kernel-fxtec-pro1x/drivers/misc/sgi-xp/xpc_sn2.c
Dean Nelson e17d416b1b sgi-xp: isolate xpc_vars_part structure to sn2 only
Isolate the xpc_vars_part structure of XPC's reserved page to sn2 only.

Signed-off-by: Dean Nelson <dcn@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-30 09:41:49 -07:00

668 lines
18 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*/
/*
* Cross Partition Communication (XPC) sn2-based functions.
*
* Architecture specific implementation of common functions.
*
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <asm/uncached.h>
#include <asm/sn/sn_sal.h>
#include "xpc.h"
struct xpc_vars *xpc_vars;
static struct xpc_vars_part_sn2 *xpc_vars_part; /* >>> Add _sn2 suffix? */
static enum xp_retval
xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
{
AMO_t *amos_page;
u64 nasid_array = 0;
int i;
int ret;
xpc_vars = XPC_RP_VARS(rp);
rp->sn.vars_pa = __pa(xpc_vars);
/* vars_part array follows immediately after vars */
xpc_vars_part = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
XPC_RP_VARS_SIZE);
/*
* Before clearing xpc_vars, see if a page of AMOs had been previously
* allocated. If not we'll need to allocate one and set permissions
* so that cross-partition AMOs are allowed.
*
* The allocated AMO page needs MCA reporting to remain disabled after
* XPC has unloaded. To make this work, we keep a copy of the pointer
* to this page (i.e., amos_page) in the struct xpc_vars structure,
* which is pointed to by the reserved page, and re-use that saved copy
* on subsequent loads of XPC. This AMO page is never freed, and its
* memory protections are never restricted.
*/
amos_page = xpc_vars->amos_page;
if (amos_page == NULL) {
amos_page = (AMO_t *)TO_AMO(uncached_alloc_page(0, 1));
if (amos_page == NULL) {
dev_err(xpc_part, "can't allocate page of AMOs\n");
return xpNoMemory;
}
/*
* Open up AMO-R/W to cpu. This is done for Shub 1.1 systems
* when xpc_allow_IPI_ops() is called via xpc_hb_init().
*/
if (!enable_shub_wars_1_1()) {
ret = sn_change_memprotect(ia64_tpa((u64)amos_page),
PAGE_SIZE,
SN_MEMPROT_ACCESS_CLASS_1,
&nasid_array);
if (ret != 0) {
dev_err(xpc_part, "can't change memory "
"protections\n");
uncached_free_page(__IA64_UNCACHED_OFFSET |
TO_PHYS((u64)amos_page), 1);
return xpSalError;
}
}
}
/* clear xpc_vars */
memset(xpc_vars, 0, sizeof(struct xpc_vars));
xpc_vars->version = XPC_V_VERSION;
xpc_vars->act_nasid = cpuid_to_nasid(0);
xpc_vars->act_phys_cpuid = cpu_physical_id(0);
xpc_vars->vars_part_pa = __pa(xpc_vars_part);
xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page);
xpc_vars->amos_page = amos_page; /* save for next load of XPC */
/* clear xpc_vars_part */
memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part_sn2) *
xp_max_npartitions);
/* initialize the activate IRQ related AMO variables */
for (i = 0; i < xp_nasid_mask_words; i++)
(void)xpc_IPI_init(XPC_ACTIVATE_IRQ_AMOS + i);
/* initialize the engaged remote partitions related AMO variables */
(void)xpc_IPI_init(XPC_ENGAGED_PARTITIONS_AMO);
(void)xpc_IPI_init(XPC_DISENGAGE_REQUEST_AMO);
return xpSuccess;
}
/*
* Setup the infrastructure necessary to support XPartition Communication
* between the specified remote partition and the local one.
*/
static enum xp_retval
xpc_setup_infrastructure_sn2(struct xpc_partition *part)
{
enum xp_retval retval;
int ret;
int cpuid;
int ch_number;
struct xpc_channel *ch;
struct timer_list *timer;
short partid = XPC_PARTID(part);
/*
* Allocate all of the channel structures as a contiguous chunk of
* memory.
