kernel-fxtec-pro1x/kernel/sched/sched.h
Srinivasarao P 20912a8acc Merge android-4.19-stable.157 (8ee67bc) into msm-4.19
* refs/heads/tmp-8ee67bc
  Revert "nl80211: fix non-split wiphy information"
  Reverting usb changes
  Linux 4.19.157
  powercap: restrict energy meter to root access
  Revert "ANDROID: Kbuild, LLVMLinux: allow overriding clang target triple"
  Linux 4.19.156
  arm64: dts: marvell: espressobin: Add ethernet switch aliases
  net: dsa: read mac address from DT for slave device
  tools: perf: Fix build error in v4.19.y
  perf/core: Fix a memory leak in perf_event_parse_addr_filter()
  PM: runtime: Resume the device earlier in __device_release_driver()
  Revert "ARC: entry: fix potential EFA clobber when TIF_SYSCALL_TRACE"
  ARC: stack unwinding: avoid indefinite looping
  usb: mtu3: fix panic in mtu3_gadget_stop()
  USB: Add NO_LPM quirk for Kingston flash drive
  USB: serial: option: add Telit FN980 composition 0x1055
  USB: serial: option: add LE910Cx compositions 0x1203, 0x1230, 0x1231
  USB: serial: option: add Quectel EC200T module support
  USB: serial: cyberjack: fix write-URB completion race
  serial: txx9: add missing platform_driver_unregister() on error in serial_txx9_init
  serial: 8250_mtk: Fix uart_get_baud_rate warning
  fork: fix copy_process(CLONE_PARENT) race with the exiting ->real_parent
  vt: Disable KD_FONT_OP_COPY
  ACPI: NFIT: Fix comparison to '-ENXIO'
  drm/vc4: drv: Add error handding for bind
  vsock: use ns_capable_noaudit() on socket create
  scsi: core: Don't start concurrent async scan on same host
  blk-cgroup: Pre-allocate tree node on blkg_conf_prep
  blk-cgroup: Fix memleak on error path
  of: Fix reserved-memory overlap detection
  x86/kexec: Use up-to-dated screen_info copy to fill boot params
  ARM: dts: sun4i-a10: fix cpu_alert temperature
  futex: Handle transient "ownerless" rtmutex state correctly
  tracing: Fix out of bounds write in get_trace_buf
  ftrace: Handle tracing when switching between context
  ftrace: Fix recursion check for NMI test
  ring-buffer: Fix recursion protection transitions between interrupt context
  gfs2: Wake up when sd_glock_disposal becomes zero
  mm: always have io_remap_pfn_range() set pgprot_decrypted()
  kthread_worker: prevent queuing delayed work from timer_fn when it is being canceled
  lib/crc32test: remove extra local_irq_disable/enable
  mm: mempolicy: fix potential pte_unmap_unlock pte error
  ALSA: usb-audio: Add implicit feedback quirk for MODX
  ALSA: usb-audio: Add implicit feedback quirk for Qu-16
  ALSA: usb-audio: add usb vendor id as DSD-capable for Khadas devices
  ALSA: usb-audio: Add implicit feedback quirk for Zoom UAC-2
  Fonts: Replace discarded const qualifier
  btrfs: tree-checker: fix the error message for transid error
  btrfs: tree-checker: Verify inode item
  btrfs: tree-checker: Enhance chunk checker to validate chunk profile
  btrfs: tree-checker: Fix wrong check on max devid
  btrfs: tree-checker: Verify dev item
  btrfs: tree-checker: Check chunk item at tree block read time
  btrfs: tree-checker: Make btrfs_check_chunk_valid() return EUCLEAN instead of EIO
  btrfs: tree-checker: Make chunk item checker messages more readable
  btrfs: Move btrfs_check_chunk_valid() to tree-check.[ch] and export it
  btrfs: Don't submit any btree write bio if the fs has errors
  Btrfs: fix unwritten extent buffers and hangs on future writeback attempts
  btrfs: extent_io: add proper error handling to lock_extent_buffer_for_io()
  btrfs: extent_io: Handle errors better in btree_write_cache_pages()
  btrfs: extent_io: Handle errors better in extent_write_full_page()
  btrfs: flush write bio if we loop in extent_write_cache_pages
  Revert "btrfs: flush write bio if we loop in extent_write_cache_pages"
  btrfs: extent_io: Move the BUG_ON() in flush_write_bio() one level up
  btrfs: extent_io: Kill the forward declaration of flush_write_bio
  blktrace: fix debugfs use after free
  sfp: Fix error handing in sfp_probe()
  sctp: Fix COMM_LOST/CANT_STR_ASSOC err reporting on big-endian platforms
  net: usb: qmi_wwan: add Telit LE910Cx 0x1230 composition
  gianfar: Account for Tx PTP timestamp in the skb headroom
  gianfar: Replace skb_realloc_headroom with skb_cow_head for PTP
  chelsio/chtls: fix always leaking ctrl_skb
  chelsio/chtls: fix memory leaks caused by a race
  cadence: force nonlinear buffers to be cloned
  ptrace: fix task_join_group_stop() for the case when current is traced
  tipc: fix use-after-free in tipc_bcast_get_mode
  drm/i915: Break up error capture compression loops with cond_resched()
  ANDROID: fuse: Add support for d_canonical_path
  ANDROID: vfs: add d_canonical_path for stacked filesystem support
  ANDROID: Temporarily disable XFRM_USER_COMPAT filtering
  Linux 4.19.155
  staging: octeon: Drop on uncorrectable alignment or FCS error
  staging: octeon: repair "fixed-link" support
  staging: comedi: cb_pcidas: Allow 2-channel commands for AO subdevice
  KVM: arm64: Fix AArch32 handling of DBGD{CCINT,SCRext} and DBGVCR
  device property: Don't clear secondary pointer for shared primary firmware node
  device property: Keep secondary firmware node secondary by type
  ARM: s3c24xx: fix missing system reset
  ARM: samsung: fix PM debug build with DEBUG_LL but !MMU
  arm: dts: mt7623: add missing pause for switchport
  hil/parisc: Disable HIL driver when it gets stuck
  cachefiles: Handle readpage error correctly
  arm64: berlin: Select DW_APB_TIMER_OF
  tty: make FONTX ioctl use the tty pointer they were actually passed
  rtc: rx8010: don't modify the global rtc ops
  drm/ttm: fix eviction valuable range check.
  ext4: fix invalid inode checksum
  ext4: fix error handling code in add_new_gdb
  ext4: fix leaking sysfs kobject after failed mount
  vringh: fix __vringh_iov() when riov and wiov are different
  ring-buffer: Return 0 on success from ring_buffer_resize()
  9P: Cast to loff_t before multiplying
  libceph: clear con->out_msg on Policy::stateful_server faults
  ceph: promote to unsigned long long before shifting
  drm/amd/display: Don't invoke kgdb_breakpoint() unconditionally
  drm/amdgpu: don't map BO in reserved region
  i2c: imx: Fix external abort on interrupt in exit paths
  ia64: fix build error with !COREDUMP
  ubi: check kthread_should_stop() after the setting of task state
  perf python scripting: Fix printable strings in python3 scripts
  ubifs: dent: Fix some potential memory leaks while iterating entries
  NFSD: Add missing NFSv2 .pc_func methods
  NFSv4.2: support EXCHGID4_FLAG_SUPP_FENCE_OPS 4.2 EXCHANGE_ID flag
  powerpc: Fix undetected data corruption with P9N DD2.1 VSX CI load emulation
  powerpc/powernv/elog: Fix race while processing OPAL error log event.
  powerpc: Warn about use of smt_snooze_delay
  powerpc/rtas: Restrict RTAS requests from userspace
  s390/stp: add locking to sysfs functions
  powerpc/drmem: Make lmb_size 64 bit
  iio:gyro:itg3200: Fix timestamp alignment and prevent data leak.
  iio:adc:ti-adc12138 Fix alignment issue with timestamp
  iio:adc:ti-adc0832 Fix alignment issue with timestamp
  iio:light:si1145: Fix timestamp alignment and prevent data leak.
  dmaengine: dma-jz4780: Fix race in jz4780_dma_tx_status
  udf: Fix memory leak when mounting
  HID: wacom: Avoid entering wacom_wac_pen_report for pad / battery
  vt: keyboard, extend func_buf_lock to readers
  vt: keyboard, simplify vt_kdgkbsent
  drm/i915: Force VT'd workarounds when running as a guest OS
  usb: host: fsl-mph-dr-of: check return of dma_set_mask()
  usb: typec: tcpm: reset hard_reset_count for any disconnect
  usb: cdc-acm: fix cooldown mechanism
  usb: dwc3: core: don't trigger runtime pm when remove driver
  usb: dwc3: core: add phy cleanup for probe error handling
  usb: dwc3: gadget: Check MPS of the request length
  usb: dwc3: ep0: Fix ZLP for OUT ep0 requests
  usb: xhci: Workaround for S3 issue on AMD SNPS 3.0 xHC
  btrfs: fix use-after-free on readahead extent after failure to create it
  btrfs: cleanup cow block on error
  btrfs: use kvzalloc() to allocate clone_roots in btrfs_ioctl_send()
  btrfs: send, recompute reference path after orphanization of a directory
  btrfs: reschedule if necessary when logging directory items
  btrfs: improve device scanning messages
  btrfs: qgroup: fix wrong qgroup metadata reserve for delayed inode
  scsi: qla2xxx: Fix crash on session cleanup with unload
  scsi: mptfusion: Fix null pointer dereferences in mptscsih_remove()
  w1: mxc_w1: Fix timeout resolution problem leading to bus error
  acpi-cpufreq: Honor _PSD table setting on new AMD CPUs
  ACPI: debug: don't allow debugging when ACPI is disabled
  ACPI: video: use ACPI backlight for HP 635 Notebook
  ACPI / extlog: Check for RDMSR failure
  ACPI: button: fix handling lid state changes when input device closed
  NFS: fix nfs_path in case of a rename retry
  fs: Don't invalidate page buffers in block_write_full_page()
  media: uvcvideo: Fix uvc_ctrl_fixup_xu_info() not having any effect
  leds: bcm6328, bcm6358: use devres LED registering function
  perf/x86/amd/ibs: Fix raw sample data accumulation
  perf/x86/amd/ibs: Don't include randomized bits in get_ibs_op_count()
  mmc: sdhci-acpi: AMDI0040: Set SDHCI_QUIRK2_PRESET_VALUE_BROKEN
  md/raid5: fix oops during stripe resizing
  nvme-rdma: fix crash when connect rejected
  sgl_alloc_order: fix memory leak
  nbd: make the config put is called before the notifying the waiter
  ARM: dts: s5pv210: remove dedicated 'audio-subsystem' node
  ARM: dts: s5pv210: move PMU node out of clock controller
  ARM: dts: s5pv210: remove DMA controller bus node name to fix dtschema warnings
  memory: emif: Remove bogus debugfs error handling
  ARM: dts: omap4: Fix sgx clock rate for 4430
  arm64: dts: renesas: ulcb: add full-pwr-cycle-in-suspend into eMMC nodes
  cifs: handle -EINTR in cifs_setattr
  gfs2: add validation checks for size of superblock
  ext4: Detect already used quota file early
  drivers: watchdog: rdc321x_wdt: Fix race condition bugs
  net: 9p: initialize sun_server.sun_path to have addr's value only when addr is valid
  clk: ti: clockdomain: fix static checker warning
  rpmsg: glink: Use complete_all for open states
  bnxt_en: Log unknown link speed appropriately.
  md/bitmap: md_bitmap_get_counter returns wrong blocks
  btrfs: fix replace of seed device
  drm/amd/display: HDMI remote sink need mode validation for Linux
  power: supply: test_power: add missing newlines when printing parameters by sysfs
  bus/fsl_mc: Do not rely on caller to provide non NULL mc_io
  drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values
  ACPI: Add out of bounds and numa_off protections to pxm_to_node()
  xfs: don't free rt blocks when we're doing a REMAP bunmapi call
  arm64/mm: return cpu_all_mask when node is NUMA_NO_NODE
  usb: xhci: omit duplicate actions when suspending a runtime suspended host.
