1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1780 lines
43 KiB
C
1780 lines
43 KiB
C
/*
|
|
* intelfb
|
|
*
|
|
* Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
|
|
*
|
|
* Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
|
|
* 2004 Sylvain Meyer
|
|
*
|
|
* This driver consists of two parts. The first part (intelfbdrv.c) provides
|
|
* the basic fbdev interfaces, is derived in part from the radeonfb and
|
|
* vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
|
|
* provides the code to program the hardware. Most of it is derived from
|
|
* the i810/i830 XFree86 driver. The HW-specific code is covered here
|
|
* under a dual license (GPL and MIT/XFree86 license).
|
|
*
|
|
* Author: David Dawes
|
|
*
|
|
*/
|
|
|
|
/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/console.h>
|
|
#include <linux/selection.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kd.h>
|
|
#include <linux/vt_kern.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/version.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "intelfb.h"
|
|
#include "intelfbhw.h"
|
|
|
|
int
|
|
intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
|
|
int *mobile)
|
|
{
|
|
u32 tmp;
|
|
|
|
if (!pdev || !name || !chipset || !mobile)
|
|
return 1;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_830M:
|
|
*name = "Intel(R) 830M";
|
|
*chipset = INTEL_830M;
|
|
*mobile = 1;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_845G:
|
|
*name = "Intel(R) 845G";
|
|
*chipset = INTEL_845G;
|
|
*mobile = 0;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_85XGM:
|
|
tmp = 0;
|
|
*mobile = 1;
|
|
pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
|
|
switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
|
|
INTEL_85X_VARIANT_MASK) {
|
|
case INTEL_VAR_855GME:
|
|
*name = "Intel(R) 855GME";
|
|
*chipset = INTEL_855GME;
|
|
return 0;
|
|
case INTEL_VAR_855GM:
|
|
*name = "Intel(R) 855GM";
|
|
*chipset = INTEL_855GM;
|
|
return 0;
|
|
case INTEL_VAR_852GME:
|
|
*name = "Intel(R) 852GME";
|
|
*chipset = INTEL_852GME;
|
|
return 0;
|
|
case INTEL_VAR_852GM:
|
|
*name = "Intel(R) 852GM";
|
|
*chipset = INTEL_852GM;
|
|
return 0;
|
|
default:
|
|
*name = "Intel(R) 852GM/855GM";
|
|
*chipset = INTEL_85XGM;
|
|
return 0;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_865G:
|
|
*name = "Intel(R) 865G";
|
|
*chipset = INTEL_865G;
|
|
*mobile = 0;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_915G:
|
|
*name = "Intel(R) 915G";
|
|
*chipset = INTEL_915G;
|
|
*mobile = 0;
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
|
|
int *stolen_size)
|
|
{
|
|
struct pci_dev *bridge_dev;
|
|
u16 tmp;
|
|
|
|
if (!pdev || !aperture_size || !stolen_size)
|
|
return 1;
|
|
|
|
/* Find the bridge device. It is always 0:0.0 */
|
|
if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
|
|
ERR_MSG("cannot find bridge device\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get the fb aperture size and "stolen" memory amount. */
|
|
tmp = 0;
|
|
pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_830M:
|
|
case PCI_DEVICE_ID_INTEL_845G:
|
|
if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
|
|
*aperture_size = MB(64);
|
|
else
|
|
*aperture_size = MB(128);
|
|
switch (tmp & INTEL_830_GMCH_GMS_MASK) {
|
|
case INTEL_830_GMCH_GMS_STOLEN_512:
|
|
*stolen_size = KB(512) - KB(132);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_STOLEN_1024:
|
|
*stolen_size = MB(1) - KB(132);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_STOLEN_8192:
|
|
*stolen_size = MB(8) - KB(132);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_LOCAL:
|
|
ERR_MSG("only local memory found\n");
|
|
return 1;
|
|
case INTEL_830_GMCH_GMS_DISABLED:
|
|
ERR_MSG("video memory is disabled\n");
|
|
return 1;
|
|
default:
|
|
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
|
|
tmp & INTEL_830_GMCH_GMS_MASK);
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
*aperture_size = MB(128);
|
|
switch (tmp & INTEL_855_GMCH_GMS_MASK) {
|
|
case INTEL_855_GMCH_GMS_STOLEN_1M:
|
|
*stolen_size = MB(1) - KB(132);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_4M:
|
|
*stolen_size = MB(4) - KB(132);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_8M:
|
|
*stolen_size = MB(8) - KB(132);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_16M:
|
|
*stolen_size = MB(16) - KB(132);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_32M:
|
|
*stolen_size = MB(32) - KB(132);
|
|
return 0;
|
|
case INTEL_915G_GMCH_GMS_STOLEN_48M:
|
|
*stolen_size = MB(48) - KB(132);
|
|
return 0;
|
|
case INTEL_915G_GMCH_GMS_STOLEN_64M:
|
|
*stolen_size = MB(64) - KB(132);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_DISABLED:
