x\n"
"ETMCR: 0x%08x\n"
"ETMTRACEIDR: 0x%08x\n"
"Enable event: 0x%08x\n"
"Enable start/stop: 0x%08x\n"
"Enable control: CR1 0x%08x CR2 0x%08x\n"
"CPU affinity: %d\n",
drvdata->etmccr, drvdata->etmccer,
etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
etm_readl(drvdata, ETMTEEVR),
etm_readl(drvdata, ETMTSSCR),
etm_readl(drvdata, ETMTECR1),
etm_readl(drvdata, ETMTECR2),
drvdata->cpu);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return ret;
}
static DEVICE_ATTR_RO(status);
static ssize_t traceid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->traceid;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t traceid_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->traceid = val & ETM_TRACEID_MASK;
return size;
}
static DEVICE_ATTR_RW(traceid);
static struct attribute *coresight_etm_attrs[] = {
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ctxid_cmp.attr,
&dev_attr_etmsr.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_trigger_event.attr,
&dev_attr_enable_event.attr,
&dev_attr_fifofull_level.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_acctype.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntr_rld_val.attr,
&dev_attr_cntr_event.attr,
&dev_attr_cntr_rld_event.attr,
&dev_attr_cntr_val.attr,
&dev_attr_seq_12_event.attr,
&dev_attr_seq_21_event.attr,
&dev_attr_seq_23_event.attr,
&dev_attr_seq_31_event.attr,
&dev_attr_seq_32_event.attr,
&dev_attr_seq_13_event.attr,
&dev_attr_seq_curr_state.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_val.attr,
&dev_attr_ctxid_mask.attr,
&dev_attr_sync_freq.attr,
&dev_attr_timestamp_event.attr,
&dev_attr_status.attr,
&dev_attr_traceid.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etm);
static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
}
if (etmdrvdata[cpu]->enable)
etm_enable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
break;
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable)
etm_disable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block etm_cpu_notifier = {
.notifier_call = etm_cpu_callback,
};
static bool etm_arch_supported(u8 arch)
{
switch (arch) {
case ETM_ARCH_V3_3:
break;
case ETM_ARCH_V3_5:
break;
case PFT_ARCH_V1_0:
break;
case PFT_ARCH_V1_1:
break;
default:
return false;
}
return true;
}
static void etm_init_arch_data(void *info)
{
u32 etmidr;
u32 etmccr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* First dummy read */
(void)etm_readl(drvdata, ETMPDSR);
/* Provide power to ETM: ETMPDCR[3] == 1 */
etm_set_pwrup(drvdata);
/*
* Clear power down bit since when this bit is set writes to
* certain registers might be ignored.
*/
etm_clr_pwrdwn(drvdata);
/*
* Set prog bit. It will be set from reset but this is included to
* ensure it is set
*/
etm_set_prog(drvdata);
/* Find all capabilities */
etmidr = etm_readl(drvdata, ETMIDR);
drvdata->arch = BMVAL(etmidr, 4, 11);
drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
drvdata->etmccer = etm_readl(drvdata, ETMCCER);
etmccr = etm_readl(drvdata, ETMCCR);
drvdata->etmccr = etmccr;
drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
etm_set_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
CS_LOCK(drvdata->base);
}
static void etm_init_default_data(struct etm_drvdata *drvdata)
{
/*
* A trace ID of value 0 is invalid, so let's start at some
* random value that fits in 7 bits and will be just as good.
*/
static int etm3x_traceid = 0x10;
u32 flags = (1 << 0 | /* instruction execute*/
3 << 3 | /* ARM instruction */
0 << 5 | /* No data value comparison */
0 << 7 | /* No exact mach */
0 << 8 | /* Ignore context ID */
0 << 10); /* Security ignored */
/*
* Initial configuration only - guarantees sources handled by
* this driver have a unique ID at startup time but not between
* all other types of sources. For that we lean on the core
* framework.
*/
drvdata->traceid = etm3x_traceid++;
drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
if (drvdata->nr_addr_cmp >= 2) {
drvdata->addr_val[0] = (u32) _stext;
drvdata->addr_val[1] = (u32) _etext;
drvdata->addr_acctype[0] = flags;
drvdata->addr_acctype[1] = flags;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
}
etm_set_default(drvdata);
}
static int etm_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct etm_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc *desc;
struct device_node *np = adev->dev.of_node;
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
}
drvdata->dev = &adev->dev;
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
spin_lock_init(&drvdata->spinlock);
drvdata->clk = adev->pclk;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
drvdata->cpu = pdata ? pdata->cpu : 0;
get_online_cpus();
etmdrvdata[drvdata->cpu] = drvdata;
if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
drvdata->os_unlock = true;
if (smp_call_function_single(drvdata->cpu,
etm_init_arch_data, drvdata, 1))
dev_err(dev, "ETM arch init failed\n");
if (!etm_count++)
register_hotcpu_notifier(&etm_cpu_notifier);
put_online_cpus();
if (etm_arch_supported(drvdata->arch) == false) {
ret = -EINVAL;
goto err_arch_supported;
}
etm_init_default_data(drvdata);
clk_disable_unprepare(drvdata->clk);
desc->type = CORESIGHT_DEV_TYPE_SOURCE;
desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
desc->ops = &etm_cs_ops;
desc->pdata = pdata;
desc->dev = dev;
desc->groups = coresight_etm_groups;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err_arch_supported;
}
dev_info(dev, "ETM initialized\n");
if (boot_enable) {
coresight_enable(drvdata->csdev);
drvdata->boot_enable = true;
}
return 0;
err_arch_supported:
clk_disable_unprepare(drvdata->clk);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return ret;
}
static int etm_remove(struct amba_device *adev)
{
struct etm_drvdata *drvdata = amba_get_drvdata(adev);
coresight_unregister(drvdata->csdev);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return 0;
}
static struct amba_id etm_ids[] = {
{ /* ETM 3.3 */
.id = 0x0003b921,
.mask = 0x0003ffff,
},
{ /* ETM 3.5 */
.id = 0x0003b956,
.mask = 0x0003ffff,
},
{ /* PTM 1.0 */
.id = 0x0003b950,
.mask = 0x0003ffff,
},
{ /* PTM 1.1 */
.id = 0x0003b95f,
.mask = 0x0003ffff,
},
{ 0, 0},
};
static struct amba_driver etm_driver = {
.drv = {
.name = "coresight-etm3x",
.owner = THIS_MODULE,
},
.probe = etm_probe,
.remove = etm_remove,
.id_table = etm_ids,
};
int __init etm_init(void)
{
return amba_driver_register(&etm_driver);
}
module_init(etm_init);
void __exit etm_exit(void)
{
amba_driver_unregister(&etm_driver);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");