  uio: free uio id after uio file node is freed
  USB: adutux: fix debugging
  cpufreq: sti-cpufreq: add stih418 support
  riscv: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
  media: uvcvideo: Fix dereference of out-of-bound list iterator
  kgdb: Make "kgdbcon" work properly with "kgdb_earlycon"
  ia64: kprobes: Use generic kretprobe trampoline handler
  printk: reduce LOG_BUF_SHIFT range for H8300
  arm64: topology: Stop using MPIDR for topology information
  drm/bridge/synopsys: dsi: add support for non-continuous HS clock
  mmc: via-sdmmc: Fix data race bug
  media: imx274: fix frame interval handling
  media: tw5864: check status of tw5864_frameinterval_get
  usb: typec: tcpm: During PR_SWAP, source caps should be sent only after tSwapSourceStart
  media: platform: Improve queue set up flow for bug fixing
  media: videodev2.h: RGB BT2020 and HSV are always full range
  drm/brige/megachips: Add checking if ge_b850v3_lvds_init() is working correctly
  ath10k: fix VHT NSS calculation when STBC is enabled
  ath10k: start recovery process when payload length exceeds max htc length for sdio
  video: fbdev: pvr2fb: initialize variables
  xfs: fix realtime bitmap/summary file truncation when growing rt volume
  power: supply: bq27xxx: report "not charging" on all types
  ARM: 8997/2: hw_breakpoint: Handle inexact watchpoint addresses
  um: change sigio_spinlock to a mutex
  f2fs: fix to check segment boundary during SIT page readahead
  f2fs: fix uninit-value in f2fs_lookup
  f2fs: add trace exit in exception path
  sparc64: remove mm_cpumask clearing to fix kthread_use_mm race
  powerpc: select ARCH_WANT_IRQS_OFF_ACTIVATE_MM
  mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
  powerpc/powernv/smp: Fix spurious DBG() warning
  futex: Fix incorrect should_fail_futex() handling
  ata: sata_nv: Fix retrieving of active qcs
  RDMA/qedr: Fix memory leak in iWARP CM
  mlxsw: core: Fix use-after-free in mlxsw_emad_trans_finish()
  x86/unwind/orc: Fix inactive tasks with stack pointer in %sp on GCC 10 compiled kernels
  xen/events: block rogue events for some time
  xen/events: defer eoi in case of excessive number of events
  xen/events: use a common cpu hotplug hook for event channels
  xen/events: switch user event channels to lateeoi model
  xen/pciback: use lateeoi irq binding
  xen/pvcallsback: use lateeoi irq binding
  xen/scsiback: use lateeoi irq binding
  xen/netback: use lateeoi irq binding
  xen/blkback: use lateeoi irq binding
  xen/events: add a new "late EOI" evtchn framework
  xen/events: fix race in evtchn_fifo_unmask()
  xen/events: add a proper barrier to 2-level uevent unmasking
  xen/events: avoid removing an event channel while handling it
  xen/events: don't use chip_data for legacy IRQs
  Revert "block: ratelimit handle_bad_sector() message"
  fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext
  fscrypt: only set dentry_operations on ciphertext dentries
  fs, fscrypt: clear DCACHE_ENCRYPTED_NAME when unaliasing directory
  fscrypt: fix race allowing rename() and link() of ciphertext dentries
  fscrypt: clean up and improve dentry revalidation
  fscrypt: return -EXDEV for incompatible rename or link into encrypted dir
  ata: sata_rcar: Fix DMA boundary mask
  serial: pl011: Fix lockdep splat when handling magic-sysrq interrupt
  mtd: lpddr: Fix bad logic in print_drs_error
  RDMA/addr: Fix race with netevent_callback()/rdma_addr_cancel()
  cxl: Rework error message for incompatible slots
  p54: avoid accessing the data mapped to streaming DMA
  evm: Check size of security.evm before using it
  bpf: Fix comment for helper bpf_current_task_under_cgroup()
  fuse: fix page dereference after free
  x86/xen: disable Firmware First mode for correctable memory errors
  arch/x86/amd/ibs: Fix re-arming IBS Fetch
  cxgb4: set up filter action after rewrites
  r8169: fix issue with forced threading in combination with shared interrupts
  tipc: fix memory leak caused by tipc_buf_append()
  tcp: Prevent low rmem stalls with SO_RCVLOWAT.
  ravb: Fix bit fields checking in ravb_hwtstamp_get()
  netem: fix zero division in tabledist
  mlxsw: core: Fix memory leak on module removal
  gtp: fix an use-before-init in gtp_newlink()
  chelsio/chtls: fix tls record info to user
  chelsio/chtls: fix memory leaks in CPL handlers
  chelsio/chtls: fix deadlock issue
  efivarfs: Replace invalid slashes with exclamation marks in dentries.
  x86/PCI: Fix intel_mid_pci.c build error when ACPI is not enabled
  arm64: link with -z norelro regardless of CONFIG_RELOCATABLE
  arm64: Run ARCH_WORKAROUND_1 enabling code on all CPUs
  scripts/setlocalversion: make git describe output more reliable
  objtool: Support Clang non-section symbols in ORC generation
  ANDROID: GKI: Enable DEBUG_INFO_DWARF4
  UPSTREAM: mm/sl[uo]b: export __kmalloc_track(_node)_caller
  BACKPORT: xfrm/compat: Translate 32-bit user_policy from sockptr
  BACKPORT: xfrm/compat: Add 32=>64-bit messages translator
  UPSTREAM: xfrm/compat: Attach xfrm dumps to 64=>32 bit translator
  UPSTREAM: xfrm/compat: Add 64=>32-bit messages translator
  BACKPORT: xfrm: Provide API to register translator module
  ANDROID: Publish uncompressed Image on aarch64
  FROMLIST: crypto: arm64/poly1305-neon - reorder PAC authentication with SP update
  UPSTREAM: crypto: arm64/chacha - fix chacha_4block_xor_neon() for big endian
  UPSTREAM: crypto: arm64/chacha - fix hchacha_block_neon() for big endian
  Linux 4.19.154
  usb: gadget: f_ncm: allow using NCM in SuperSpeed Plus gadgets.
  eeprom: at25: set minimum read/write access stride to 1
  USB: cdc-wdm: Make wdm_flush() interruptible and add wdm_fsync().
  usb: cdc-acm: add quirk to blacklist ETAS ES58X devices
  tty: serial: fsl_lpuart: fix lpuart32_poll_get_char
  net: korina: cast KSEG0 address to pointer in kfree
  ath10k: check idx validity in __ath10k_htt_rx_ring_fill_n()
  scsi: ufs: ufs-qcom: Fix race conditions caused by ufs_qcom_testbus_config()
  usb: core: Solve race condition in anchor cleanup functions
  brcm80211: fix possible memleak in brcmf_proto_msgbuf_attach
  mwifiex: don't call del_timer_sync() on uninitialized timer
  reiserfs: Fix memory leak in reiserfs_parse_options()
  ipvs: Fix uninit-value in do_ip_vs_set_ctl()
  tty: ipwireless: fix error handling
  scsi: qedi: Fix list_del corruption while removing active I/O
  scsi: qedi: Protect active command list to avoid list corruption
  Fix use after free in get_capset_info callback.
  rtl8xxxu: prevent potential memory leak
  brcmsmac: fix memory leak in wlc_phy_attach_lcnphy
  scsi: ibmvfc: Fix error return in ibmvfc_probe()
  Bluetooth: Only mark socket zapped after unlocking
  usb: ohci: Default to per-port over-current protection
  xfs: make sure the rt allocator doesn't run off the end
  reiserfs: only call unlock_new_inode() if I_NEW
  misc: rtsx: Fix memory leak in rtsx_pci_probe
  ath9k: hif_usb: fix race condition between usb_get_urb() and usb_kill_anchored_urbs()
  can: flexcan: flexcan_chip_stop(): add error handling and propagate error value
  usb: dwc3: simple: add support for Hikey 970
  USB: cdc-acm: handle broken union descriptors
  udf: Avoid accessing uninitialized data on failed inode read
  udf: Limit sparing table size
  usb: gadget: function: printer: fix use-after-free in __lock_acquire
  misc: vop: add round_up(x,4) for vring_size to avoid kernel panic
  mic: vop: copy data to kernel space then write to io memory
  scsi: target: core: Add CONTROL field for trace events
  scsi: mvumi: Fix error return in mvumi_io_attach()
  PM: hibernate: remove the bogus call to get_gendisk() in software_resume()
  mac80211: handle lack of sband->bitrates in rates
  ip_gre: set dev->hard_header_len and dev->needed_headroom properly
  ntfs: add check for mft record size in superblock
  media: venus: core: Fix runtime PM imbalance in venus_probe
  fs: dlm: fix configfs memory leak
  media: saa7134: avoid a shift overflow
  mmc: sdio: Check for CISTPL_VERS_1 buffer size
  media: uvcvideo: Ensure all probed info is returned to v4l2
  media: media/pci: prevent memory leak in bttv_probe
  media: bdisp: Fix runtime PM imbalance on error
  media: platform: sti: hva: Fix runtime PM imbalance on error
  media: platform: s3c-camif: Fix runtime PM imbalance on error
  media: vsp1: Fix runtime PM imbalance on error
  media: exynos4-is: Fix a reference count leak
  media: exynos4-is: Fix a reference count leak due to pm_runtime_get_sync
  media: exynos4-is: Fix several reference count leaks due to pm_runtime_get_sync
  media: sti: Fix reference count leaks
  media: st-delta: Fix reference count leak in delta_run_work
  media: ati_remote: sanity check for both endpoints
  media: firewire: fix memory leak
  crypto: ccp - fix error handling
  block: ratelimit handle_bad_sector() message
  i2c: core: Restore acpi_walk_dep_device_list() getting called after registering the ACPI i2c devs
  perf: correct SNOOPX field offset
  sched/features: Fix !CONFIG_JUMP_LABEL case
  NTB: hw: amd: fix an issue about leak system resources
  nvmet: fix uninitialized work for zero kato
  powerpc/powernv/dump: Fix race while processing OPAL dump
  arm64: dts: zynqmp: Remove additional compatible string for i2c IPs
  ARM: dts: owl-s500: Fix incorrect PPI interrupt specifiers
  arm64: dts: qcom: msm8916: Fix MDP/DSI interrupts
  arm64: dts: qcom: pm8916: Remove invalid reg size from wcd_codec
  memory: fsl-corenet-cf: Fix handling of platform_get_irq() error
  memory: omap-gpmc: Fix build error without CONFIG_OF
  memory: omap-gpmc: Fix a couple off by ones
  ARM: dts: sun8i: r40: bananapi-m2-ultra: Fix dcdc1 regulator
  ARM: dts: imx6sl: fix rng node
  netfilter: nf_fwd_netdev: clear timestamp in forwarding path
  netfilter: conntrack: connection timeout after re-register
  KVM: x86: emulating RDPID failure shall return #UD rather than #GP
  Input: sun4i-ps2 - fix handling of platform_get_irq() error
  Input: twl4030_keypad - fix handling of platform_get_irq() error
  Input: omap4-keypad - fix handling of platform_get_irq() error
  Input: ep93xx_keypad - fix handling of platform_get_irq() error
  Input: stmfts - fix a & vs && typo
  Input: imx6ul_tsc - clean up some errors in imx6ul_tsc_resume()
  SUNRPC: fix copying of multiple pages in gss_read_proxy_verf()
  vfio iommu type1: Fix memory leak in vfio_iommu_type1_pin_pages
  vfio/pci: Clear token on bypass registration failure
  ext4: limit entries returned when counting fsmap records
  svcrdma: fix bounce buffers for unaligned offsets and multiple pages
  watchdog: sp5100: Fix definition of EFCH_PM_DECODEEN3
  watchdog: Use put_device on error
  watchdog: Fix memleak in watchdog_cdev_register
  clk: bcm2835: add missing release if devm_clk_hw_register fails
  clk: at91: clk-main: update key before writing AT91_CKGR_MOR
  clk: rockchip: Initialize hw to error to avoid undefined behavior
  pwm: img: Fix null pointer access in probe
  rpmsg: smd: Fix a kobj leak in in qcom_smd_parse_edge()
  PCI: iproc: Set affinity mask on MSI interrupts
  i2c: rcar: Auto select RESET_CONTROLLER
  mailbox: avoid timer start from callback
  rapidio: fix the missed put_device() for rio_mport_add_riodev
  rapidio: fix error handling path
  ramfs: fix nommu mmap with gaps in the page cache
  lib/crc32.c: fix trivial typo in preprocessor condition
  f2fs: wait for sysfs kobject removal before freeing f2fs_sb_info
  IB/rdmavt: Fix sizeof mismatch
  cpufreq: powernv: Fix frame-size-overflow in powernv_cpufreq_reboot_notifier
  powerpc/perf/hv-gpci: Fix starting index value
  powerpc/perf: Exclude pmc5/6 from the irrelevant PMU group constraints
  overflow: Include header file with SIZE_MAX declaration
  kdb: Fix pager search for multi-line strings
  RDMA/hns: Fix missing sq_sig_type when querying QP
  RDMA/hns: Set the unsupported wr opcode
  perf intel-pt: Fix "context_switch event has no tid" error
  RDMA/cma: Consolidate the destruction of a cma_multicast in one place
  RDMA/cma: Remove dead code for kernel rdmacm multicast
  powerpc/64s/radix: Fix mm_cpumask trimming race vs kthread_use_mm
  powerpc/tau: Disable TAU between measurements
  powerpc/tau: Check processor type before enabling TAU interrupt
  ANDROID: GKI: update the ABI xml
  Linux 4.19.153
  powerpc/tau: Remove duplicated set_thresholds() call
  powerpc/tau: Convert from timer to workqueue
  powerpc/tau: Use appropriate temperature sample interval
  RDMA/qedr: Fix inline size returned for iWARP
  RDMA/qedr: Fix use of uninitialized field
  xfs: fix high key handling in the rt allocator's query_range function
  xfs: limit entries returned when counting fsmap records
  arc: plat-hsdk: fix kconfig dependency warning when !RESET_CONTROLLER
  ARM: 9007/1: l2c: fix prefetch bits init in L2X0_AUX_CTRL using DT values
  mtd: mtdoops: Don't write panic data twice
  powerpc/pseries: explicitly reschedule during drmem_lmb list traversal
  mtd: lpddr: fix excessive stack usage with clang
  RDMA/ucma: Add missing locking around rdma_leave_multicast()
  RDMA/ucma: Fix locking for ctx->events_reported
  powerpc/icp-hv: Fix missing of_node_put() in success path
  powerpc/pseries: Fix missing of_node_put() in rng_init()
  IB/mlx4: Adjust delayed work when a dup is observed
  IB/mlx4: Fix starvation in paravirt mux/demux
  mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
  mm/memcg: fix device private memcg accounting
  netfilter: nf_log: missing vlan offload tag and proto
  net: korina: fix kfree of rx/tx descriptor array
  ipvs: clear skb->tstamp in forwarding path
  mwifiex: fix double free
  platform/x86: mlx-platform: Remove PSU EEPROM configuration
  scsi: be2iscsi: Fix a theoretical leak in beiscsi_create_eqs()
  scsi: target: tcmu: Fix warning: 'page' may be used uninitialized
  usb: dwc2: Fix INTR OUT transfers in DDMA mode.
  nl80211: fix non-split wiphy information
  usb: gadget: u_ether: enable qmult on SuperSpeed Plus as well
  usb: gadget: f_ncm: fix ncm_bitrate for SuperSpeed and above.