|
|
ERR_MSG("video memory is disabled\n");
|
|
return 0;
|
|
default:
|
|
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
|
|
tmp & INTEL_855_GMCH_GMS_MASK);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
intelfbhw_check_non_crt(struct intelfb_info *dinfo)
|
|
{
|
|
int dvo = 0;
|
|
|
|
if (INREG(LVDS) & PORT_ENABLE)
|
|
dvo |= LVDS_PORT;
|
|
if (INREG(DVOA) & PORT_ENABLE)
|
|
dvo |= DVOA_PORT;
|
|
if (INREG(DVOB) & PORT_ENABLE)
|
|
dvo |= DVOB_PORT;
|
|
if (INREG(DVOC) & PORT_ENABLE)
|
|
dvo |= DVOC_PORT;
|
|
|
|
return dvo;
|
|
}
|
|
|
|
const char *
|
|
intelfbhw_dvo_to_string(int dvo)
|
|
{
|
|
if (dvo & DVOA_PORT)
|
|
return "DVO port A";
|
|
else if (dvo & DVOB_PORT)
|
|
return "DVO port B";
|
|
else if (dvo & DVOC_PORT)
|
|
return "DVO port C";
|
|
else if (dvo & LVDS_PORT)
|
|
return "LVDS port";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int
|
|
intelfbhw_validate_mode(struct intelfb_info *dinfo,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
int bytes_per_pixel;
|
|
int tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_validate_mode\n");
|
|
#endif
|
|
|
|
bytes_per_pixel = var->bits_per_pixel / 8;
|
|
if (bytes_per_pixel == 3)
|
|
bytes_per_pixel = 4;
|
|
|
|
/* Check if enough video memory. */
|
|
tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
|
|
if (tmp > dinfo->fb.size) {
|
|
WRN_MSG("Not enough video ram for mode "
|
|
"(%d KByte vs %d KByte).\n",
|
|
BtoKB(tmp), BtoKB(dinfo->fb.size));
|
|
return 1;
|
|
}
|
|
|
|
/* Check if x/y limits are OK. */
|
|
if (var->xres - 1 > HACTIVE_MASK) {
|
|
WRN_MSG("X resolution too large (%d vs %d).\n",
|
|
var->xres, HACTIVE_MASK + 1);
|
|
return 1;
|
|
}
|
|
if (var->yres - 1 > VACTIVE_MASK) {
|
|
WRN_MSG("Y resolution too large (%d vs %d).\n",
|
|
var->yres, VACTIVE_MASK + 1);
|
|
return 1;
|
|
}
|
|
|
|
/* Check for interlaced/doublescan modes. */
|
|
if (var->vmode & FB_VMODE_INTERLACED) {
|
|
WRN_MSG("Mode is interlaced.\n");
|
|
return 1;
|
|
}
|
|
if (var->vmode & FB_VMODE_DOUBLE) {
|
|
WRN_MSG("Mode is double-scan.\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Check if clock is OK. */
|
|
tmp = 1000000000 / var->pixclock;
|
|
if (tmp < MIN_CLOCK) {
|
|
WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
|
|
(tmp + 500) / 1000, MIN_CLOCK / 1000);
|
|
return 1;
|
|
}
|
|
if (tmp > MAX_CLOCK) {
|
|
WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
|
|
(tmp + 500) / 1000, MAX_CLOCK / 1000);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
|
|
{
|
|
struct intelfb_info *dinfo = GET_DINFO(info);
|
|
u32 offset, xoffset, yoffset;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_pan_display\n");
|
|
#endif
|
|
|
|
xoffset = ROUND_DOWN_TO(var->xoffset, 8);
|
|
yoffset = var->yoffset;
|
|
|
|
if ((xoffset + var->xres > var->xres_virtual) ||
|
|
(yoffset + var->yres > var->yres_virtual))
|
|
return -EINVAL;
|
|
|
|
offset = (yoffset * dinfo->pitch) +
|
|
(xoffset * var->bits_per_pixel) / 8;
|
|
|
|
offset += dinfo->fb.offset << 12;
|
|
|
|
OUTREG(DSPABASE, offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Blank the screen. */
|
|
void
|
|
intelfbhw_do_blank(int blank, struct fb_info *info)
|
|
{
|
|
struct intelfb_info *dinfo = GET_DINFO(info);
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
|
|
#endif
|
|
|
|
/* Turn plane A on or off */
|
|
tmp = INREG(DSPACNTR);
|
|
if (blank)
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
else
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
/* Flush */
|
|
tmp = INREG(DSPABASE);
|
|
OUTREG(DSPABASE, tmp);
|
|
|
|
/* Turn off/on the HW cursor */
|
|
#if VERBOSE > 0
|
|
DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
|
|
#endif
|
|
if (dinfo->cursor_on) {
|
|
if (blank) {
|
|
intelfbhw_cursor_hide(dinfo);
|
|
} else {
|
|
intelfbhw_cursor_show(dinfo);
|
|
}
|
|
dinfo->cursor_on = 1;
|
|
}
|
|
dinfo->cursor_blanked = blank;
|
|
|
|
/* Set DPMS level */
|
|
tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
|
|
switch (blank) {
|
|
case FB_BLANK_UNBLANK:
|
|
case FB_BLANK_NORMAL:
|
|
tmp |= ADPA_DPMS_D0;
|
|
break;
|
|
case FB_BLANK_VSYNC_SUSPEND:
|
|
tmp |= ADPA_DPMS_D1;
|
|
break;
|
|
case FB_BLANK_HSYNC_SUSPEND:
|
|
tmp |= ADPA_DPMS_D2;
|
|
break;
|
|
case FB_BLANK_POWERDOWN:
|
|
tmp |= ADPA_DPMS_D3;
|
|
break;
|
|
}
|
|
OUTREG(ADPA, tmp);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
void
|
|
intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
|
|
unsigned red, unsigned green, unsigned blue,
|
|
unsigned transp)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
|
|
regno, red, green, blue);
|
|
#endif
|
|
|
|
u32 palette_reg = (dinfo->pipe == PIPE_A) ?