*/
DBUG_ON(part->channels != NULL);
part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
GFP_KERNEL);
if (part->channels == NULL) {
dev_err(xpc_chan, "can't get memory for channels\n");
return xpNoMemory;
}
/* allocate all the required GET/PUT values */
part->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
GFP_KERNEL,
&part->local_GPs_base);
if (part->local_GPs == NULL) {
dev_err(xpc_chan, "can't get memory for local get/put "
"values\n");
retval = xpNoMemory;
goto out_1;
}
part->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
GFP_KERNEL,
&part->
remote_GPs_base);
if (part->remote_GPs == NULL) {
dev_err(xpc_chan, "can't get memory for remote get/put "
"values\n");
retval = xpNoMemory;
goto out_2;
}
part->remote_GPs_pa = 0;
/* allocate all the required open and close args */
part->local_openclose_args =
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
&part->local_openclose_args_base);
if (part->local_openclose_args == NULL) {
dev_err(xpc_chan, "can't get memory for local connect args\n");
retval = xpNoMemory;
goto out_3;
}
part->remote_openclose_args =
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
&part->remote_openclose_args_base);
if (part->remote_openclose_args == NULL) {
dev_err(xpc_chan, "can't get memory for remote connect args\n");
retval = xpNoMemory;
goto out_4;
}
part->remote_openclose_args_pa = 0;
part->local_IPI_amo_va = xpc_IPI_init(partid);
part->local_IPI_amo = 0;
spin_lock_init(&part->IPI_lock);
part->remote_IPI_nasid = 0;
part->remote_IPI_phys_cpuid = 0;
part->remote_IPI_amo_va = NULL;
atomic_set(&part->channel_mgr_requests, 1);
init_waitqueue_head(&part->channel_mgr_wq);
sprintf(part->IPI_owner, "xpc%02d", partid);
ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, IRQF_SHARED,
part->IPI_owner, (void *)(u64)partid);
if (ret != 0) {
dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
"errno=%d\n", -ret);
retval = xpLackOfResources;
goto out_5;
}
/* Setup a timer to check for dropped IPIs */
timer = &part->dropped_IPI_timer;
init_timer(timer);
timer->function = (void (*)(unsigned long))xpc_dropped_IPI_check;
timer->data = (unsigned long)part;
timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT_INTERVAL;
add_timer(timer);
part->nchannels = XPC_MAX_NCHANNELS;
atomic_set(&part->nchannels_active, 0);
atomic_set(&part->nchannels_engaged, 0);
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
ch = &part->channels[ch_number];
ch->partid = partid;
ch->number = ch_number;
ch->flags = XPC_C_DISCONNECTED;
ch->local_GP = &part->local_GPs[ch_number];
ch->local_openclose_args =
&part->local_openclose_args[ch_number];
atomic_set(&ch->kthreads_assigned, 0);
atomic_set(&ch->kthreads_idle, 0);
atomic_set(&ch->kthreads_active, 0);
atomic_set(&ch->references, 0);
atomic_set(&ch->n_to_notify, 0);
spin_lock_init(&ch->lock);
mutex_init(&ch->msg_to_pull_mutex);
init_completion(&ch->wdisconnect_wait);
atomic_set(&ch->n_on_msg_allocate_wq, 0);
init_waitqueue_head(&ch->msg_allocate_wq);
init_waitqueue_head(&ch->idle_wq);
}
/*
* With the setting of the partition setup_state to XPC_P_SETUP, we're
* declaring that this partition is ready to go.
*/
part->setup_state = XPC_P_SETUP;
/*
* Setup the per partition specific variables required by the
* remote partition to establish channel connections with us.
*
* The setting of the magic # indicates that these per partition
* specific variables are ready to be used.
*/
xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs);
xpc_vars_part[partid].openclose_args_pa =
__pa(part->local_openclose_args);
xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va);
cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid);
xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid);
xpc_vars_part[partid].nchannels = part->nchannels;
xpc_vars_part[partid].magic = XPC_VP_MAGIC1;
return xpSuccess;
/* setup of infrastructure failed */
out_5:
kfree(part->remote_openclose_args_base);
part->remote_openclose_args = NULL;
out_4:
kfree(part->local_openclose_args_base);
part->local_openclose_args = NULL;
out_3:
kfree(part->remote_GPs_base);
part->remote_GPs = NULL;
out_2:
kfree(part->local_GPs_base);
part->local_GPs = NULL;
out_1:
kfree(part->channels);
part->channels = NULL;
return retval;
}
/*
* Teardown the infrastructure necessary to support XPartition Communication
* between the specified remote partition and the local one.
*/
static void
xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
{
short partid = XPC_PARTID(part);
/*
* We start off by making this partition inaccessible to local
* processes by marking it as no longer setup. Then we make it
* inaccessible to remote processes by clearing the XPC per partition
* specific variable's magic # (which indicates that these variables
* are no longer valid) and by ignoring all XPC notify IPIs sent to
* this partition.
*/
DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
DBUG_ON(atomic_read(&part->nchannels_active) != 0);
DBUG_ON(part->setup_state != XPC_P_SETUP);
part->setup_state = XPC_P_WTEARDOWN;
xpc_vars_part[partid].magic = 0;
free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
/*
* Before proceeding with the teardown we have to wait until all
* existing references cease.