  iwlwifi: mvm: split a print to avoid a WARNING in ROC
  mfd: sm501: Fix leaks in probe()
  net: enic: Cure the enic api locking trainwreck
  qtnfmac: fix resource leaks on unsupported iftype error return path
  HID: hid-input: fix stylus battery reporting
  slimbus: qcom-ngd-ctrl: disable ngd in qmi server down callback
  slimbus: core: do not enter to clock pause mode in core
  slimbus: core: check get_addr before removing laddr ida
  quota: clear padding in v2r1_mem2diskdqb()
  usb: dwc2: Fix parameter type in function pointer prototype
  ALSA: seq: oss: Avoid mutex lock for a long-time ioctl
  misc: mic: scif: Fix error handling path
  ath6kl: wmi: prevent a shift wrapping bug in ath6kl_wmi_delete_pstream_cmd()
  net: dsa: rtl8366rb: Support all 4096 VLANs
  net: dsa: rtl8366: Skip PVID setting if not requested
  net: dsa: rtl8366: Refactor VLAN/PVID init
  net: dsa: rtl8366: Check validity of passed VLANs
  cpufreq: armada-37xx: Add missing MODULE_DEVICE_TABLE
  net: stmmac: use netif_tx_start|stop_all_queues() function
  net/mlx5: Don't call timecounter cyc2time directly from 1PPS flow
  pinctrl: mcp23s08: Fix mcp23x17 precious range
  pinctrl: mcp23s08: Fix mcp23x17_regmap initialiser
  HID: roccat: add bounds checking in kone_sysfs_write_settings()
  video: fbdev: radeon: Fix memleak in radeonfb_pci_register
  video: fbdev: sis: fix null ptr dereference
  video: fbdev: vga16fb: fix setting of pixclock because a pass-by-value error
  drivers/virt/fsl_hypervisor: Fix error handling path
  pwm: lpss: Add range limit check for the base_unit register value
  pwm: lpss: Fix off by one error in base_unit math in pwm_lpss_prepare()
  pty: do tty_flip_buffer_push without port->lock in pty_write
  tty: hvcs: Don't NULL tty->driver_data until hvcs_cleanup()
  tty: serial: earlycon dependency
  VMCI: check return value of get_user_pages_fast() for errors
  backlight: sky81452-backlight: Fix refcount imbalance on error
  scsi: csiostor: Fix wrong return value in csio_hw_prep_fw()
  scsi: qla2xxx: Fix wrong return value in qla_nvme_register_hba()
  scsi: qla4xxx: Fix an error handling path in 'qla4xxx_get_host_stats()'
  drm/gma500: fix error check
  staging: rtl8192u: Do not use GFP_KERNEL in atomic context
  mwifiex: Do not use GFP_KERNEL in atomic context
  brcmfmac: check ndev pointer
  ASoC: qcom: lpass-cpu: fix concurrency issue
  ASoC: qcom: lpass-platform: fix memory leak
  wcn36xx: Fix reported 802.11n rx_highest rate wcn3660/wcn3680
  ath10k: Fix the size used in a 'dma_free_coherent()' call in an error handling path
  ath9k: Fix potential out of bounds in ath9k_htc_txcompletion_cb()
  ath6kl: prevent potential array overflow in ath6kl_add_new_sta()
  Bluetooth: hci_uart: Cancel init work before unregistering
  ath10k: provide survey info as accumulated data
  spi: spi-s3c64xx: Check return values
  spi: spi-s3c64xx: swap s3c64xx_spi_set_cs() and s3c64xx_enable_datapath()
  pinctrl: bcm: fix kconfig dependency warning when !GPIOLIB
  regulator: resolve supply after creating regulator
  media: ti-vpe: Fix a missing check and reference count leak
  media: stm32-dcmi: Fix a reference count leak
  media: s5p-mfc: Fix a reference count leak
  media: camss: Fix a reference count leak.
  media: platform: fcp: Fix a reference count leak.
  media: rockchip/rga: Fix a reference count leak.
  media: rcar-vin: Fix a reference count leak.
  media: tc358743: cleanup tc358743_cec_isr
  media: tc358743: initialize variable
  media: mx2_emmaprp: Fix memleak in emmaprp_probe
  cypto: mediatek - fix leaks in mtk_desc_ring_alloc
  hwmon: (pmbus/max34440) Fix status register reads for MAX344{51,60,61}
  crypto: omap-sham - fix digcnt register handling with export/import
  media: omap3isp: Fix memleak in isp_probe
  media: uvcvideo: Silence shift-out-of-bounds warning
  media: uvcvideo: Set media controller entity functions
  media: m5mols: Check function pointer in m5mols_sensor_power
  media: Revert "media: exynos4-is: Add missed check for pinctrl_lookup_state()"
  media: tuner-simple: fix regression in simple_set_radio_freq
  crypto: picoxcell - Fix potential race condition bug
  crypto: ixp4xx - Fix the size used in a 'dma_free_coherent()' call
  crypto: mediatek - Fix wrong return value in mtk_desc_ring_alloc()
  crypto: algif_skcipher - EBUSY on aio should be an error
  x86/events/amd/iommu: Fix sizeof mismatch
  x86/nmi: Fix nmi_handle() duration miscalculation
  drivers/perf: xgene_pmu: Fix uninitialized resource struct
  x86/fpu: Allow multiple bits in clearcpuid= parameter
  EDAC/ti: Fix handling of platform_get_irq() error
  EDAC/i5100: Fix error handling order in i5100_init_one()
  crypto: algif_aead - Do not set MAY_BACKLOG on the async path
  ima: Don't ignore errors from crypto_shash_update()
  KVM: SVM: Initialize prev_ga_tag before use
  KVM: x86/mmu: Commit zap of remaining invalid pages when recovering lpages
  cifs: Return the error from crypt_message when enc/dec key not found.
  cifs: remove bogus debug code
  ALSA: hda/realtek: Enable audio jacks of ASUS D700SA with ALC887
  icmp: randomize the global rate limiter
  r8169: fix operation under forced interrupt threading
  tcp: fix to update snd_wl1 in bulk receiver fast path
  nfc: Ensure presence of NFC_ATTR_FIRMWARE_NAME attribute in nfc_genl_fw_download()
  net/sched: act_tunnel_key: fix OOB write in case of IPv6 ERSPAN tunnels
  net: hdlc_raw_eth: Clear the IFF_TX_SKB_SHARING flag after calling ether_setup
  net: hdlc: In hdlc_rcv, check to make sure dev is an HDLC device
  chelsio/chtls: correct function return and return type
  chelsio/chtls: correct netdevice for vlan interface
  chelsio/chtls: fix socket lock
  ALSA: bebob: potential info leak in hwdep_read()
  binder: fix UAF when releasing todo list
  net/tls: sendfile fails with ktls offload
  r8169: fix data corruption issue on RTL8402
  net/ipv4: always honour route mtu during forwarding
  tipc: fix the skb_unshare() in tipc_buf_append()
  net: usb: qmi_wwan: add Cellient MPL200 card
  net/smc: fix valid DMBE buffer sizes
  net: fix pos incrementment in ipv6_route_seq_next
  net: fec: Fix PHY init after phy_reset_after_clk_enable()
  net: fec: Fix phy_device lookup for phy_reset_after_clk_enable()
  mlx4: handle non-napi callers to napi_poll
  ipv4: Restore flowi4_oif update before call to xfrm_lookup_route
  ibmveth: Identify ingress large send packets.
  ibmveth: Switch order of ibmveth_helper calls.
  ANDROID: clang: update to 11.0.5
  FROMLIST: arm64: link with -z norelro regardless of CONFIG_RELOCATABLE
  ANDROID: GKI: enable CONFIG_WIREGUARD
  UPSTREAM: wireguard: peerlookup: take lock before checking hash in replace operation
  UPSTREAM: wireguard: noise: take lock when removing handshake entry from table
  UPSTREAM: wireguard: queueing: make use of ip_tunnel_parse_protocol
  UPSTREAM: net: ip_tunnel: add header_ops for layer 3 devices
  UPSTREAM: wireguard: receive: account for napi_gro_receive never returning GRO_DROP
  UPSTREAM: wireguard: device: avoid circular netns references
  UPSTREAM: wireguard: noise: do not assign initiation time in if condition
  UPSTREAM: wireguard: noise: separate receive counter from send counter
  UPSTREAM: wireguard: queueing: preserve flow hash across packet scrubbing
  UPSTREAM: wireguard: noise: read preshared key while taking lock
  UPSTREAM: wireguard: selftests: use newer iproute2 for gcc-10
  UPSTREAM: wireguard: send/receive: use explicit unlikely branch instead of implicit coalescing
  UPSTREAM: wireguard: selftests: initalize ipv6 members to NULL to squelch clang warning
  UPSTREAM: wireguard: send/receive: cond_resched() when processing worker ringbuffers
  UPSTREAM: wireguard: socket: remove errant restriction on looping to self
  UPSTREAM: wireguard: selftests: use normal kernel stack size on ppc64
  UPSTREAM: wireguard: receive: use tunnel helpers for decapsulating ECN markings
  UPSTREAM: wireguard: queueing: cleanup ptr_ring in error path of packet_queue_init
  UPSTREAM: wireguard: send: remove errant newline from packet_encrypt_worker
  UPSTREAM: wireguard: noise: error out precomputed DH during handshake rather than config
  UPSTREAM: wireguard: receive: remove dead code from default packet type case
  UPSTREAM: wireguard: queueing: account for skb->protocol==0
  UPSTREAM: wireguard: selftests: remove duplicated include <sys/types.h>
  UPSTREAM: wireguard: socket: remove extra call to synchronize_net
  UPSTREAM: wireguard: send: account for mtu=0 devices
  UPSTREAM: wireguard: receive: reset last_under_load to zero
  UPSTREAM: wireguard: selftests: reduce complexity and fix make races
  UPSTREAM: wireguard: device: use icmp_ndo_send helper
  UPSTREAM: wireguard: selftests: tie socket waiting to target pid
  UPSTREAM: wireguard: selftests: ensure non-addition of peers with failed precomputation
  UPSTREAM: wireguard: noise: reject peers with low order public keys
  UPSTREAM: wireguard: allowedips: fix use-after-free in root_remove_peer_lists
  UPSTREAM: net: skbuff: disambiguate argument and member for skb_list_walk_safe helper
  UPSTREAM: net: introduce skb_list_walk_safe for skb segment walking
  UPSTREAM: wireguard: socket: mark skbs as not on list when receiving via gro
  UPSTREAM: wireguard: queueing: do not account for pfmemalloc when clearing skb header
  UPSTREAM: wireguard: selftests: remove ancient kernel compatibility code
  UPSTREAM: wireguard: allowedips: use kfree_rcu() instead of call_rcu()
  UPSTREAM: wireguard: main: remove unused include <linux/version.h>
  UPSTREAM: wireguard: global: fix spelling mistakes in comments
  UPSTREAM: wireguard: Kconfig: select parent dependency for crypto
  UPSTREAM: wireguard: selftests: import harness makefile for test suite
  UPSTREAM: net: WireGuard secure network tunnel
  UPSTREAM: timekeeping: Boot should be boottime for coarse ns accessor
  UPSTREAM: timekeeping: Add missing _ns functions for coarse accessors
  UPSTREAM: icmp: introduce helper for nat'd source address in network device context
  UPSTREAM: crypto: poly1305-x86_64 - Use XORL r32,32
  UPSTREAM: crypto: curve25519-x86_64 - Use XORL r32,32
  UPSTREAM: crypto: arm/poly1305 - Add prototype for poly1305_blocks_neon
  UPSTREAM: crypto: arm/curve25519 - include <linux/scatterlist.h>
  UPSTREAM: crypto: x86/curve25519 - Remove unused carry variables
  UPSTREAM: crypto: x86/chacha-sse3 - use unaligned loads for state array
  UPSTREAM: crypto: lib/chacha20poly1305 - Add missing function declaration
  UPSTREAM: crypto: arch/lib - limit simd usage to 4k chunks
  UPSTREAM: crypto: arm[64]/poly1305 - add artifact to .gitignore files
  UPSTREAM: crypto: x86/curve25519 - leave r12 as spare register
  UPSTREAM: crypto: x86/curve25519 - replace with formally verified implementation
  UPSTREAM: crypto: arm64/chacha - correctly walk through blocks
  UPSTREAM: crypto: x86/curve25519 - support assemblers with no adx support
  UPSTREAM: crypto: chacha20poly1305 - prevent integer overflow on large input
  UPSTREAM: crypto: Kconfig - allow tests to be disabled when manager is disabled
  UPSTREAM: crypto: arm/chacha - fix build failured when kernel mode NEON is disabled
  UPSTREAM: crypto: x86/poly1305 - emit does base conversion itself
  UPSTREAM: crypto: chacha20poly1305 - add back missing test vectors and test chunking
  UPSTREAM: crypto: x86/poly1305 - fix .gitignore typo
  UPSTREAM: crypto: curve25519 - Fix selftest build error
  UPSTREAM: crypto: {arm,arm64,mips}/poly1305 - remove redundant non-reduction from emit
  UPSTREAM: crypto: x86/poly1305 - wire up faster implementations for kernel
  UPSTREAM: crypto: x86/poly1305 - import unmodified cryptogams implementation
  UPSTREAM: crypto: poly1305 - add new 32 and 64-bit generic versions
  UPSTREAM: crypto: lib/curve25519 - re-add selftests
  UPSTREAM: crypto: arm/curve25519 - add arch-specific key generation function
  UPSTREAM: crypto: chacha - fix warning message in header file
  UPSTREAM: crypto: arch - conditionalize crypto api in arch glue for lib code
  UPSTREAM: crypto: lib/chacha20poly1305 - use chacha20_crypt()
  UPSTREAM: crypto: x86/chacha - only unregister algorithms if registered
  UPSTREAM: crypto: chacha_generic - remove unnecessary setkey() functions
  UPSTREAM: crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
  UPSTREAM: crypto: chacha20poly1305 - import construction and selftest from Zinc
  UPSTREAM: crypto: arm/curve25519 - wire up NEON implementation
  UPSTREAM: crypto: arm/curve25519 - import Bernstein and Schwabe's Curve25519 ARM implementation
  UPSTREAM: crypto: curve25519 - x86_64 library and KPP implementations
  UPSTREAM: crypto: lib/curve25519 - work around Clang stack spilling issue
  UPSTREAM: crypto: curve25519 - implement generic KPP driver
  UPSTREAM: crypto: curve25519 - add kpp selftest
  UPSTREAM: crypto: curve25519 - generic C library implementations
  UPSTREAM: crypto: blake2s - x86_64 SIMD implementation
  UPSTREAM: crypto: blake2s - implement generic shash driver
  UPSTREAM: crypto: testmgr - add test cases for Blake2s
  UPSTREAM: crypto: blake2s - generic C library implementation and selftest
  UPSTREAM: crypto: mips/poly1305 - incorporate OpenSSL/CRYPTOGAMS optimized implementation
  UPSTREAM: crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation
  UPSTREAM: crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation
  UPSTREAM: crypto: x86/poly1305 - expose existing driver as poly1305 library
  UPSTREAM: crypto: x86/poly1305 - depend on generic library not generic shash