|
|
PALETTE_A : PALETTE_B;
|
|
|
|
OUTREG(palette_reg + (regno << 2),
|
|
(red << PALETTE_8_RED_SHIFT) |
|
|
(green << PALETTE_8_GREEN_SHIFT) |
|
|
(blue << PALETTE_8_BLUE_SHIFT));
|
|
}
|
|
|
|
|
|
int
|
|
intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
|
|
int flag)
|
|
{
|
|
int i;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_read_hw_state\n");
|
|
#endif
|
|
|
|
if (!hw || !dinfo)
|
|
return -1;
|
|
|
|
/* Read in as much of the HW state as possible. */
|
|
hw->vga0_divisor = INREG(VGA0_DIVISOR);
|
|
hw->vga1_divisor = INREG(VGA1_DIVISOR);
|
|
hw->vga_pd = INREG(VGAPD);
|
|
hw->dpll_a = INREG(DPLL_A);
|
|
hw->dpll_b = INREG(DPLL_B);
|
|
hw->fpa0 = INREG(FPA0);
|
|
hw->fpa1 = INREG(FPA1);
|
|
hw->fpb0 = INREG(FPB0);
|
|
hw->fpb1 = INREG(FPB1);
|
|
|
|
if (flag == 1)
|
|
return flag;
|
|
|
|
#if 0
|
|
/* This seems to be a problem with the 852GM/855GM */
|
|
for (i = 0; i < PALETTE_8_ENTRIES; i++) {
|
|
hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
|
|
hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
|
|
}
|
|
#endif
|
|
|
|
if (flag == 2)
|
|
return flag;
|
|
|
|
hw->htotal_a = INREG(HTOTAL_A);
|
|
hw->hblank_a = INREG(HBLANK_A);
|
|
hw->hsync_a = INREG(HSYNC_A);
|
|
hw->vtotal_a = INREG(VTOTAL_A);
|
|
hw->vblank_a = INREG(VBLANK_A);
|
|
hw->vsync_a = INREG(VSYNC_A);
|
|
hw->src_size_a = INREG(SRC_SIZE_A);
|
|
hw->bclrpat_a = INREG(BCLRPAT_A);
|
|
hw->htotal_b = INREG(HTOTAL_B);
|
|
hw->hblank_b = INREG(HBLANK_B);
|
|
hw->hsync_b = INREG(HSYNC_B);
|
|
hw->vtotal_b = INREG(VTOTAL_B);
|
|
hw->vblank_b = INREG(VBLANK_B);
|
|
hw->vsync_b = INREG(VSYNC_B);
|
|
hw->src_size_b = INREG(SRC_SIZE_B);
|
|
hw->bclrpat_b = INREG(BCLRPAT_B);
|
|
|
|
if (flag == 3)
|
|
return flag;
|
|
|
|
hw->adpa = INREG(ADPA);
|
|
hw->dvoa = INREG(DVOA);
|
|
hw->dvob = INREG(DVOB);
|
|
hw->dvoc = INREG(DVOC);
|
|
hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
|
|
hw->dvob_srcdim = INREG(DVOB_SRCDIM);
|
|
hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
|
|
hw->lvds = INREG(LVDS);
|
|
|
|
if (flag == 4)
|
|
return flag;
|
|
|
|
hw->pipe_a_conf = INREG(PIPEACONF);
|
|
hw->pipe_b_conf = INREG(PIPEBCONF);
|
|
hw->disp_arb = INREG(DISPARB);
|
|
|
|
if (flag == 5)
|
|
return flag;
|
|
|
|
hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
|
|
hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
|
|
hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
|
|
hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
|
|
|
|
if (flag == 6)
|
|
return flag;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
|
|
hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
|
|
}
|
|
|
|
if (flag == 7)
|
|
return flag;
|
|
|
|
hw->cursor_size = INREG(CURSOR_SIZE);
|
|
|
|
if (flag == 8)
|
|
return flag;
|
|
|
|
hw->disp_a_ctrl = INREG(DSPACNTR);
|
|
hw->disp_b_ctrl = INREG(DSPBCNTR);
|
|
hw->disp_a_base = INREG(DSPABASE);
|
|
hw->disp_b_base = INREG(DSPBBASE);
|
|
hw->disp_a_stride = INREG(DSPASTRIDE);
|
|
hw->disp_b_stride = INREG(DSPBSTRIDE);
|
|
|
|
if (flag == 9)
|
|
return flag;
|
|
|
|
hw->vgacntrl = INREG(VGACNTRL);
|
|
|
|
if (flag == 10)
|
|
return flag;
|
|
|
|
hw->add_id = INREG(ADD_ID);
|
|
|
|
if (flag == 11)
|
|
return flag;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
hw->swf0x[i] = INREG(SWF00 + (i << 2));
|
|
hw->swf1x[i] = INREG(SWF10 + (i << 2));
|
|
if (i < 3)
|
|
hw->swf3x[i] = INREG(SWF30 + (i << 2));
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
hw->fence[i] = INREG(FENCE + (i << 2));
|
|
|
|
hw->instpm = INREG(INSTPM);
|
|
hw->mem_mode = INREG(MEM_MODE);
|
|
hw->fw_blc_0 = INREG(FW_BLC_0);
|
|
hw->fw_blc_1 = INREG(FW_BLC_1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
|
|
{
|
|
#if REGDUMP
|
|
int i, m1, m2, n, p1, p2;
|
|
|
|
DBG_MSG("intelfbhw_print_hw_state\n");
|
|
|
|
if (!hw || !dinfo)
|
|
return;
|
|
/* Read in as much of the HW state as possible. */
|
|
printk("hw state dump start\n");
|
|
printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
|
|
printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
|
|
printk(" VGAPD: 0x%08x\n", hw->vga_pd);
|
|
n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
|
|
p1 = 0;
|
|
else
|
|
p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
|
|
p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
|
|
printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
|
|
|
|
n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
|
|
p1 = 0;
|
|
else
|
|
p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
|
|
p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
|
|
printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
|
|
|
|
printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
|
|
printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
|
|
printk(" FPA0: 0x%08x\n", hw->fpa0);
|
|
printk(" FPA1: 0x%08x\n", hw->fpa1);
|
|
printk(" FPB0: 0x%08x\n", hw->fpb0);
|
|
printk(" FPB1: 0x%08x\n", hw->fpb1);
|
|
|
|
n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
|
|
p1 = 0;
|
|
else
|
|
p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
|
|
p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
|
|
printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
|
|
|
|
n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
|
|
p1 = 0;
|
|
else
|
|
p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
|
|
p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
|
|
printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
|
|
|
|
#if 0
|
|
printk(" PALETTE_A:\n");
|
|
for (i = 0; i < PALETTE_8_ENTRIES)
|
|
printk(" %3d: 0x%08x\n", i, hw->palette_a[i];
|
|
printk(" PALETTE_B:\n");
|
|
for (i = 0; i < PALETTE_8_ENTRIES)
|
|
printk(" %3d: 0x%08x\n", i, hw->palette_b[i];
|
|
#endif
|
|
|
|
printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
|
|
printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
|
|
printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
|
|
printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
|
|
printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
|
|
printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
|
|
printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
|
|
printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
|
|
printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
|
|
printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
|
|
printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
|
|
printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
|
|
printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
|
|
printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
|
|
printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
|
|
printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
|
|
|
|
printk(" ADPA: 0x%08x\n", hw->adpa);
|
|
printk(" DVOA: 0x%08x\n", hw->dvoa);
|
|
printk(" DVOB: 0x%08x\n", hw->dvob);
|
|
printk(" DVOC: 0x%08x\n", hw->dvoc);
|
|
printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
|
|
printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
|
|
printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
|
|
printk(" LVDS: 0x%08x\n", hw->lvds);
|
|
|
|
printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
|
|
printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
|
|
printk(" DISPARB: 0x%08x\n", hw->disp_arb);
|
|
|
|
printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
|
|
printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
|
|
printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
|
|
printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
|
|
|
|
printk(" CURSOR_A_PALETTE: ");
|
|
for (i = 0; i < 4; i++) {
|
|
printk("0x%08x", hw->cursor_a_palette[i]);
|
|
if (i < 3)
|
|
printk(", ");
|
|
}
|
|
printk("\n");
|
|
printk(" CURSOR_B_PALETTE: ");
|
|
for (i = 0; i < 4; i++) {
|
|
printk("0x%08x", hw->cursor_b_palette[i]);
|
|
if (i < 3)
|
|
printk(", ");
|
|
}
|
|
printk("\n");
|
|
|
|
printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
|
|
|
|
printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
|
|
printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
|
|
printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
|
|
printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
|
|
printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
|
|
printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
|
|
|
|
printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
|
|
printk(" ADD_ID: 0x%08x\n", hw->add_id);
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
printk(" SWF0%d 0x%08x\n", i,
|
|
hw->swf0x[i]);
|
|
}
|
|
for (i = 0; i < 7; i++) {
|
|
printk(" SWF1%d 0x%08x\n", i,
|
|
hw->swf1x[i]);
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
printk(" SWF3%d 0x%08x\n", i,
|
|
hw->swf3x[i]);
|
|
}
|
|
for (i = 0; i < 8; i++)
|
|
printk(" FENCE%d 0x%08x\n", i,
|
|
hw->fence[i]);
|
|
|
|
printk(" INSTPM 0x%08x\n", hw->instpm);
|
|
printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
|
|
printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
|
|
printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
|
|
|
|
printk("hw state dump end\n");
|
|
#endif
|
|
}
|
|
|
|
/* Split the M parameter into M1 and M2. */
|
|
static int
|
|
splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
|
|
{
|
|
int m1, m2;
|
|
|
|
m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
|
|
if (m1 < MIN_M1)
|
|
m1 = MIN_M1;
|
|
if (m1 > MAX_M1)
|
|
m1 = MAX_M1;
|
|
m2 = m - 5 * (m1 + 2) - 2;
|
|
if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
|
|
return 1;
|
|
} else {
|
|
*retm1 = (unsigned int)m1;
|
|
*retm2 = (unsigned int)m2;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Split the P parameter into P1 and P2. */
|
|
static int
|
|
splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
|
|
{
|
|
int p1, p2;
|
|
|
|
if (p % 4 == 0)
|
|
p2 = 1;
|
|
else
|
|
p2 = 0;
|
|
p1 = (p / (1 << (p2 + 1))) - 2;
|
|
if (p % 4 == 0 && p1 < MIN_P1) {
|
|
p2 = 0;
|
|
p1 = (p / (1 << (p2 + 1))) - 2;
|
|
}
|
|
if (p1 < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
|
|
return 1;
|
|
} else {
|
|
*retp1 = (unsigned int)p1;
|
|
*retp2 = (unsigned int)p2;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
|
|
u32 *retp2, u32 *retclock)
|
|
{
|
|
u32 m1, m2, n, p1, p2, n1;
|
|
u32 f_vco, p, p_best = 0, m, f_out;
|
|
u32 err_max, err_target, err_best = 10000000;
|
|
u32 n_best = 0, m_best = 0, f_best, f_err;
|
|
u32 p_min, p_max, p_inc, div_min, div_max;
|
|
|
|
/* Accept 0.5% difference, but aim for 0.1% */
|
|
err_max = 5 * clock / 1000;
|
|
err_target = clock / 1000;
|
|
|
|
DBG_MSG("Clock is %d\n", clock);
|
|
|
|
div_max = MAX_VCO_FREQ / clock;
|
|
div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;
|
|
|
|
if (clock <= P_TRANSITION_CLOCK)
|
|
p_inc = 4;
|
|
else
|
|
p_inc = 2;
|
|
p_min = ROUND_UP_TO(div_min, p_inc);
|
|
p_max = ROUND_DOWN_TO(div_max, p_inc);
|
|
if (p_min < MIN_P)
|
|
p_min = 4;
|
|
if (p_max > MAX_P)
|
|
p_max = 128;
|
|
|
|
DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
|
|
|
|
p = p_min;
|
|
do {
|
|
if (splitp(p, &p1, &p2)) {
|
|
WRN_MSG("cannot split p = %d\n", p);
|
|
p += p_inc;
|
|
continue;
|
|
}
|
|
n = MIN_N;
|
|
f_vco = clock * p;
|
|
|
|
do {
|
|
m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
|
|
if (m < MIN_M)
|
|
m = MIN_M;
|
|
if (m > MAX_M)
|
|
m = MAX_M;
|
|
f_out = CALC_VCLOCK3(m, n, p);
|
|
if (splitm(m, &m1, &m2)) {
|
|
WRN_MSG("cannot split m = %d\n", m);
|
|
n++;
|
|
continue;
|
|
}
|
|
if (clock > f_out)
|
|
f_err = clock - f_out;
|
|
else
|
|
f_err = f_out - clock;
|
|
|
|
if (f_err < err_best) {
|
|
m_best = m;
|
|
n_best = n;
|
|
p_best = p;
|
|
f_best = f_out;
|
|
err_best = f_err;
|
|
}
|
|
n++;
|
|
} while ((n <= MAX_N) && (f_out >= clock));
|
|
p += p_inc;
|
|
} while ((p <= p_max));
|
|
|
|
if (!m_best) {
|
|
WRN_MSG("cannot find parameters for clock %d\n", clock);