*/
wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
/* now we can begin tearing down the infrastructure */
part->setup_state = XPC_P_TORNDOWN;
/* in case we've still got outstanding timers registered... */
del_timer_sync(&part->dropped_IPI_timer);
kfree(part->remote_openclose_args_base);
part->remote_openclose_args = NULL;
kfree(part->local_openclose_args_base);
part->local_openclose_args = NULL;
kfree(part->remote_GPs_base);
part->remote_GPs = NULL;
kfree(part->local_GPs_base);
part->local_GPs = NULL;
kfree(part->channels);
part->channels = NULL;
part->local_IPI_amo_va = NULL;
}
/*
* Create a wrapper that hides the underlying mechanism for pulling a cacheline
* (or multiple cachelines) from a remote partition.
*
* src must be a cacheline aligned physical address on the remote partition.
* dst must be a cacheline aligned virtual address on this partition.
* cnt must be cacheline sized
*/
/* >>> Replace this function by call to xp_remote_memcpy() or bte_copy()? */
static enum xp_retval
xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
const void *src, size_t cnt)
{
enum xp_retval ret;
DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
if (part->act_state == XPC_P_DEACTIVATING)
return part->reason;
ret = xp_remote_memcpy(dst, src, cnt);
if (ret != xpSuccess) {
dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
" ret=%d\n", XPC_PARTID(part), ret);
}
return ret;
}
/*
* Pull the remote per partition specific variables from the specified
* partition.
*/
static enum xp_retval
xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
{
u8 buffer[L1_CACHE_BYTES * 2];
struct xpc_vars_part_sn2 *pulled_entry_cacheline =
(struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
struct xpc_vars_part_sn2 *pulled_entry;
u64 remote_entry_cacheline_pa, remote_entry_pa;
short partid = XPC_PARTID(part);
enum xp_retval ret;
/* pull the cacheline that contains the variables we're interested in */
DBUG_ON(part->remote_vars_part_pa !=
L1_CACHE_ALIGN(part->remote_vars_part_pa));
DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
remote_entry_pa = part->remote_vars_part_pa +
sn_partition_id * sizeof(struct xpc_vars_part_sn2);
remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
+ (remote_entry_pa &
(L1_CACHE_BYTES - 1)));
ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
(void *)remote_entry_cacheline_pa,
L1_CACHE_BYTES);
if (ret != xpSuccess) {
dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
"partition %d, ret=%d\n", partid, ret);
return ret;
}
/* see if they've been set up yet */
if (pulled_entry->magic != XPC_VP_MAGIC1 &&
pulled_entry->magic != XPC_VP_MAGIC2) {
if (pulled_entry->magic != 0) {
dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
"partition %d has bad magic value (=0x%lx)\n",
partid, sn_partition_id, pulled_entry->magic);
return xpBadMagic;
}
/* they've not been initialized yet */
return xpRetry;
}
if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) {
/* validate the variables */
if (pulled_entry->GPs_pa == 0 ||
pulled_entry->openclose_args_pa == 0 ||
pulled_entry->IPI_amo_pa == 0) {
dev_err(xpc_chan, "partition %d's XPC vars_part for "
"partition %d are not valid\n", partid,
sn_partition_id);
return xpInvalidAddress;
}
/* the variables we imported look to be valid */
part->remote_GPs_pa = pulled_entry->GPs_pa;
part->remote_openclose_args_pa =
pulled_entry->openclose_args_pa;
part->remote_IPI_amo_va =
(AMO_t *)__va(pulled_entry->IPI_amo_pa);
part->remote_IPI_nasid = pulled_entry->IPI_nasid;
part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid;
if (part->nchannels > pulled_entry->nchannels)
part->nchannels = pulled_entry->nchannels;
/* let the other side know that we've pulled their variables */
xpc_vars_part[partid].magic = XPC_VP_MAGIC2;
}
if (pulled_entry->magic == XPC_VP_MAGIC1)
return xpRetry;
return xpSuccess;
}
/*
* Establish first contact with the remote partititon. This involves pulling
* the XPC per partition variables from the remote partition and waiting for
* the remote partition to pull ours.
*/
static enum xp_retval
xpc_make_first_contact_sn2(struct xpc_partition *part)
{
enum xp_retval ret;
while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
if (ret != xpRetry) {
XPC_DEACTIVATE_PARTITION(part, ret);
return ret;
}
dev_dbg(xpc_part, "waiting to make first contact with "
"partition %d\n", XPC_PARTID(part));
/* wait a 1/4 of a second or so */
(void)msleep_interruptible(250);
if (part->act_state == XPC_P_DEACTIVATING)
return part->reason;
}
return xpSuccess;
}
/*
* Get the IPI flags and pull the openclose args and/or remote GPs as needed.