  UPSTREAM: crypto: poly1305 - expose init/update/final library interface
  UPSTREAM: crypto: x86/poly1305 - unify Poly1305 state struct with generic code
  UPSTREAM: crypto: poly1305 - move core routines into a separate library
  UPSTREAM: crypto: chacha - unexport chacha_generic routines
  UPSTREAM: crypto: mips/chacha - wire up accelerated 32r2 code from Zinc
  UPSTREAM: crypto: mips/chacha - import 32r2 ChaCha code from Zinc
  UPSTREAM: crypto: arm/chacha - expose ARM ChaCha routine as library function
  UPSTREAM: crypto: arm/chacha - remove dependency on generic ChaCha driver
  UPSTREAM: crypto: arm/chacha - import Eric Biggers's scalar accelerated ChaCha code
  UPSTREAM: crypto: arm64/chacha - expose arm64 ChaCha routine as library function
  UPSTREAM: crypto: arm64/chacha - depend on generic chacha library instead of crypto driver
  UPSTREAM: crypto: arm64/chacha - use combined SIMD/ALU routine for more speed
  UPSTREAM: crypto: arm64/chacha - optimize for arbitrary length inputs
  UPSTREAM: crypto: x86/chacha - expose SIMD ChaCha routine as library function
  UPSTREAM: crypto: x86/chacha - depend on generic chacha library instead of crypto driver
  UPSTREAM: crypto: chacha - move existing library code into lib/crypto
  UPSTREAM: crypto: lib - tidy up lib/crypto Kconfig and Makefile
  UPSTREAM: crypto: chacha - constify ctx and iv arguments
  UPSTREAM: crypto: x86/poly1305 - Clear key material from stack in SSE2 variant
  UPSTREAM: crypto: xchacha20 - fix comments for test vectors
  UPSTREAM: crypto: xchacha - add test vector from XChaCha20 draft RFC
  UPSTREAM: crypto: arm64/chacha - add XChaCha12 support
  UPSTREAM: crypto: arm64/chacha20 - refactor to allow varying number of rounds
  UPSTREAM: crypto: arm64/chacha20 - add XChaCha20 support
  UPSTREAM: crypto: x86/chacha - avoid sleeping under kernel_fpu_begin()
  UPSTREAM: crypto: x86/chacha - yield the FPU occasionally
  UPSTREAM: crypto: x86/chacha - add XChaCha12 support
  UPSTREAM: crypto: x86/chacha20 - refactor to allow varying number of rounds
  UPSTREAM: crypto: x86/chacha20 - add XChaCha20 support
  UPSTREAM: crypto: x86/chacha20 - Add a 4-block AVX-512VL variant
  UPSTREAM: crypto: x86/chacha20 - Add a 2-block AVX-512VL variant
  UPSTREAM: crypto: x86/chacha20 - Add a 8-block AVX-512VL variant
  UPSTREAM: crypto: x86/chacha20 - Add a 4-block AVX2 variant
  UPSTREAM: crypto: x86/chacha20 - Add a 2-block AVX2 variant
  UPSTREAM: crypto: x86/chacha20 - Use larger block functions more aggressively
  UPSTREAM: crypto: x86/chacha20 - Support partial lengths in 8-block AVX2 variant
  UPSTREAM: crypto: x86/chacha20 - Support partial lengths in 4-block SSSE3 variant
  UPSTREAM: crypto: x86/chacha20 - Support partial lengths in 1-block SSSE3 variant
  ANDROID: GKI: Enable CONFIG_USB_ANNOUNCE_NEW_DEVICES
  ANDROID: GKI: Enable CONFIG_X86_X2APIC
  ANDROID: move builds to use gas prebuilts
  UPSTREAM: binder: fix UAF when releasing todo list

 Conflicts:
	crypto/algif_aead.c
	drivers/rpmsg/qcom_glink_native.c
	drivers/scsi/ufs/ufs-qcom.c
	drivers/slimbus/qcom-ngd-ctrl.c
	fs/notify/inotify/inotify_user.c
	include/linux/dcache.h
	include/linux/fsnotify.h
	mm/oom_kill.c

 Fixed build errors:
	fs/fuse/dir.c

Change-Id: I95bdbb1b183fa2c569023f18e09799d9cb96fc9f
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2020-12-18 18:35:06 +05:30

3239 lines
83 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Scheduler internal types and methods:
*/
#include <linux/sched.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/clock.h>
#include <linux/sched/coredump.h>
#include <linux/sched/cpufreq.h>
#include <linux/sched/cputime.h>
#include <linux/sched/deadline.h>
#include <linux/sched/debug.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/idle.h>
#include <linux/sched/init.h>
#include <linux/sched/isolation.h>
#include <linux/sched/jobctl.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/nohz.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/prio.h>
#include <linux/sched/rt.h>
#include <linux/sched/signal.h>
#include <linux/sched/smt.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/topology.h>
#include <linux/sched/user.h>
#include <linux/sched/wake_q.h>
#include <linux/sched/xacct.h>
#include <uapi/linux/sched/types.h>
#include <linux/binfmts.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpuidle.h>
#include <linux/cpuset.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delayacct.h>
#include <linux/energy_model.h>
#include <linux/init_task.h>
#include <linux/kprobes.h>
#include <linux/kthread.h>
#include <linux/membarrier.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/nmi.h>
#include <linux/proc_fs.h>
#include <linux/prefetch.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcupdate_wait.h>
#include <linux/security.h>
#include <linux/stackprotector.h>
#include <linux/stop_machine.h>
#include <linux/suspend.h>
#include <linux/swait.h>
#include <linux/syscalls.h>
#include <linux/task_work.h>
#include <linux/tsacct_kern.h>
#include <asm/tlb.h>
#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
#endif
#include "cpupri.h"
#include "cpudeadline.h"
#ifdef CONFIG_SCHED_DEBUG
# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
#else
# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
#endif
#include "tune.h"
struct rq;
struct cpuidle_state;
extern __read_mostly bool sched_predl;
extern unsigned int sched_capacity_margin_up[NR_CPUS];
extern unsigned int sched_capacity_margin_down[NR_CPUS];
struct sched_walt_cpu_load {
unsigned long nl;
unsigned long pl;
bool rtgb_active;
u64 ws;
};
#ifdef CONFIG_SCHED_WALT
extern unsigned int sched_ravg_window;
struct walt_sched_stats {
int nr_big_tasks;
u64 cumulative_runnable_avg_scaled;
u64 pred_demands_sum_scaled;
unsigned int nr_rtg_high_prio_tasks;
};
struct group_cpu_time {
u64 curr_runnable_sum;
u64 prev_runnable_sum;
u64 nt_curr_runnable_sum;
u64 nt_prev_runnable_sum;
};
struct load_subtractions {
u64 window_start;
u64 subs;
u64 new_subs;
};
#define NUM_TRACKED_WINDOWS 2
#define NUM_LOAD_INDICES 1000
struct sched_cluster {
raw_spinlock_t load_lock;
struct list_head list;
struct cpumask cpus;
int id;
int max_power_cost;
int min_power_cost;
int max_possible_capacity;
int efficiency; /* Differentiate cpus with different IPC capability */
unsigned int exec_scale_factor;
/*
* max_freq = user maximum
* max_mitigated_freq = thermal defined maximum
* max_possible_freq = maximum supported by hardware
*/
unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq;
unsigned int max_possible_freq;
bool freq_init_done;
u64 aggr_grp_load;
};
extern cpumask_t asym_cap_sibling_cpus;
#endif /* CONFIG_SCHED_WALT */
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED 1
#define TASK_ON_RQ_MIGRATING 2
extern __read_mostly int scheduler_running;
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;
extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
#ifdef CONFIG_SMP
extern void cpu_load_update_active(struct rq *this_rq);
extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
#else
static inline void cpu_load_update_active(struct rq *this_rq) { }
#endif
/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
/*
* Increase resolution of nice-level calculations for 64-bit architectures.
* The extra resolution improves shares distribution and load balancing of
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
* hierarchies, especially on larger systems. This is not a user-visible change
* and does not change the user-interface for setting shares/weights.
*
* We increase resolution only if we have enough bits to allow this increased
* resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
* are pretty high and the returns do not justify the increased costs.
*
* Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
* increase coverage and consistency always enable it on 64-bit platforms.
*/
#ifdef CONFIG_64BIT
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w) \
({ \
unsigned long __w = (w); \
if (__w) \
__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
__w; \
})
#else
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) (w)
# define scale_load_down(w) (w)
#endif
/*
* Task weight (visible to users) and its load (invisible to users) have
* independent resolution, but they should be well calibrated. We use
* scale_load() and scale_load_down(w) to convert between them. The
* following must be true:
*
* scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
*
*/
#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
/*
* Single value that decides SCHED_DEADLINE internal math precision.
* 10 -> just above 1us
* 9 -> just above 0.5us
*/
#define DL_SCALE 10
/*
* Single value that denotes runtime == period, ie unlimited time.
*/
#define RUNTIME_INF ((u64)~0ULL)
static inline int idle_policy(int policy)
{
return policy == SCHED_IDLE;
}
static inline int fair_policy(int policy)
{
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}
static inline int rt_policy(int policy)
{
return policy == SCHED_FIFO || policy == SCHED_RR;
}
static inline int dl_policy(int policy)
{
return policy == SCHED_DEADLINE;
}
static inline bool valid_policy(int policy)
{
return idle_policy(policy) || fair_policy(policy) ||
rt_policy(policy) || dl_policy(policy);
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
static inline int task_has_dl_policy(struct task_struct *p)
{
return dl_policy(p->policy);
}
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
/*
* !! For sched_setattr_nocheck() (kernel) only !!
*
* This is actually gross. :(
*
* It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
* tasks, but still be able to sleep. We need this on platforms that cannot
* atomically change clock frequency. Remove once fast switching will be
* available on such platforms.
*
* SUGOV stands for SchedUtil GOVernor.
*/
#define SCHED_FLAG_SUGOV 0x10000000
static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
return false;
#endif
}
/*
* Tells if entity @a should preempt entity @b.
*/
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
{
return dl_entity_is_special(a) ||
dl_time_before(a->deadline, b->deadline);
}
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
struct rt_prio_array {
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];
};
struct rt_bandwidth {
/* nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
ktime_t rt_period;
u64 rt_runtime;
struct hrtimer rt_period_timer;
unsigned int rt_period_active;
};
void __dl_clear_params(struct task_struct *p);
/*
* To keep the bandwidth of -deadline tasks and groups under control
* we need some place where:
* - store the maximum -deadline bandwidth of the system (the group);
* - cache the fraction of that bandwidth that is currently allocated.
*
* This is all done in the data structure below. It is similar to the
* one used for RT-throttling (rt_bandwidth), with the main difference
* that, since here we are only interested in admission control, we
* do not decrease any runtime while the group "executes", neither we
* need a timer to replenish it.
*
* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
* - dl_total_bw array contains, in the i-eth element, the currently
* allocated bandwidth on the i-eth CPU.
* Moreover, groups consume bandwidth on each CPU, while tasks only
* consume bandwidth on the CPU they're running on.
* Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
* that will be shown the next time the proc or cgroup controls will
* be red. It on its turn can be changed by writing on its own
* control.
*/
struct dl_bandwidth {
raw_spinlock_t dl_runtime_lock;
u64 dl_runtime;
u64 dl_period;
};
static inline int dl_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
}
struct dl_bw {
raw_spinlock_t lock;
u64 bw;
u64 total_bw;
};
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
static inline
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
{
dl_b->total_bw -= tsk_bw;
__dl_update(dl_b, (s32)tsk_bw / cpus);
}
static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
{
dl_b->total_bw += tsk_bw;
__dl_update(dl_b, -((s32)tsk_bw / cpus));
}
static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
return dl_b->bw != -1 &&
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}
extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
extern void init_dl_bw(struct dl_bw *dl_b);
extern int sched_dl_global_validate(void);
extern void sched_dl_do_global(void);
extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern bool dl_cpu_busy(unsigned int cpu);
#ifdef CONFIG_CGROUP_SCHED
#include <linux/cgroup.h>
#include <linux/psi.h>
struct cfs_rq;
struct rt_rq;
extern struct list_head task_groups;
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
raw_spinlock_t lock;
ktime_t period;
u64 quota;
u64 runtime;
s64 hierarchical_quota;
short idle;
short period_active;
struct hrtimer period_timer;
struct hrtimer slack_timer;
struct list_head throttled_cfs_rq;
/* Statistics: */
int nr_periods;
int nr_throttled;
u64 throttled_time;
bool distribute_running;
#endif
};
/* Task group related information */
struct task_group {
struct cgroup_subsys_state css;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* schedulable entities of this group on each CPU */
struct sched_entity **se;
/* runqueue "owned" by this group on each CPU */
struct cfs_rq **cfs_rq;
unsigned long shares;
#ifdef CONFIG_SMP
/*
* load_avg can be heavily contended at clock tick time, so put
* it in its own cacheline separated from the fields above which
* will also be accessed at each tick.