|
|
return 1;
|
|
}
|
|
m = m_best;
|
|
n = n_best;
|
|
p = p_best;
|
|
splitm(m, &m1, &m2);
|
|
splitp(p, &p1, &p2);
|
|
n1 = n - 2;
|
|
|
|
DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
|
|
"f: %d (%d), VCO: %d\n",
|
|
m, m1, m2, n, n1, p, p1, p2,
|
|
CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
|
|
CALC_VCLOCK3(m, n, p) * p);
|
|
*retm1 = m1;
|
|
*retm2 = m2;
|
|
*retn = n1;
|
|
*retp1 = p1;
|
|
*retp2 = p2;
|
|
*retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __inline__ int
|
|
check_overflow(u32 value, u32 limit, const char *description)
|
|
{
|
|
if (value > limit) {
|
|
WRN_MSG("%s value %d exceeds limit %d\n",
|
|
description, value, limit);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* It is assumed that hw is filled in with the initial state information. */
|
|
int
|
|
intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
int pipe = PIPE_A;
|
|
u32 *dpll, *fp0, *fp1;
|
|
u32 m1, m2, n, p1, p2, clock_target, clock;
|
|
u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
|
|
u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
|
|
u32 vsync_pol, hsync_pol;
|
|
u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
|
|
|
|
DBG_MSG("intelfbhw_mode_to_hw\n");
|
|
|
|
/* Disable VGA */
|
|
hw->vgacntrl |= VGA_DISABLE;
|
|
|
|
/* Check whether pipe A or pipe B is enabled. */
|
|
if (hw->pipe_a_conf & PIPECONF_ENABLE)
|
|
pipe = PIPE_A;
|
|
else if (hw->pipe_b_conf & PIPECONF_ENABLE)
|
|
pipe = PIPE_B;
|
|
|
|
/* Set which pipe's registers will be set. */
|
|
if (pipe == PIPE_B) {
|
|
dpll = &hw->dpll_b;
|
|
fp0 = &hw->fpb0;
|
|
fp1 = &hw->fpb1;
|
|
hs = &hw->hsync_b;
|
|
hb = &hw->hblank_b;
|
|
ht = &hw->htotal_b;
|
|
vs = &hw->vsync_b;
|
|
vb = &hw->vblank_b;
|
|
vt = &hw->vtotal_b;
|
|
ss = &hw->src_size_b;
|
|
pipe_conf = &hw->pipe_b_conf;
|
|
} else {
|
|
dpll = &hw->dpll_a;
|
|
fp0 = &hw->fpa0;
|
|
fp1 = &hw->fpa1;
|
|
hs = &hw->hsync_a;
|
|
hb = &hw->hblank_a;
|
|
ht = &hw->htotal_a;
|
|
vs = &hw->vsync_a;
|
|
vb = &hw->vblank_a;
|
|
vt = &hw->vtotal_a;
|
|
ss = &hw->src_size_a;
|
|
pipe_conf = &hw->pipe_a_conf;
|
|
}
|
|
|
|
/* Use ADPA register for sync control. */
|
|
hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
|
|
|
|
/* sync polarity */
|
|
hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
|
|
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
|
|
vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
|
|
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
|
|
hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
|
|
(ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
|
|
hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
|
|
(vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
|
|
|
|
/* Connect correct pipe to the analog port DAC */
|
|
hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
|
|
hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
|
|
|
|
/* Set DPMS state to D0 (on) */
|
|
hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
|
|
hw->adpa |= ADPA_DPMS_D0;
|
|
|
|
hw->adpa |= ADPA_DAC_ENABLE;
|
|
|
|
*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
|
|
*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
|
|
*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
|
|
|
|
/* Desired clock in kHz */
|
|
clock_target = 1000000000 / var->pixclock;
|
|
|
|
if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
|
|
WRN_MSG("calc_pll_params failed\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Check for overflow. */
|
|
if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
|
|
return 1;
|
|
if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
|
|
return 1;
|
|
if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
|
|
return 1;
|
|
if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
|
|
return 1;
|
|
if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
|
|
return 1;
|
|
|
|
*dpll &= ~DPLL_P1_FORCE_DIV2;
|
|
*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
|
|
(DPLL_P1_MASK << DPLL_P1_SHIFT));
|
|
*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
|
|
*fp0 = (n << FP_N_DIVISOR_SHIFT) |
|
|
(m1 << FP_M1_DIVISOR_SHIFT) |
|
|
(m2 << FP_M2_DIVISOR_SHIFT);
|
|
*fp1 = *fp0;
|
|
|
|
hw->dvob &= ~PORT_ENABLE;
|
|
hw->dvoc &= ~PORT_ENABLE;
|
|
|
|
/* Use display plane A. */
|
|
hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
|
|
hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
|
|
hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
|
|
switch (intelfb_var_to_depth(var)) {
|
|
case 8:
|
|
hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
|
|
break;
|
|
case 15:
|
|
hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
|
|
break;
|
|
case 16:
|
|
hw->disp_a_ctrl |= DISPPLANE_16BPP;
|
|
break;
|
|
case 24:
|
|
hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
|
|
break;
|
|
}
|
|
hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
|
|
hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
|
|
|
|
/* Set CRTC registers. */
|
|
hactive = var->xres;
|
|
hsync_start = hactive + var->right_margin;
|
|
hsync_end = hsync_start + var->hsync_len;
|
|
htotal = hsync_end + var->left_margin;
|
|
hblank_start = hactive;
|
|
hblank_end = htotal;
|
|
|
|
DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
|
|
hactive, hsync_start, hsync_end, htotal, hblank_start,
|
|
hblank_end);
|
|
|
|
vactive = var->yres;
|
|
vsync_start = vactive + var->lower_margin;
|
|
vsync_end = vsync_start + var->vsync_len;
|
|
vtotal = vsync_end + var->upper_margin;
|
|
vblank_start = vactive;
|
|
vblank_end = vtotal;
|
|
vblank_end = vsync_end + 1;
|
|
|
|
DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
|
|
vactive, vsync_start, vsync_end, vtotal, vblank_start,
|
|
vblank_end);
|
|
|
|
/* Adjust for register values, and check for overflow. */
|
|
hactive--;
|
|
if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
|
|
return 1;
|
|
hsync_start--;
|
|