*/
static u64
xpc_get_IPI_flags_sn2(struct xpc_partition *part)
{
unsigned long irq_flags;
u64 IPI_amo;
enum xp_retval ret;
/*
* See if there are any IPI flags to be handled.
*/
spin_lock_irqsave(&part->IPI_lock, irq_flags);
IPI_amo = part->local_IPI_amo;
if (IPI_amo != 0)
part->local_IPI_amo = 0;
spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) {
ret = xpc_pull_remote_cachelines_sn2(part,
part->remote_openclose_args,
(void *)part->
remote_openclose_args_pa,
XPC_OPENCLOSE_ARGS_SIZE);
if (ret != xpSuccess) {
XPC_DEACTIVATE_PARTITION(part, ret);
dev_dbg(xpc_chan, "failed to pull openclose args from "
"partition %d, ret=%d\n", XPC_PARTID(part),
ret);
/* don't bother processing IPIs anymore */
IPI_amo = 0;
}
}
if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) {
ret = xpc_pull_remote_cachelines_sn2(part, part->remote_GPs,
(void *)part->remote_GPs_pa,
XPC_GP_SIZE);
if (ret != xpSuccess) {
XPC_DEACTIVATE_PARTITION(part, ret);
dev_dbg(xpc_chan, "failed to pull GPs from partition "
"%d, ret=%d\n", XPC_PARTID(part), ret);
/* don't bother processing IPIs anymore */
IPI_amo = 0;
}
}
return IPI_amo;
}
static struct xpc_msg *
xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
{
struct xpc_partition *part = &xpc_partitions[ch->partid];
struct xpc_msg *remote_msg, *msg;
u32 msg_index, nmsgs;
u64 msg_offset;
enum xp_retval ret;
if (mutex_lock_interruptible(&ch->msg_to_pull_mutex) != 0) {
/* we were interrupted by a signal */
return NULL;
}
while (get >= ch->next_msg_to_pull) {
/* pull as many messages as are ready and able to be pulled */
msg_index = ch->next_msg_to_pull % ch->remote_nentries;
DBUG_ON(ch->next_msg_to_pull >= ch->w_remote_GP.put);
nmsgs = ch->w_remote_GP.put - ch->next_msg_to_pull;
if (msg_index + nmsgs > ch->remote_nentries) {
/* ignore the ones that wrap the msg queue for now */
nmsgs = ch->remote_nentries - msg_index;
}
msg_offset = msg_index * ch->msg_size;
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
msg_offset);
ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
nmsgs * ch->msg_size);
if (ret != xpSuccess) {
dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
" msg %ld from partition %d, channel=%d, "
"ret=%d\n", nmsgs, ch->next_msg_to_pull,
ch->partid, ch->number, ret);
XPC_DEACTIVATE_PARTITION(part, ret);
mutex_unlock(&ch->msg_to_pull_mutex);
return NULL;
}
ch->next_msg_to_pull += nmsgs;
}
mutex_unlock(&ch->msg_to_pull_mutex);
/* return the message we were looking for */
msg_offset = (get % ch->remote_nentries) * ch->msg_size;
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
return msg;
}
/*
* Get a message to be delivered.
*/
static struct xpc_msg *
xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
{
struct xpc_msg *msg = NULL;
s64 get;
do {
if (ch->flags & XPC_C_DISCONNECTING)
break;
get = ch->w_local_GP.get;
rmb(); /* guarantee that .get loads before .put */
if (get == ch->w_remote_GP.put)
break;
/* There are messages waiting to be pulled and delivered.
* We need to try to secure one for ourselves. We'll do this
* by trying to increment w_local_GP.get and hope that no one
* else beats us to it. If they do, we'll we'll simply have
* to try again for the next one.
*/
if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) {
/* we got the entry referenced by get */
dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
"partid=%d, channel=%d\n", get + 1,
ch->partid, ch->number);
/* pull the message from the remote partition */
msg = xpc_pull_remote_msg_sn2(ch, get);
DBUG_ON(msg != NULL && msg->number != get);
DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
break;
}
} while (1);
return msg;
}
void
xpc_init_sn2(void)
{
xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
xpc_make_first_contact = xpc_make_first_contact_sn2;
xpc_get_IPI_flags = xpc_get_IPI_flags_sn2;
xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
}
void
xpc_exit_sn2(void)
{
}