*/
atomic_long_t load_avg ____cacheline_aligned;
#endif
#endif
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity **rt_se;
struct rt_rq **rt_rq;
struct rt_bandwidth rt_bandwidth;
#endif
struct rcu_head rcu;
struct list_head list;
struct task_group *parent;
struct list_head siblings;
struct list_head children;
#ifdef CONFIG_SCHED_AUTOGROUP
struct autogroup *autogroup;
#endif
struct cfs_bandwidth cfs_bandwidth;
#ifdef CONFIG_UCLAMP_TASK_GROUP
/* The two decimal precision [%] value requested from user-space */
unsigned int uclamp_pct[UCLAMP_CNT];
/* Clamp values requested for a task group */
struct uclamp_se uclamp_req[UCLAMP_CNT];
/* Effective clamp values used for a task group */
struct uclamp_se uclamp[UCLAMP_CNT];
/* Latency-sensitive flag used for a task group */
unsigned int latency_sensitive;
#endif
};
#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
/*
* A weight of 0 or 1 can cause arithmetics problems.
* A weight of a cfs_rq is the sum of weights of which entities
* are queued on this cfs_rq, so a weight of a entity should not be
* too large, so as the shares value of a task group.
* (The default weight is 1024 - so there's no practical
* limitation from this.)
*/
#define MIN_SHARES (1UL << 1)
#define MAX_SHARES (1UL << 18)
#endif
typedef int (*tg_visitor)(struct task_group *, void *);
extern int walk_tg_tree_from(struct task_group *from,
tg_visitor down, tg_visitor up, void *data);
/*
* Iterate the full tree, calling @down when first entering a node and @up when
* leaving it for the final time.
*
* Caller must hold rcu_lock or sufficient equivalent.
*/
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
return walk_tg_tree_from(&root_task_group, down, up, data);
}
extern int tg_nop(struct task_group *tg, void *data);
extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent);
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);
extern void sched_move_task(struct task_struct *tsk);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
#else /* CONFIG_CGROUP_SCHED */
struct cfs_bandwidth { };
#endif /* CONFIG_CGROUP_SCHED */
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
unsigned long runnable_weight;
unsigned int nr_running;
unsigned int h_nr_running;
u64 exec_clock;
u64 min_vruntime;
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
#endif
struct rb_root_cached tasks_timeline;
/*
* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
*/
struct sched_entity *curr;
struct sched_entity *next;
struct sched_entity *last;
struct sched_entity *skip;
#ifdef CONFIG_SCHED_DEBUG
unsigned int nr_spread_over;
#endif
#ifdef CONFIG_SMP
/*
* CFS load tracking
*/
struct sched_avg avg;
#ifndef CONFIG_64BIT
u64 load_last_update_time_copy;
#endif
struct {
raw_spinlock_t lock ____cacheline_aligned;
int nr;
unsigned long load_avg;
unsigned long util_avg;
unsigned long runnable_sum;
} removed;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
long propagate;
long prop_runnable_sum;
/*
* h_load = weight * f(tg)
*
* Where f(tg) is the recursive weight fraction assigned to
* this group.
*/
unsigned long h_load;
u64 last_h_load_update;
struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
* This list is used during load balance.
*/
int on_list;
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_CFS_BANDWIDTH
#ifdef CONFIG_SCHED_WALT
struct walt_sched_stats walt_stats;
#endif
int runtime_enabled;
s64 runtime_remaining;
u64 throttled_clock;
u64 throttled_clock_task;
u64 throttled_clock_task_time;
int throttled;
int throttle_count;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
static inline int rt_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
}
/* RT IPI pull logic requires IRQ_WORK */
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
# define HAVE_RT_PUSH_IPI
#endif
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
struct rt_prio_array active;
unsigned int rt_nr_running;
unsigned int rr_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
int next; /* next highest */
#endif
} highest_prio;
#endif
#ifdef CONFIG_SMP
unsigned long rt_nr_migratory;
unsigned long rt_nr_total;
int overloaded;
struct plist_head pushable_tasks;
#endif /* CONFIG_SMP */
int rt_queued;
int rt_throttled;
u64 rt_time;
u64 rt_runtime;
/* Nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
#ifdef CONFIG_RT_GROUP_SCHED
unsigned long rt_nr_boosted;
struct rq *rq;
struct task_group *tg;
#endif
};
static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{
return rt_rq->rt_queued && rt_rq->rt_nr_running;
}
/* Deadline class' related fields in a runqueue */
struct dl_rq {
/* runqueue is an rbtree, ordered by deadline */
struct rb_root_cached root;
unsigned long dl_nr_running;
#ifdef CONFIG_SMP
/*
* Deadline values of the currently executing and the
* earliest ready task on this rq. Caching these facilitates
* the decision wether or not a ready but not running task
* should migrate somewhere else.
*/
struct {
u64 curr;
u64 next;
} earliest_dl;
unsigned long dl_nr_migratory;
int overloaded;
/*
* Tasks on this rq that can be pushed away. They are kept in
* an rb-tree, ordered by tasks' deadlines, with caching
* of the leftmost (earliest deadline) element.
*/
struct rb_root_cached pushable_dl_tasks_root;
#else
struct dl_bw dl_bw;
#endif
/*
* "Active utilization" for this runqueue: increased when a
* task wakes up (becomes TASK_RUNNING) and decreased when a
* task blocks
*/
u64 running_bw;
/*
* Utilization of the tasks "assigned" to this runqueue (including
* the tasks that are in runqueue and the tasks that executed on this
* CPU and blocked). Increased when a task moves to this runqueue, and
* decreased when the task moves away (migrates, changes scheduling
* policy, or terminates).
* This is needed to compute the "inactive utilization" for the
* runqueue (inactive utilization = this_bw - running_bw).
*/
u64 this_bw;
u64 extra_bw;
/*
* Inverse of the fraction of CPU utilization that can be reclaimed
* by the GRUB algorithm.
*/
u64 bw_ratio;
};
#ifdef CONFIG_FAIR_GROUP_SCHED
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
#else
#define entity_is_task(se) 1
#endif
#ifdef CONFIG_SMP
/*
* XXX we want to get rid of these helpers and use the full load resolution.
*/
static inline long se_weight(struct sched_entity *se)
{
return scale_load_down(se->load.weight);
}
static inline long se_runnable(struct sched_entity *se)
{
return scale_load_down(se->runnable_weight);
}
static inline bool sched_asym_prefer(int a, int b)
{
return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}
struct perf_domain {
struct em_perf_domain *em_pd;
struct perf_domain *next;
struct rcu_head rcu;
};
struct max_cpu_capacity {
raw_spinlock_t lock;
unsigned long val;
int cpu;
};
/* Scheduling group status flags */
#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
#define SG_HAS_MISFIT_TASK 0x4 /* Group has misfit task. */
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
* fully partitioning the member CPUs from any other cpuset. Whenever a new
* exclusive cpuset is created, we also create and attach a new root-domain
* object.
*
*/
struct root_domain {
atomic_t refcount;
atomic_t rto_count;
struct rcu_head rcu;
cpumask_var_t span;
cpumask_var_t online;
/*
* Indicate pullable load on at least one CPU, e.g:
* - More than one runnable task
* - Running task is misfit
*/
int overload;
/*
* The bit corresponding to a CPU gets set here if such CPU has more
* than one runnable -deadline task (as it is below for RT tasks).
*/
cpumask_var_t dlo_mask;
atomic_t dlo_count;
struct dl_bw dl_bw;
struct cpudl cpudl;
#ifdef HAVE_RT_PUSH_IPI
/*
* For IPI pull requests, loop across the rto_mask.
*/
struct irq_work rto_push_work;
raw_spinlock_t rto_lock;
/* These are only updated and read within rto_lock */
int rto_loop;
int rto_cpu;
/* These atomics are updated outside of a lock */
atomic_t rto_loop_next;
atomic_t rto_loop_start;
#endif
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
*/
cpumask_var_t rto_mask;
struct cpupri cpupri;
/* Maximum cpu capacity in the system. */
struct max_cpu_capacity max_cpu_capacity;
/*
* NULL-terminated list of performance domains intersecting with the
* CPUs of the rd. Protected by RCU.
*/
struct perf_domain *pd;
/* First cpu with maximum and minimum original capacity */
int max_cap_orig_cpu, min_cap_orig_cpu;
/* First cpu with mid capacity */
int mid_cap_orig_cpu;
};
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
extern void init_defrootdomain(void);
extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
#endif /* CONFIG_SMP */
#ifdef CONFIG_UCLAMP_TASK
/*
* struct uclamp_bucket - Utilization clamp bucket
* @value: utilization clamp value for tasks on this clamp bucket
* @tasks: number of RUNNABLE tasks on this clamp bucket
*
* Keep track of how many tasks are RUNNABLE for a given utilization
* clamp value.
*/
struct uclamp_bucket {
unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
};
/*
* struct uclamp_rq - rq's utilization clamp
* @value: currently active clamp values for a rq
* @bucket: utilization clamp buckets affecting a rq
*
* Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
* A clamp value is affecting a rq when there is at least one task RUNNABLE
* (or actually running) with that value.
*
* There are up to UCLAMP_CNT possible different clamp values, currently there
* are only two: minimum utilization and maximum utilization.
*
* All utilization clamping values are MAX aggregated, since:
* - for util_min: we want to run the CPU at least at the max of the minimum
* utilization required by its currently RUNNABLE tasks.
* - for util_max: we want to allow the CPU to run up to the max of the
* maximum utilization allowed by its currently RUNNABLE tasks.
*
* Since on each system we expect only a limited number of different
* utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
* the metrics required to compute all the per-rq utilization clamp values.
*/
struct uclamp_rq {
unsigned int value;
struct uclamp_bucket bucket[UCLAMP_BUCKETS];
};
#endif /* CONFIG_UCLAMP_TASK */
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
/* runqueue lock: */
raw_spinlock_t lock;
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned int nr_running;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
unsigned int numa_migrate_on;
#endif
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMP
unsigned long last_load_update_tick;
unsigned long last_blocked_load_update_tick;
unsigned int has_blocked_load;
#endif /* CONFIG_SMP */
unsigned int nohz_tick_stopped;
atomic_t nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
/* capture load from *all* tasks on this CPU: */
struct load_weight load;
unsigned long nr_load_updates;
u64 nr_switches;
#ifdef CONFIG_UCLAMP_TASK
/* Utilization clamp values based on CPU's RUNNABLE tasks */
struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
unsigned int uclamp_flags;
#define UCLAMP_FLAG_IDLE 0x01
#endif
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this CPU: */
struct list_head leaf_cfs_rq_list;
struct list_head *tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
unsigned long nr_uninterruptible;
struct task_struct *curr;
struct task_struct *idle;
struct task_struct *stop;
unsigned long next_balance;
struct mm_struct *prev_mm;
unsigned int clock_update_flags;
u64 clock;
/* Ensure that all clocks are in the same cache line */
u64 clock_task ____cacheline_aligned;
u64 clock_pelt;
unsigned long lost_idle_time;
atomic_t nr_iowait;
#ifdef CONFIG_SMP
struct root_domain *rd;
struct sched_domain *sd;
unsigned long cpu_capacity;
unsigned long cpu_capacity_orig;
struct callback_head *balance_callback;
unsigned char idle_balance;
unsigned long misfit_task_load;
/* For active balancing */
int active_balance;
int push_cpu;
struct task_struct *push_task;
struct cpu_stop_work active_balance_work;
/* CPU of this runqueue: */
int cpu;
int online;
struct list_head cfs_tasks;
struct sched_avg avg_rt;
struct sched_avg avg_dl;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
struct sched_avg avg_irq;
#endif
u64 idle_stamp;
u64 avg_idle;
/* This is used to determine avg_idle's max value */
u64 max_idle_balance_cost;
#endif
#ifdef CONFIG_SCHED_WALT
struct sched_cluster *cluster;
struct cpumask freq_domain_cpumask;
struct walt_sched_stats walt_stats;
u64 window_start;
u32 prev_window_size;
unsigned long walt_flags;
u64 cur_irqload;
u64 avg_irqload;
u64 irqload_ts;
struct task_struct *ed_task;
u64 task_exec_scale;
u64 old_busy_time, old_busy_time_group;
u64 old_estimated_time;
u64 curr_runnable_sum;
u64 prev_runnable_sum;
u64 nt_curr_runnable_sum;
u64 nt_prev_runnable_sum;
u64 cum_window_demand_scaled;
struct group_cpu_time grp_time;
struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
DECLARE_BITMAP_ARRAY(top_tasks_bitmap,
NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES);
u8 *top_tasks[NUM_TRACKED_WINDOWS];
u8 curr_table;
int prev_top;
int curr_top;
bool notif_pending;
u64 last_cc_update;
u64 cycles;
#endif /* CONFIG_SCHED_WALT */
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
u64 prev_steal_time_rq;
#endif
/* calc_load related fields */
unsigned long calc_load_update;
long calc_load_active;
#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
int hrtick_csd_pending;
call_single_data_t hrtick_csd;
#endif
struct hrtimer hrtick_timer;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
unsigned int yld_count;
/* schedule() stats */
unsigned int sched_count;
unsigned int sched_goidle;
/* try_to_wake_up() stats */
unsigned int ttwu_count;
unsigned int ttwu_local;
#endif
#ifdef CONFIG_SMP
struct llist_head wake_list;
#endif
#ifdef CONFIG_CPU_IDLE
/* Must be inspected within a rcu lock section */
struct cpuidle_state *idle_state;
int idle_state_idx;
#endif
};
#ifdef CONFIG_FAIR_GROUP_SCHED
/* CPU runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return cfs_rq->rq;
}
#else
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return container_of(cfs_rq, struct rq, cfs);
}
#endif
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
return rq->cpu;
#else
return 0;
#endif
}
#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);
static inline void update_idle_core(struct rq *rq)
{
if (static_branch_unlikely(&sched_smt_present))
__update_idle_core(rq);
}
#else
static inline void update_idle_core(struct rq *rq) { }
#endif
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() this_cpu_ptr(&runqueues)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues)
extern void update_rq_clock(struct rq *rq);
static inline u64 __rq_clock_broken(struct rq *rq)
{
return READ_ONCE(rq->clock);
}
/*
* rq::clock_update_flags bits
*
* %RQCF_REQ_SKIP - will request skipping of clock update on the next
* call to __schedule(). This is an optimisation to avoid
* neighbouring rq clock updates.