if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
|
|
return 1;
|
|
hsync_end--;
|
|
if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
|
|
return 1;
|
|
htotal--;
|
|
if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
|
|
return 1;
|
|
hblank_start--;
|
|
if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
|
|
return 1;
|
|
hblank_end--;
|
|
if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
|
|
return 1;
|
|
|
|
vactive--;
|
|
if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
|
|
return 1;
|
|
vsync_start--;
|
|
if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
|
|
return 1;
|
|
vsync_end--;
|
|
if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
|
|
return 1;
|
|
vtotal--;
|
|
if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
|
|
return 1;
|
|
vblank_start--;
|
|
if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
|
|
return 1;
|
|
vblank_end--;
|
|
if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
|
|
return 1;
|
|
|
|
*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
|
|
*hb = (hblank_start << HBLANKSTART_SHIFT) |
|
|
(hblank_end << HSYNCEND_SHIFT);
|
|
*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
|
|
|
|
*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
|
|
*vb = (vblank_start << VBLANKSTART_SHIFT) |
|
|
(vblank_end << VSYNCEND_SHIFT);
|
|
*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
|
|
*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
|
|
(vactive << SRC_SIZE_VERT_SHIFT);
|
|
|
|
hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
|
|
DBG_MSG("pitch is %d\n", hw->disp_a_stride);
|
|
|
|
hw->disp_a_base = hw->disp_a_stride * var->yoffset +
|
|
var->xoffset * var->bits_per_pixel / 8;
|
|
|
|
hw->disp_a_base += dinfo->fb.offset << 12;
|
|
|
|
/* Check stride alignment. */
|
|
if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
|
|
WRN_MSG("display stride %d has bad alignment %d\n",
|
|
hw->disp_a_stride, STRIDE_ALIGNMENT);
|
|
return 1;
|
|
}
|
|
|
|
/* Set the palette to 8-bit mode. */
|
|
*pipe_conf &= ~PIPECONF_GAMMA;
|
|
return 0;
|
|
}
|
|
|
|
/* Program a (non-VGA) video mode. */
|
|
int
|
|
intelfbhw_program_mode(struct intelfb_info *dinfo,
|
|
const struct intelfb_hwstate *hw, int blank)
|
|
{
|
|
int pipe = PIPE_A;
|
|
u32 tmp;
|
|
const u32 *dpll, *fp0, *fp1, *pipe_conf;
|
|
const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
|
|
u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
|
|
u32 hsync_reg, htotal_reg, hblank_reg;
|
|
u32 vsync_reg, vtotal_reg, vblank_reg;
|
|
u32 src_size_reg;
|
|
|
|
/* Assume single pipe, display plane A, analog CRT. */
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_program_mode\n");
|
|
#endif
|
|
|
|
/* Disable VGA */
|
|
tmp = INREG(VGACNTRL);
|
|
tmp |= VGA_DISABLE;
|
|
OUTREG(VGACNTRL, tmp);
|
|
|
|
/* Check whether pipe A or pipe B is enabled. */
|
|
if (hw->pipe_a_conf & PIPECONF_ENABLE)
|
|
pipe = PIPE_A;
|
|
else if (hw->pipe_b_conf & PIPECONF_ENABLE)
|
|
pipe = PIPE_B;
|
|
|
|
dinfo->pipe = pipe;
|
|
|
|
if (pipe == PIPE_B) {
|
|
dpll = &hw->dpll_b;
|
|
fp0 = &hw->fpb0;
|
|
fp1 = &hw->fpb1;
|
|
pipe_conf = &hw->pipe_b_conf;
|
|
hs = &hw->hsync_b;
|
|
hb = &hw->hblank_b;
|
|
ht = &hw->htotal_b;
|
|
vs = &hw->vsync_b;
|
|
vb = &hw->vblank_b;
|
|
vt = &hw->vtotal_b;
|
|
ss = &hw->src_size_b;
|
|
dpll_reg = DPLL_B;
|
|
fp0_reg = FPB0;
|
|
fp1_reg = FPB1;
|
|
pipe_conf_reg = PIPEBCONF;
|
|
hsync_reg = HSYNC_B;
|
|
htotal_reg = HTOTAL_B;
|
|
hblank_reg = HBLANK_B;
|
|
vsync_reg = VSYNC_B;
|
|
vtotal_reg = VTOTAL_B;
|
|
vblank_reg = VBLANK_B;
|
|
src_size_reg = SRC_SIZE_B;
|
|
} else {
|
|
dpll = &hw->dpll_a;
|
|
fp0 = &hw->fpa0;
|
|
fp1 = &hw->fpa1;
|
|
pipe_conf = &hw->pipe_a_conf;
|
|
hs = &hw->hsync_a;
|
|
hb = &hw->hblank_a;
|
|
ht = &hw->htotal_a;
|
|
vs = &hw->vsync_a;
|
|
vb = &hw->vblank_a;
|
|
vt = &hw->vtotal_a;
|
|
ss = &hw->src_size_a;
|
|
dpll_reg = DPLL_A;
|
|
fp0_reg = FPA0;
|
|
fp1_reg = FPA1;
|
|
pipe_conf_reg = PIPEACONF;
|
|
hsync_reg = HSYNC_A;
|
|
htotal_reg = HTOTAL_A;
|
|
hblank_reg = HBLANK_A;
|
|
vsync_reg = VSYNC_A;
|
|
vtotal_reg = VTOTAL_A;
|
|
vblank_reg = VBLANK_A;
|
|
src_size_reg = SRC_SIZE_A;
|
|
}
|
|
|
|
/* Disable planes A and B. */
|
|
tmp = INREG(DSPACNTR);
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
tmp = INREG(DSPBCNTR);
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPBCNTR, tmp);
|
|
|
|
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
|
|
mdelay(20);
|
|
|
|
/* Disable Sync */
|
|
tmp = INREG(ADPA);
|
|
tmp &= ~ADPA_DPMS_CONTROL_MASK;
|
|
tmp |= ADPA_DPMS_D3;
|
|
OUTREG(ADPA, tmp);
|
|
|
|
/* turn off pipe */
|
|
tmp = INREG(pipe_conf_reg);
|
|
tmp &= ~PIPECONF_ENABLE;
|
|
OUTREG(pipe_conf_reg, tmp);
|
|
|
|
/* turn off PLL */
|
|
tmp = INREG(dpll_reg);
|
|
dpll_reg &= ~DPLL_VCO_ENABLE;
|
|
OUTREG(dpll_reg, tmp);
|
|
|
|
/* Set PLL parameters */
|
|
OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
|
|
OUTREG(fp0_reg, *fp0);
|
|
OUTREG(fp1_reg, *fp1);
|
|
|
|
/* Set pipe parameters */
|
|
OUTREG(hsync_reg, *hs);
|
|
OUTREG(hblank_reg, *hb);
|
|
OUTREG(htotal_reg, *ht);
|
|
OUTREG(vsync_reg, *vs);
|
|
OUTREG(vblank_reg, *vb);
|
|
OUTREG(vtotal_reg, *vt);
|
|
OUTREG(src_size_reg, *ss);
|
|
|
|
/* Set DVOs B/C */
|
|
OUTREG(DVOB, hw->dvob);
|
|
OUTREG(DVOC, hw->dvoc);
|
|
|
|
/* Set ADPA */
|
|
OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
|
|
|
|
/* Enable PLL */
|
|
tmp = INREG(dpll_reg);
|
|
tmp |= DPLL_VCO_ENABLE;
|
|
OUTREG(dpll_reg, tmp);
|
|
|
|
/* Enable pipe */
|
|
OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
|
|
|
|
/* Enable sync */
|
|
tmp = INREG(ADPA);
|
|
tmp &= ~ADPA_DPMS_CONTROL_MASK;
|
|
tmp |= ADPA_DPMS_D0;
|
|
OUTREG(ADPA, tmp);
|
|
|
|
/* setup display plane */
|
|
if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
|
|
/*
|
|
* i830M errata: the display plane must be enabled
|
|
* to allow writes to the other bits in the plane
|
|
* control register.
|
|
*/
|
|
tmp = INREG(DSPACNTR);
|
|
if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
OUTREG(DSPACNTR,
|
|
hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
|
|
OUTREG(DSPASTRIDE, hw->disp_a_stride);
|
|
OUTREG(DSPABASE, hw->disp_a_base);
|
|
|
|
/* Enable plane */
|
|
if (!blank) {
|
|
tmp = INREG(DSPACNTR);
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
OUTREG(DSPABASE, hw->disp_a_base);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* forward declarations */
|
|
static void refresh_ring(struct intelfb_info *dinfo);
|
|
static void reset_state(struct intelfb_info *dinfo);
|
|
static void do_flush(struct intelfb_info *dinfo);
|
|
|
|
static int
|
|
wait_ring(struct intelfb_info *dinfo, int n)
|
|
{
|
|
int i = 0;
|
|
unsigned long end;
|
|
u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("wait_ring: %d\n", n);
|
|
#endif
|
|
|
|
end = jiffies + (HZ * 3);
|
|
while (dinfo->ring_space < n) {
|
|
dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
|
|
RING_HEAD_MASK);
|
|
if (dinfo->ring_tail + RING_MIN_FREE <
|
|
(u32 __iomem) dinfo->ring_head)
|
|
dinfo->ring_space = (u32 __iomem) dinfo->ring_head
|
|
- (dinfo->ring_tail + RING_MIN_FREE);
|
|
else
|
|
dinfo->ring_space = (dinfo->ring.size +
|
|
(u32 __iomem) dinfo->ring_head)
|
|
- (dinfo->ring_tail + RING_MIN_FREE);
|
|
if ((u32 __iomem) dinfo->ring_head != last_head) {
|
|
end = jiffies + (HZ * 3);
|
|
last_head = (u32 __iomem) dinfo->ring_head;
|
|
}
|
|
i++;
|
|
if (time_before(end, jiffies)) {
|
|
if (!i) {
|
|
/* Try again */
|
|
reset_state(dinfo);
|
|
refresh_ring(dinfo);
|
|
do_flush(dinfo);
|
|
end = jiffies + (HZ * 3);
|
|
i = 1;
|
|
} else {
|
|
WRN_MSG("ring buffer : space: %d wanted %d\n",
|
|
dinfo->ring_space, n);
|
|
WRN_MSG("lockup - turning off hardware "
|
|
"acceleration\n");
|
|
dinfo->ring_lockup = 1;
|
|
break;
|
|
}
|
|
}
|
|
udelay(1);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void
|
|
do_flush(struct intelfb_info *dinfo) {
|
|
START_RING(2);
|
|
OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
}
|
|
|
|
void
|
|
intelfbhw_do_sync(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_sync\n");
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
/*
|
|
* Send a flush, then wait until the ring is empty. This is what
|
|
* the XFree86 driver does, and actually it doesn't seem a lot worse
|
|
* than the recommended method (both have problems).
|
|
*/
|
|
do_flush(dinfo);
|
|
wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
|
|
dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
|
|
}
|
|
|
|
static void
|
|
refresh_ring(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("refresh_ring\n");
|
|
#endif
|
|
|
|
dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
|
|
RING_HEAD_MASK);
|
|
dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
|
|
if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
|
|
dinfo->ring_space = (u32 __iomem) dinfo->ring_head
|
|
- (dinfo->ring_tail + RING_MIN_FREE);
|
|
else
|
|
dinfo->ring_space = (dinfo->ring.size +
|
|
(u32 __iomem) dinfo->ring_head)
|
|
- (dinfo->ring_tail + RING_MIN_FREE);
|
|
}
|
|
|
|
static void
|
|
reset_state(struct intelfb_info *dinfo)
|
|
{
|
|
int i;
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("reset_state\n");
|
|
#endif
|
|
|
|
for (i = 0; i < FENCE_NUM; i++)
|
|
OUTREG(FENCE + (i << 2), 0);
|
|
|
|
/* Flush the ring buffer if it's enabled. */
|
|
tmp = INREG(PRI_RING_LENGTH);
|
|
if (tmp & RING_ENABLE) {
|
|
#if VERBOSE > 0
|
|
DBG_MSG("reset_state: ring was enabled\n");
|
|
#endif
|
|
refresh_ring(dinfo);
|
|
intelfbhw_do_sync(dinfo);
|
|
DO_RING_IDLE();
|
|
}
|
|
|
|
OUTREG(PRI_RING_LENGTH, 0);
|
|
OUTREG(PRI_RING_HEAD, 0);
|
|
OUTREG(PRI_RING_TAIL, 0);
|
|
OUTREG(PRI_RING_START, 0);
|
|
}
|
|
|
|
/* Stop the 2D engine, and turn off the ring buffer. */
|
|
void
|
|
intelfbhw_2d_stop(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
|
|
dinfo->ring_active);
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
dinfo->ring_active = 0;
|
|
reset_state(dinfo);
|
|
}
|
|
|
|
/*
|
|
* Enable the ring buffer, and initialise the 2D engine.
|
|
* It is assumed that the graphics engine has been stopped by previously
|
|
* calling intelfb_2d_stop().