*
* %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
* in effect and calls to update_rq_clock() are being ignored.
*
* %RQCF_UPDATED - is a debug flag that indicates whether a call has been
* made to update_rq_clock() since the last time rq::lock was pinned.
*
* If inside of __schedule(), clock_update_flags will have been
* shifted left (a left shift is a cheap operation for the fast path
* to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
*
* if (rq-clock_update_flags >= RQCF_UPDATED)
*
* to check if %RQCF_UPADTED is set. It'll never be shifted more than
* one position though, because the next rq_unpin_lock() will shift it
* back.
*/
#define RQCF_REQ_SKIP 0x01
#define RQCF_ACT_SKIP 0x02
#define RQCF_UPDATED 0x04
static inline void assert_clock_updated(struct rq *rq)
{
/*
* The only reason for not seeing a clock update since the
* last rq_pin_lock() is if we're currently skipping updates.
*/
SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}
static inline u64 rq_clock(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
assert_clock_updated(rq);
return rq->clock;
}
static inline u64 rq_clock_task(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
assert_clock_updated(rq);
return rq->clock_task;
}
static inline void rq_clock_skip_update(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
rq->clock_update_flags |= RQCF_REQ_SKIP;
}
/*
* See rt task throttling, which is the only time a skip
* request is cancelled.
*/
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
rq->clock_update_flags &= ~RQCF_REQ_SKIP;
}
struct rq_flags {
unsigned long flags;
struct pin_cookie cookie;
#ifdef CONFIG_SCHED_DEBUG
/*
* A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
* current pin context is stashed here in case it needs to be
* restored in rq_repin_lock().
*/
unsigned int clock_update_flags;
#endif
};
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
rf->cookie = lockdep_pin_lock(&rq->lock);
#ifdef CONFIG_SCHED_DEBUG
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
rf->clock_update_flags = 0;
#endif
}
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
#ifdef CONFIG_SCHED_DEBUG
if (rq->clock_update_flags > RQCF_ACT_SKIP)
rf->clock_update_flags = RQCF_UPDATED;
#endif
lockdep_unpin_lock(&rq->lock, rf->cookie);
}
static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
lockdep_repin_lock(&rq->lock, rf->cookie);
#ifdef CONFIG_SCHED_DEBUG
/*
* Restore the value we stashed in @rf for this pin context.
*/
rq->clock_update_flags |= rf->clock_update_flags;
#endif
}
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(rq->lock);
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(p->pi_lock)
__acquires(rq->lock);
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
}
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}
static inline void
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
raw_spin_lock_irqsave(&rq->lock, rf->flags);
rq_pin_lock(rq, rf);
}
static inline void
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
raw_spin_lock_irq(&rq->lock);
rq_pin_lock(rq, rf);
}
static inline void
rq_lock(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
raw_spin_lock(&rq->lock);
rq_pin_lock(rq, rf);
}
static inline void
rq_relock(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
raw_spin_lock(&rq->lock);
rq_repin_lock(rq, rf);
}
static inline void
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
}
static inline void
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
raw_spin_unlock_irq(&rq->lock);
}
static inline void
rq_unlock(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
}
static inline struct rq *
this_rq_lock_irq(struct rq_flags *rf)
__acquires(rq->lock)
{
struct rq *rq;
local_irq_disable();
rq = this_rq();
rq_lock(rq, rf);
return rq;
}
#ifdef CONFIG_NUMA
enum numa_topology_type {
NUMA_DIRECT,
NUMA_GLUELESS_MESH,
NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif
#ifdef CONFIG_NUMA
extern void sched_init_numa(void);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
#else
static inline void sched_init_numa(void) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
#endif
#ifdef CONFIG_NUMA_BALANCING
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
NUMA_MEM = 0,
NUMA_CPU,
NUMA_MEMBUF,
NUMA_CPUBUF
};
extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
#else
static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}
#endif /* CONFIG_NUMA_BALANCING */
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
int cpu, int scpu);
#ifdef CONFIG_SMP
static inline void
queue_balance_callback(struct rq *rq,
struct callback_head *head,
void (*func)(struct rq *rq))
{
lockdep_assert_held(&rq->lock);
if (unlikely(head->next))
return;
head->func = (void (*)(struct callback_head *))func;
head->next = rq->balance_callback;
rq->balance_callback = head;
}
extern void sched_ttwu_pending(void);
#define rcu_dereference_check_sched_domain(p) \
rcu_dereference_check((p), \
lockdep_is_held(&sched_domains_mutex))
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
*/
#define for_each_domain(cpu, __sd) \
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
__sd; __sd = __sd->parent)
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
/**
* highest_flag_domain - Return highest sched_domain containing flag.
* @cpu: The CPU whose highest level of sched domain is to
* be returned.
* @flag: The flag to check for the highest sched_domain
* for the given CPU.
*
* Returns the highest sched_domain of a CPU which contains the given flag.
*/
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
struct sched_domain *sd, *hsd = NULL;
for_each_domain(cpu, sd) {
if (!(sd->flags & flag))
break;
hsd = sd;
}
return hsd;
}
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
struct sched_domain *sd;
for_each_domain(cpu, sd) {
if (sd->flags & flag)
break;
}
return sd;
}
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
extern struct static_key_false sched_asym_cpucapacity;
struct sched_group_capacity {
atomic_t ref;
/*
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
* for a single CPU.
*/
unsigned long capacity;
unsigned long min_capacity; /* Min per-CPU capacity in group */
unsigned long max_capacity; /* Max per-CPU capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
#ifdef CONFIG_SCHED_DEBUG
int id;
#endif
unsigned long cpumask[0]; /* Balance mask */
};
struct sched_group {
struct sched_group *next; /* Must be a circular list */
atomic_t ref;
unsigned int group_weight;
struct sched_group_capacity *sgc;
int asym_prefer_cpu; /* CPU of highest priority in group */
/*
* The CPUs this group covers.
*
* NOTE: this field is variable length. (Allocated dynamically
* by attaching extra space to the end of the structure,
* depending on how many CPUs the kernel has booted up with)
*/
unsigned long cpumask[0];
};
static inline struct cpumask *sched_group_span(struct sched_group *sg)
{
return to_cpumask(sg->cpumask);
}
/*
* See build_balance_mask().
*/
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
{
return to_cpumask(sg->sgc->cpumask);
}
/**
* group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
* @group: The group whose first CPU is to be returned.
*/
static inline unsigned int group_first_cpu(struct sched_group *group)
{
return cpumask_first(sched_group_span(group));
}
extern int group_balance_cpu(struct sched_group *sg);
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
void dirty_sched_domain_sysctl(int cpu);
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
static inline void dirty_sched_domain_sysctl(int cpu)
{
}
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif
#else
static inline void sched_ttwu_pending(void) { }
#endif /* CONFIG_SMP */
#include "stats.h"
#include "autogroup.h"
#ifdef CONFIG_CGROUP_SCHED
/*
* Return the group to which this tasks belongs.
*
* We cannot use task_css() and friends because the cgroup subsystem
* changes that value before the cgroup_subsys::attach() method is called,
* therefore we cannot pin it and might observe the wrong value.
*
* The same is true for autogroup's p->signal->autogroup->tg, the autogroup
* core changes this before calling sched_move_task().
*
* Instead we use a 'copy' which is updated from sched_move_task() while
* holding both task_struct::pi_lock and rq::lock.
*/
static inline struct task_group *task_group(struct task_struct *p)
{
return p->sched_task_group;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
struct task_group *tg = task_group(p);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
p->se.cfs_rq = tg->cfs_rq[cpu];
p->se.parent = tg->se[cpu];
#endif
#ifdef CONFIG_RT_GROUP_SCHED
p->rt.rt_rq = tg->rt_rq[cpu];
p->rt.parent = tg->rt_se[cpu];
#endif
}
#else /* CONFIG_CGROUP_SCHED */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
return NULL;
}
#endif /* CONFIG_CGROUP_SCHED */
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
set_task_rq(p, cpu);
#ifdef CONFIG_SMP
/*
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
* successfuly executed on another CPU. We must ensure that updates of
* per-task data have been completed by this moment.
*/
smp_wmb();
#ifdef CONFIG_THREAD_INFO_IN_TASK
WRITE_ONCE(p->cpu, cpu);
#else
WRITE_ONCE(task_thread_info(p)->cpu, cpu);
#endif
p->wake_cpu = cpu;
#endif
}
/*
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
*/
#ifdef CONFIG_SCHED_DEBUG
# include <linux/static_key.h>
# define const_debug __read_mostly
#else
# define const_debug const
#endif
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
enum {
#include "features.h"
__SCHED_FEAT_NR,
};
#undef SCHED_FEAT
#ifdef CONFIG_SCHED_DEBUG
/*
* To support run-time toggling of sched features, all the translation units
* (but core.c) reference the sysctl_sched_features defined in core.c.
*/
extern const_debug unsigned int sysctl_sched_features;
#ifdef CONFIG_JUMP_LABEL
#define SCHED_FEAT(name, enabled) \
static __always_inline bool static_branch_##name(struct static_key *key) \
{ \
return static_key_##enabled(key); \
}
#include "features.h"
#undef SCHED_FEAT
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !CONFIG_JUMP_LABEL */
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
#endif /* CONFIG_JUMP_LABEL */
#else /* !SCHED_DEBUG */
/*
* Each translation unit has its own copy of sysctl_sched_features to allow
* constants propagation at compile time and compiler optimization based on
* features default.
*/
#define SCHED_FEAT(name, enabled) \
(1UL << __SCHED_FEAT_##name) * enabled |
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
0;
#undef SCHED_FEAT
#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
#endif /* SCHED_DEBUG */
extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;
static inline u64 global_rt_period(void)
{
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}
static inline u64 global_rt_runtime(void)
{
if (sysctl_sched_rt_runtime < 0)
return RUNTIME_INF;
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
return p->on_cpu;
#else
return task_current(rq, p);
#endif
}
static inline int task_on_rq_queued(struct task_struct *p)
{
return p->on_rq == TASK_ON_RQ_QUEUED;
}
static inline int task_on_rq_migrating(struct task_struct *p)
{
return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}
/*
* wake flags
*/
#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
#define WF_FORK 0x02 /* Child wakeup after fork */
#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
* of tasks with abnormal "nice" values across CPUs the contribution that
* each task makes to its run queue's load is weighted according to its
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scaled version of the new time slice allocation that they receive on time
* slice expiry etc.
*/
#define WEIGHT_IDLEPRIO 3
#define WMULT_IDLEPRIO 1431655765
extern const int sched_prio_to_weight[40];
extern const u32 sched_prio_to_wmult[40];
/*
* {de,en}queue flags:
*
* DEQUEUE_SLEEP - task is no longer runnable
* ENQUEUE_WAKEUP - task just became runnable
*
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
* are in a known state which allows modification. Such pairs
* should preserve as much state as possible.
*
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
* in the runqueue.
*
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
* ENQUEUE_MIGRATED - the task was migrated during wakeup
*
*/
#define DEQUEUE_SLEEP 0x01
#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
#define ENQUEUE_WAKEUP 0x01
#define ENQUEUE_RESTORE 0x02
#define ENQUEUE_MOVE 0x04
#define ENQUEUE_NOCLOCK 0x08
#define ENQUEUE_HEAD 0x10
#define ENQUEUE_REPLENISH 0x20
#ifdef CONFIG_SMP
#define ENQUEUE_MIGRATED 0x40
#else
#define ENQUEUE_MIGRATED 0x00
#endif
#define RETRY_TASK ((void *)-1UL)
struct sched_class {
const struct sched_class *next;
#ifdef CONFIG_UCLAMP_TASK
int uclamp_enabled;
#endif
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*yield_task) (struct rq *rq);
bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
/*
* It is the responsibility of the pick_next_task() method that will
* return the next task to call put_prev_task() on the @prev task or
* something equivalent.
*
* May return RETRY_TASK when it finds a higher prio class has runnable
* tasks.
*/
struct task_struct * (*pick_next_task)(struct rq *rq,
struct task_struct *prev,
struct rq_flags *rf);
void (*put_prev_task)(struct rq *rq, struct task_struct *p);
#ifdef CONFIG_SMP
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
int subling_count_hint);
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
void (*set_cpus_allowed)(struct task_struct *p,
const struct cpumask *newmask);
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
#endif
void (*set_curr_task)(struct rq *rq);
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
void (*task_fork)(struct task_struct *p);
void (*task_dead)(struct task_struct *p);
/*
* The switched_from() call is allowed to drop rq->lock, therefore we
* cannot assume the switched_from/switched_to pair is serliazed by
* rq->lock. They are however serialized by p->pi_lock.
*/
void (*switched_from)(struct rq *this_rq, struct task_struct *task);
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
int oldprio);
unsigned int (*get_rr_interval)(struct rq *rq,
struct task_struct *task);
void (*update_curr)(struct rq *rq);
#define TASK_SET_GROUP 0
#define TASK_MOVE_GROUP 1
#ifdef CONFIG_FAIR_GROUP_SCHED
void (*task_change_group)(struct task_struct *p, int type);
#endif
#ifdef CONFIG_SCHED_WALT
void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
u16 updated_demand_scaled,
u16 updated_pred_demand_scaled);
#endif
};
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
prev->sched_class->put_prev_task(rq, prev);
}
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
curr->sched_class->set_curr_task(rq);
}
#ifdef CONFIG_SMP
#define sched_class_highest (&stop_sched_class)
#else
#define sched_class_highest (&dl_sched_class)
#endif
#define for_each_class(class) \
for (class = sched_class_highest; class; class = class->next)
extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
#ifdef CONFIG_SMP
extern void update_group_capacity(struct sched_domain *sd, int cpu);
extern void trigger_load_balance(struct rq *rq);
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
bool __cpu_overutilized(int cpu, int delta);
bool cpu_overutilized(int cpu);
#endif
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
rq->idle_state = idle_state;
}
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
SCHED_WARN_ON(!rcu_read_lock_held());
return rq->idle_state;
}
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
{
rq->idle_state_idx = idle_state_idx;
}
static inline int idle_get_state_idx(struct rq *rq)
{
WARN_ON(!rcu_read_lock_held());
if (rq->nr_running || cpu_of(rq) == raw_smp_processor_id())
return -1;
return rq->idle_state_idx;
}
#else
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
}
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
return NULL;
}
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
{
}
static inline int idle_get_state_idx(struct rq *rq)
{
return -1;
}
#endif
extern void schedule_idle(void);
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
extern void reweight_task(struct task_struct *p, int prio);
extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);
extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
#define BW_SHIFT 20
#define BW_UNIT (1 << BW_SHIFT)
#define RATIO_SHIFT 8
unsigned long to_ratio(u64 period, u64 runtime);
extern void init_entity_runnable_average(struct sched_entity *se);
extern void post_init_entity_util_avg(struct sched_entity *se);
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
extern int __init sched_tick_offload_init(void);
/*
* Tick may be needed by tasks in the runqueue depending on their policy and
* requirements. If tick is needed, lets send the target an IPI to kick it out of
* nohz mode if necessary.
*/
static inline void sched_update_tick_dependency(struct rq *rq)
{
int cpu;
if (!tick_nohz_full_enabled())
return;
cpu = cpu_of(rq);
if (!tick_nohz_full_cpu(cpu))
return;
if (sched_can_stop_tick(rq))
tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
else
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
static inline int sched_tick_offload_init(void) { return 0; }
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif
static inline void add_nr_running(struct rq *rq, unsigned count)
{
unsigned prev_nr = rq->nr_running;
sched_update_nr_prod(cpu_of(rq), count, true);
rq->nr_running = prev_nr + count;
if (prev_nr < 2 && rq->nr_running >= 2) {
#ifdef CONFIG_SMP
if (!READ_ONCE(rq->rd->overload))
WRITE_ONCE(rq->rd->overload, 1);
#endif
}
sched_update_tick_dependency(rq);
}
static inline void sub_nr_running(struct rq *rq, unsigned count)
{
sched_update_nr_prod(cpu_of(rq), count, false);
rq->nr_running -= count;
/* Check if we still need preemption */
sched_update_tick_dependency(rq);
}
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;
#ifdef CONFIG_SCHED_HRTICK
/*
* Use hrtick when:
* - enabled by features
* - hrtimer is actually high res
*/
static inline int hrtick_enabled(struct rq *rq)
{
if (!sched_feat(HRTICK))
return 0;
if (!cpu_active(cpu_of(rq)))
return 0;
return hrtimer_is_hres_active(&rq->hrtick_timer);
}
void hrtick_start(struct rq *rq, u64 delay);
#else
static inline int hrtick_enabled(struct rq *rq)
{
return 0;
}
#endif /* CONFIG_SCHED_HRTICK */
#ifdef CONFIG_SCHED_WALT
u64 sched_ktime_clock(void);
unsigned long
cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load);
#else
#define sched_ravg_window TICK_NSEC
static inline u64 sched_ktime_clock(void)
{
return sched_clock();
}
#endif
#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(int cpu)
{
return SCHED_CAPACITY_SCALE;
}
#endif
#ifndef arch_scale_max_freq_capacity
struct sched_domain;
static __always_inline
unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu)
{
return SCHED_CAPACITY_SCALE;
}
#endif
#ifdef CONFIG_SMP
static inline unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
}
static inline unsigned long capacity_orig_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
static inline unsigned long task_util(struct task_struct *p)
{
#ifdef CONFIG_SCHED_WALT
return p->ravg.demand_scaled;
#endif
return READ_ONCE(p->se.avg.util_avg);
}
/**
* Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
* @cpu: the CPU to get the utilization of
*
* The unit of the return value must be the one of capacity so we can compare
* the utilization with the capacity of the CPU that is available for CFS task
* (ie cpu_capacity).
*
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
* recent utilization of currently non-runnable tasks on a CPU. It represents
* the amount of utilization of a CPU in the range [0..capacity_orig] where
* capacity_orig is the cpu_capacity available at the highest frequency
* (arch_scale_freq_capacity()).
* The utilization of a CPU converges towards a sum equal to or less than the
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
* the running time on this CPU scaled by capacity_curr.
*
* The estimated utilization of a CPU is defined to be the maximum between its
* cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
* currently RUNNABLE on that CPU.
* This allows to properly represent the expected utilization of a CPU which
* has just got a big task running since a long sleep period. At the same time
* however it preserves the benefits of the "blocked utilization" in
* describing the potential for other tasks waking up on the same CPU.
*
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
* higher than capacity_orig because of unfortunate rounding in
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
* the average stabilizes with the new running time. We need to check that the
* utilization stays within the range of [0..capacity_orig] and cap it if
* necessary. Without utilization capping, a group could be seen as overloaded
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
* available capacity. We allow utilization to overshoot capacity_curr (but not
* capacity_orig) as it useful for predicting the capacity required after task
* migrations (scheduler-driven DVFS).
*
* Return: the (estimated) utilization for the specified CPU
*/
static inline unsigned long cpu_util(int cpu)
{
struct cfs_rq *cfs_rq;
unsigned int util;
#ifdef CONFIG_SCHED_WALT
u64 walt_cpu_util =
cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
return min_t(unsigned long, walt_cpu_util, capacity_orig_of(cpu));
#endif
cfs_rq = &cpu_rq(cpu)->cfs;
util = READ_ONCE(cfs_rq->avg.util_avg);
if (sched_feat(UTIL_EST))
util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
return min_t(unsigned long, util, capacity_orig_of(cpu));
}
static inline unsigned long cpu_util_cum(int cpu, int delta)
{
u64 util = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
#ifdef CONFIG_SCHED_WALT
util = cpu_rq(cpu)->cum_window_demand_scaled;
#endif
delta += util;
if (delta < 0)
return 0;
return (delta >= capacity) ? capacity : delta;
}
#ifdef CONFIG_SCHED_TUNE
extern unsigned long stune_util(int cpu, unsigned long other_util,
struct sched_walt_cpu_load *walt_load);
#endif
static inline unsigned long
cpu_util_freq(int cpu, struct sched_walt_cpu_load *walt_load)
{
#ifdef CONFIG_SCHED_WALT
return cpu_util_freq_walt(cpu, walt_load);
#else
return cpu_util(cpu);
#endif
}
extern unsigned int capacity_margin_freq;
static inline unsigned long
add_capacity_margin(unsigned long cpu_capacity, int cpu)
{
cpu_capacity = cpu_capacity * capacity_margin_freq *
(100 + per_cpu(sched_load_boost, cpu));
cpu_capacity /= 100;
cpu_capacity /= SCHED_CAPACITY_SCALE;
return cpu_capacity;
}
#endif
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
/*
* fair double_lock_balance: Safely acquires both rq->locks in a fair
* way at the expense of forcing extra atomic operations in all
* invocations. This assures that the double_lock is acquired using the
* same underlying policy as the spinlock_t on this architecture, which
* reduces latency compared to the unfair variant below. However, it
* also adds more overhead and therefore may reduce throughput.
*/
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
raw_spin_unlock(&this_rq->lock);
double_rq_lock(this_rq, busiest);
return 1;
}
#else
/*
* Unfair double_lock_balance: Optimizes throughput at the expense of
* latency by eliminating extra atomic operations when the locks are
* already in proper order on entry. This favors lower CPU-ids and will
* grant the double lock to lower CPUs over higher ids under contention,
* regardless of entry order into the function.
*/
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!raw_spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
raw_spin_unlock(&this_rq->lock);
raw_spin_lock(&busiest->lock);
raw_spin_lock_nested(&this_rq->lock,
SINGLE_DEPTH_NESTING);
ret = 1;
} else
raw_spin_lock_nested(&busiest->lock,
SINGLE_DEPTH_NESTING);
}
return ret;
}
#endif /* CONFIG_PREEMPT */
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work well under rq->lock */
raw_spin_unlock(&this_rq->lock);
BUG_ON(1);
}
return _double_lock_balance(this_rq, busiest);
}
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
raw_spin_unlock(&busiest->lock);
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
spin_lock(l1);
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
spin_lock_irq(l1);
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
raw_spin_lock(l1);
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
if (rq1 == rq2) {
raw_spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
} else {
if (rq1 < rq2) {
raw_spin_lock(&rq1->lock);
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
} else {
raw_spin_lock(&rq2->lock);
raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
}
}
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
raw_spin_unlock(&rq1->lock);
if (rq1 != rq2)
raw_spin_unlock(&rq2->lock);
else
__release(rq2->lock);
}
extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;
/*
* task_may_not_preempt - check whether a task may not be preemptible soon
*/
extern bool task_may_not_preempt(struct task_struct *task, int cpu);
#else /* CONFIG_SMP */
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
BUG_ON(rq1 != rq2);
raw_spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
BUG_ON(rq1 != rq2);
raw_spin_unlock(&rq1->lock);
__release(rq2->lock);
}
#endif
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
#ifdef CONFIG_SCHED_DEBUG
extern bool sched_debug_enabled;
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu);
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
#ifdef CONFIG_NO_HZ_COMMON
#define NOHZ_BALANCE_KICK_BIT 0
#define NOHZ_STATS_KICK_BIT 1
#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
extern void nohz_balance_exit_idle(struct rq *rq);
#else
static inline void nohz_balance_exit_idle(struct rq *rq) { }
#endif
#ifdef CONFIG_SMP
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
int i;
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
"sched RCU must be held");
for_each_cpu_and(i, rd->span, cpu_active_mask) {
struct rq *rq = cpu_rq(i);
rq->dl.extra_bw += bw;
}
}
#else
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
dl->extra_bw += bw;
}
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
u64 total;
u64 tick_delta;
u64 irq_start_time;
struct u64_stats_sync sync;
};
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
/*
* Returns the irqtime minus the softirq time computed by ksoftirqd.
* Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
* and never move forward.
*/
static inline u64 irq_time_read(int cpu)
{
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
unsigned int seq;
u64 total;
do {
seq = __u64_stats_fetch_begin(&irqtime->sync);
total = irqtime->total;
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
return total;
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
/**
* cpufreq_update_util - Take a note about CPU utilization changes.
* @rq: Runqueue to carry out the update for.
* @flags: Update reason flags.
*
* This function is called by the scheduler on the CPU whose utilization is
* being updated.
*
* It can only be called from RCU-sched read-side critical sections.
*
* The way cpufreq is currently arranged requires it to evaluate the CPU
* performance state (frequency/voltage) on a regular basis to prevent it from
* being stuck in a completely inadequate performance level for too long.
* That is not guaranteed to happen if the updates are only triggered from CFS
* and DL, though, because they may not be coming in if only RT tasks are
* active all the time (or there are RT tasks only).
*
* As a workaround for that issue, this function is called periodically by the
* RT sched class to trigger extra cpufreq updates to prevent it from stalling,
* but that really is a band-aid. Going forward it should be replaced with
* solutions targeted more specifically at RT tasks.
*/
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
{
struct update_util_data *data;
u64 clock;
#ifdef CONFIG_SCHED_WALT
if (!(flags & SCHED_CPUFREQ_WALT))
return;
clock = sched_ktime_clock();
#else
clock = rq_clock(rq);
#endif
data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
cpu_of(rq)));
if (data)
data->func(data, clock, flags);
}
#else
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
#endif /* CONFIG_CPU_FREQ */
#ifdef CONFIG_UCLAMP_TASK
unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
static __always_inline
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
struct task_struct *p)
{
unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
if (p) {
min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
}
/*
* Since CPU's {min,max}_util clamps are MAX aggregated considering
* RUNNABLE tasks with _different_ clamps, we can end up with an
* inversion. Fix it now when the clamps are applied.
*/
if (unlikely(min_util >= max_util))
return min_util;
return clamp(util, min_util, max_util);
}
#else /* CONFIG_UCLAMP_TASK */
static inline
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
struct task_struct *p)
{
return util;
}
#endif /* CONFIG_UCLAMP_TASK */
unsigned long task_util_est(struct task_struct *p);
unsigned int uclamp_task(struct task_struct *p);
bool uclamp_latency_sensitive(struct task_struct *p);
bool uclamp_boosted(struct task_struct *p);
#ifdef arch_scale_freq_capacity
# ifndef arch_scale_freq_invariant
# define arch_scale_freq_invariant() true
# endif
#else
# define arch_scale_freq_invariant() false
#endif
/**
* enum schedutil_type - CPU utilization type
* @FREQUENCY_UTIL: Utilization used to select frequency
* @ENERGY_UTIL: Utilization used during energy calculation
*
* The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
* need to be aggregated differently depending on the usage made of them. This
* enum is used within schedutil_freq_util() to differentiate the types of
* utilization expected by the callers, and adjust the aggregation accordingly.