|
|
*/
|
|
void
|
|
intelfbhw_2d_start(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
|
|
dinfo->accel, dinfo->ring_active);
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
/* Initialise the primary ring buffer. */
|
|
OUTREG(PRI_RING_LENGTH, 0);
|
|
OUTREG(PRI_RING_TAIL, 0);
|
|
OUTREG(PRI_RING_HEAD, 0);
|
|
|
|
OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
|
|
OUTREG(PRI_RING_LENGTH,
|
|
((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
|
|
RING_NO_REPORT | RING_ENABLE);
|
|
refresh_ring(dinfo);
|
|
dinfo->ring_active = 1;
|
|
}
|
|
|
|
/* 2D fillrect (solid fill or invert) */
|
|
void
|
|
intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
|
|
u32 color, u32 pitch, u32 bpp, u32 rop)
|
|
{
|
|
u32 br00, br09, br13, br14, br16;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
|
|
"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
|
|
#endif
|
|
|
|
br00 = COLOR_BLT_CMD;
|
|
br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
|
|
br13 = (rop << ROP_SHIFT) | pitch;
|
|
br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
|
|
br16 = color;
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(6);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br14);
|
|
OUT_RING(br09);
|
|
OUT_RING(br16);
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
|
|
dinfo->ring_tail, dinfo->ring_space);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
|
|
u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
|
|
{
|
|
u32 br00, br09, br11, br12, br13, br22, br23, br26;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
|
|
curx, cury, dstx, dsty, w, h, pitch, bpp);
|
|
#endif
|
|
|
|
br00 = XY_SRC_COPY_BLT_CMD;
|
|
br09 = dinfo->fb_start;
|
|
br11 = (pitch << PITCH_SHIFT);
|
|
br12 = dinfo->fb_start;
|
|
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
|
|
br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
|
|
br23 = ((dstx + w) << WIDTH_SHIFT) |
|
|
((dsty + h) << HEIGHT_SHIFT);
|
|
br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(8);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br22);
|
|
OUT_RING(br23);
|
|
OUT_RING(br09);
|
|
OUT_RING(br26);
|
|
OUT_RING(br11);
|
|
OUT_RING(br12);
|
|
ADVANCE_RING();
|
|
}
|
|
|
|
int
|
|
intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
|
|
u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
|
|
{
|
|
int nbytes, ndwords, pad, tmp;
|
|
u32 br00, br09, br13, br18, br19, br22, br23;
|
|
int dat, ix, iy, iw;
|
|
int i, j;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
|
|
#endif
|
|
|
|
/* size in bytes of a padded scanline */
|
|
nbytes = ROUND_UP_TO(w, 16) / 8;
|
|
|
|
/* Total bytes of padded scanline data to write out. */
|
|
nbytes = nbytes * h;
|
|
|
|
/*
|
|
* Check if the glyph data exceeds the immediate mode limit.
|
|
* It would take a large font (1K pixels) to hit this limit.
|
|
*/
|
|
if (nbytes > MAX_MONO_IMM_SIZE)
|
|
return 0;
|
|
|
|
/* Src data is packaged a dword (32-bit) at a time. */
|
|
ndwords = ROUND_UP_TO(nbytes, 4) / 4;
|
|
|
|
/*
|
|
* Ring has to be padded to a quad word. But because the command starts
|
|
with 7 bytes, pad only if there is an even number of ndwords
|
|
*/
|
|
pad = !(ndwords % 2);
|
|
|
|
tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
|
|
br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
|
|
br09 = dinfo->fb_start;
|
|
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
|
|
br18 = bg;
|
|
br19 = fg;
|
|
br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
|
|
br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(8 + ndwords);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br22);
|
|
OUT_RING(br23);
|
|
OUT_RING(br09);
|
|
OUT_RING(br18);
|
|
OUT_RING(br19);
|
|
ix = iy = 0;
|
|
iw = ROUND_UP_TO(w, 8) / 8;
|
|
while (ndwords--) {
|
|
dat = 0;
|
|
for (j = 0; j < 2; ++j) {
|
|
for (i = 0; i < 2; ++i) {
|
|
if (ix != iw || i == 0)
|
|
dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
|
|
}
|
|
if (ix == iw && iy != (h-1)) {
|
|
ix = 0;
|
|
++iy;
|
|
}
|
|
}
|
|
OUT_RING(dat);
|
|
}
|
|
if (pad)
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* HW cursor functions. */
|
|
void
|
|
intelfbhw_cursor_init(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_init\n");
|
|
#endif
|
|
|
|
if (dinfo->mobile) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
|
|
CURSOR_MEM_TYPE_LOCAL |
|
|
(1 << CURSOR_PIPE_SELECT_SHIFT));
|
|
tmp |= CURSOR_MODE_DISABLE;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
|
|
CURSOR_ENABLE | CURSOR_STRIDE_MASK);
|
|
tmp = CURSOR_FORMAT_3C;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
|
|
tmp = (64 << CURSOR_SIZE_H_SHIFT) |
|
|
(64 << CURSOR_SIZE_V_SHIFT);
|
|
OUTREG(CURSOR_SIZE, tmp);
|
|
}
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_hide(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_hide\n");
|
|
#endif
|
|
|
|
dinfo->cursor_on = 0;
|
|
if (dinfo->mobile) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~CURSOR_MODE_MASK;
|
|
tmp |= CURSOR_MODE_DISABLE;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
/* Flush changes */
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp &= ~CURSOR_ENABLE;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
}
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_show(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_show\n");
|
|
#endif
|
|
|
|
dinfo->cursor_on = 1;
|
|
|
|
if (dinfo->cursor_blanked)
|
|
return;
|
|
|
|
if (dinfo->mobile) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~CURSOR_MODE_MASK;
|
|
tmp |= CURSOR_MODE_64_4C_AX;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
/* Flush changes */
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp |= CURSOR_ENABLE;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
}
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
|
|
#endif
|
|
|
|
/*
|
|
* Sets the position. The coordinates are assumed to already
|
|
* have any offset adjusted. Assume that the cursor is never
|
|
* completely off-screen, and that x, y are always >= 0.
|
|
*/
|
|
|
|
tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
|
|
((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
|
|
OUTREG(CURSOR_A_POSITION, tmp);
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_setcolor\n");
|
|
#endif
|
|
|
|
OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
|
|
u8 *data)
|
|
{
|
|
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
|
|
int i, j, w = width / 8;
|
|
int mod = width % 8, t_mask, d_mask;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_load\n");
|
|
#endif
|
|
|
|
if (!dinfo->cursor.virtual)
|
|
return;
|
|
|
|
t_mask = 0xff >> mod;
|
|
d_mask = ~(0xff >> mod);
|
|
for (i = height; i--; ) {
|
|
for (j = 0; j < w; j++) {
|
|
writeb(0x00, addr + j);
|
|
writeb(*(data++), addr + j+8);
|
|
}
|
|
if (mod) {
|
|
writeb(t_mask, addr + j);
|
|
writeb(*(data++) & d_mask, addr + j+8);
|
|
}
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
void
|
|
intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
|
|
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
|
|
int i, j;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_reset\n");
|
|
#endif
|
|
|
|
if (!dinfo->cursor.virtual)
|
|
return;
|
|
|
|
for (i = 64; i--; ) {
|
|
for (j = 0; j < 8; j++) {
|
|
writeb(0xff, addr + j+0);
|
|
writeb(0x00, addr + j+8);
|
|
}
|
|
addr += 16;
|
|
}
|
|
}
|