*/
enum schedutil_type {
FREQUENCY_UTIL,
ENERGY_UTIL,
};
#ifdef CONFIG_SMP
static inline unsigned long cpu_util_cfs(struct rq *rq)
{
unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
if (sched_feat(UTIL_EST)) {
util = max_t(unsigned long, util,
READ_ONCE(rq->cfs.avg.util_est.enqueued));
}
return util;
}
#endif
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
unsigned long max, enum schedutil_type type,
struct task_struct *p);
static inline unsigned long cpu_bw_dl(struct rq *rq)
{
return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
}
static inline unsigned long cpu_util_dl(struct rq *rq)
{
return READ_ONCE(rq->avg_dl.util_avg);
}
static inline unsigned long cpu_util_rt(struct rq *rq)
{
return READ_ONCE(rq->avg_rt.util_avg);
}
#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
unsigned long max, enum schedutil_type type,
struct task_struct *p)
{
return 0;
}
#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
static inline unsigned long cpu_util_irq(struct rq *rq)
{
return rq->avg_irq.util_avg;
}
static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
util *= (max - irq);
util /= max;
return util;
}
#else
static inline unsigned long cpu_util_irq(struct rq *rq)
{
return 0;
}
static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
return util;
}
#endif
#ifdef CONFIG_ENERGY_MODEL
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
#else
#define perf_domain_span(pd) NULL
#endif
#ifdef CONFIG_SMP
extern struct static_key_false sched_energy_present;
#endif
enum sched_boost_policy {
SCHED_BOOST_NONE,
SCHED_BOOST_ON_BIG,
SCHED_BOOST_ON_ALL,
};
#ifdef CONFIG_SCHED_WALT
#define WALT_MANY_WAKEUP_DEFAULT 1000
static inline bool walt_want_remote_wakeup(void)
{
return sysctl_sched_many_wakeup_threshold < WALT_MANY_WAKEUP_DEFAULT;
}
static inline int cluster_first_cpu(struct sched_cluster *cluster)
{
return cpumask_first(&cluster->cpus);
}
struct related_thread_group {
int id;
raw_spinlock_t lock;
struct list_head tasks;
struct list_head list;
bool skip_min;
struct rcu_head rcu;
u64 last_update;
u64 downmigrate_ts;
u64 start_ts;
};
extern struct sched_cluster *sched_cluster[NR_CPUS];
#define UP_MIGRATION 1
#define DOWN_MIGRATION 2
#define IRQLOAD_MIGRATION 3
extern unsigned int sched_disable_window_stats;
extern unsigned int max_possible_freq;
extern unsigned int min_max_freq;
extern unsigned int max_possible_efficiency;
extern unsigned int min_possible_efficiency;
extern unsigned int max_possible_capacity;
extern unsigned int min_max_possible_capacity;
extern unsigned int max_power_cost;
extern unsigned int __read_mostly sched_init_task_load_windows;
extern unsigned int __read_mostly sched_load_granule;
extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb);
extern int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load, bool from_tick);
extern void set_preferred_cluster(struct related_thread_group *grp);
extern void add_new_task_to_grp(struct task_struct *new);
#define NO_BOOST 0
#define FULL_THROTTLE_BOOST 1
#define CONSERVATIVE_BOOST 2
#define RESTRAINED_BOOST 3
#define FULL_THROTTLE_BOOST_DISABLE -1
#define CONSERVATIVE_BOOST_DISABLE -2
#define RESTRAINED_BOOST_DISABLE -3
#define MAX_NUM_BOOST_TYPE (RESTRAINED_BOOST+1)
static inline bool is_asym_cap_cpu(int cpu)
{
return cpumask_test_cpu(cpu, &asym_cap_sibling_cpus);
}
static inline int asym_cap_siblings(int cpu1, int cpu2)
{
return (cpumask_test_cpu(cpu1, &asym_cap_sibling_cpus) &&
cpumask_test_cpu(cpu2, &asym_cap_sibling_cpus));
}
static inline bool asym_cap_sibling_group_has_capacity(int dst_cpu, int margin)
{
int sib1, sib2;
int nr_running;
unsigned long total_util, total_capacity;
if (cpumask_empty(&asym_cap_sibling_cpus) ||
cpumask_test_cpu(dst_cpu, &asym_cap_sibling_cpus))
return false;
sib1 = cpumask_first(&asym_cap_sibling_cpus);
sib2 = cpumask_last(&asym_cap_sibling_cpus);
if (!cpu_active(sib1) || cpu_isolated(sib1) ||
!cpu_active(sib2) || cpu_isolated(sib2))
return false;
nr_running = cpu_rq(sib1)->cfs.h_nr_running +
cpu_rq(sib2)->cfs.h_nr_running;
if (nr_running <= 2)
return true;
total_capacity = capacity_of(sib1) + capacity_of(sib2);
total_util = cpu_util(sib1) + cpu_util(sib2);
return ((total_capacity * 100) > (total_util * margin));
}
static inline int cpu_max_possible_capacity(int cpu)
{
return cpu_rq(cpu)->cluster->max_possible_capacity;
}
static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
{
/*
* Governor and thermal driver don't know the other party's mitigation
* voting. So struct cluster saves both and return min() for current
* cluster fmax.
*/
return min(cluster->max_mitigated_freq, cluster->max_freq);
}
static inline unsigned int cpu_max_freq(int cpu)
{
return cluster_max_freq(cpu_rq(cpu)->cluster);
}
static inline unsigned int cpu_max_possible_freq(int cpu)
{
return cpu_rq(cpu)->cluster->max_possible_freq;
}
static inline bool hmp_capable(void)
{
return max_possible_capacity != min_max_possible_capacity;
}
static inline bool is_max_capacity_cpu(int cpu)
{
return cpu_max_possible_capacity(cpu) == max_possible_capacity;
}
static inline bool is_min_capacity_cpu(int cpu)
{
return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
}
static inline unsigned int task_load(struct task_struct *p)
{
return p->ravg.demand;
}
static inline unsigned int task_pl(struct task_struct *p)
{
return p->ravg.pred_demand;
}
static inline bool task_in_related_thread_group(struct task_struct *p)
{
return !!(rcu_access_pointer(p->grp) != NULL);
}
static inline
struct related_thread_group *task_related_thread_group(struct task_struct *p)
{
return rcu_dereference(p->grp);
}
static inline bool task_rtg_high_prio(struct task_struct *p)
{
return task_in_related_thread_group(p) &&
(p->prio <= sysctl_walt_rtg_cfs_boost_prio);
}
static inline bool walt_low_latency_task(struct task_struct *p)
{
return p->low_latency &&
(task_util(p) < sysctl_walt_low_latency_task_threshold);
}
/* Is frequency of two cpus synchronized with each other? */
static inline int same_freq_domain(int src_cpu, int dst_cpu)
{
struct rq *rq = cpu_rq(src_cpu);
if (src_cpu == dst_cpu)
return 1;
if (asym_cap_siblings(src_cpu, dst_cpu))
return 1;
return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
}
#define CPU_RESERVED 1
extern enum sched_boost_policy boost_policy;
static inline enum sched_boost_policy sched_boost_policy(void)
{
return boost_policy;
}
extern unsigned int sched_boost_type;
static inline int sched_boost(void)
{
return sched_boost_type;
}
static inline bool rt_boost_on_big(void)
{
return sched_boost() == FULL_THROTTLE_BOOST ?
(sched_boost_policy() == SCHED_BOOST_ON_BIG) : false;
}
static inline bool is_full_throttle_boost(void)
{
return sched_boost() == FULL_THROTTLE_BOOST;
}
extern int preferred_cluster(struct sched_cluster *cluster,
struct task_struct *p);
extern struct sched_cluster *rq_cluster(struct rq *rq);
extern void reset_task_stats(struct task_struct *p);
extern void clear_top_tasks_bitmap(unsigned long *bitmap);
#if defined(CONFIG_SCHED_TUNE)
extern bool task_sched_boost(struct task_struct *p);
extern int sync_cgroup_colocation(struct task_struct *p, bool insert);
extern bool schedtune_task_colocated(struct task_struct *p);
extern void update_cgroup_boost_settings(void);
extern void restore_cgroup_boost_settings(void);
#else
static inline bool schedtune_task_colocated(struct task_struct *p)
{
return false;
}
static inline bool task_sched_boost(struct task_struct *p)
{
return true;
}
static inline void update_cgroup_boost_settings(void) { }
static inline void restore_cgroup_boost_settings(void) { }
#endif
extern int alloc_related_thread_groups(void);
extern void check_for_migration(struct rq *rq, struct task_struct *p);
static inline int is_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return test_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline int mark_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline void clear_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
clear_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline bool
task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
{
return cpu_of(rq) == task_cpu(p) && (p->on_rq || p->last_sleep_ts >=
rq->window_start);
}
static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
{
rq->cum_window_demand_scaled += scaled_delta;
if (unlikely((s64)rq->cum_window_demand_scaled < 0))
rq->cum_window_demand_scaled = 0;
}
extern unsigned long thermal_cap(int cpu);
extern void clear_walt_request(int cpu);
extern enum sched_boost_policy sched_boost_policy(void);
extern void sched_boost_parse_dt(void);
extern void clear_ed_task(struct task_struct *p, struct rq *rq);
extern bool early_detection_notify(struct rq *rq, u64 wallclock);
static inline unsigned int power_cost(int cpu, u64 demand)
{
return cpu_max_possible_capacity(cpu);
}
void note_task_waking(struct task_struct *p, u64 wallclock);
static inline bool task_placement_boost_enabled(struct task_struct *p)
{
if (task_sched_boost(p))
return sched_boost_policy() != SCHED_BOOST_NONE;
return false;
}
static inline enum sched_boost_policy task_boost_policy(struct task_struct *p)
{
enum sched_boost_policy policy = task_sched_boost(p) ?
sched_boost_policy() :
SCHED_BOOST_NONE;
if (policy == SCHED_BOOST_ON_BIG) {
/*
* Filter out tasks less than min task util threshold
* under conservative boost.
*/
if (sched_boost() == CONSERVATIVE_BOOST &&
task_util(p) <= sysctl_sched_min_task_util_for_boost)
policy = SCHED_BOOST_NONE;
}
return policy;
}
static inline bool is_min_capacity_cluster(struct sched_cluster *cluster)
{
return is_min_capacity_cpu(cluster_first_cpu(cluster));
}
#else /* CONFIG_SCHED_WALT */
struct walt_sched_stats;
struct related_thread_group;
struct sched_cluster;
static inline bool task_sched_boost(struct task_struct *p)
{
return false;
}
static inline bool task_placement_boost_enabled(struct task_struct *p)
{
return false;
}
static inline void check_for_migration(struct rq *rq, struct task_struct *p) { }
static inline int sched_boost(void)
{
return 0;
}
static inline bool rt_boost_on_big(void)
{
return false;
}
static inline bool is_full_throttle_boost(void)
{
return false;
}
static inline enum sched_boost_policy task_boost_policy(struct task_struct *p)
{
return SCHED_BOOST_NONE;
}
static inline bool
task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
{
return false;
}
static inline bool hmp_capable(void) { return false; }
static inline bool is_max_capacity_cpu(int cpu) { return true; }
static inline bool is_min_capacity_cpu(int cpu) { return true; }
static inline int
preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
{
return -1;
}
static inline struct sched_cluster *rq_cluster(struct rq *rq)
{
return NULL;
}
static inline bool is_asym_cap_cpu(int cpu) { return false; }
static inline int asym_cap_siblings(int cpu1, int cpu2) { return 0; }
static inline bool asym_cap_sibling_group_has_capacity(int dst_cpu, int margin)
{
return false;
}
static inline void set_preferred_cluster(struct related_thread_group *grp) { }
static inline bool task_in_related_thread_group(struct task_struct *p)
{
return false;
}
static inline
struct related_thread_group *task_related_thread_group(struct task_struct *p)
{
return NULL;
}
static inline bool task_rtg_high_prio(struct task_struct *p)
{
return false;
}
static inline u32 task_load(struct task_struct *p) { return 0; }
static inline u32 task_pl(struct task_struct *p) { return 0; }
static inline int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load, bool from_tick)
{
return 0;
}
static inline void add_new_task_to_grp(struct task_struct *new) {}
static inline int same_freq_domain(int src_cpu, int dst_cpu)
{
return 1;
}
static inline int mark_reserved(int cpu)
{
return 0;
}
static inline void clear_reserved(int cpu) { }
static inline int alloc_related_thread_groups(void) { return 0; }
static inline void walt_fixup_cum_window_demand(struct rq *rq,
s64 scaled_delta) { }
#ifdef CONFIG_SMP
static inline unsigned long thermal_cap(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
#endif
static inline void clear_walt_request(int cpu) { }
static inline int is_reserved(int cpu)
{
return 0;
}
static inline enum sched_boost_policy sched_boost_policy(void)
{
return SCHED_BOOST_NONE;
}
static inline void sched_boost_parse_dt(void) { }
static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { }
static inline bool early_detection_notify(struct rq *rq, u64 wallclock)
{
return 0;
}
#ifdef CONFIG_SMP
static inline unsigned int power_cost(int cpu, u64 demand)
{
return SCHED_CAPACITY_SCALE;
}
#endif
static inline void note_task_waking(struct task_struct *p, u64 wallclock) { }
static inline bool walt_want_remote_wakeup(void)
{
return false;
}
#endif /* CONFIG_SCHED_WALT */
struct sched_avg_stats {
int nr;
int nr_misfit;
int nr_max;
int nr_scaled;
};
extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);