280ff97494
irq_choose_cpu() should compare the affinity mask against cpu_online_map rather than CPU_MASK_ALL, since irq_select_affinity() sets the interrupt's affinity mask to cpu_online_map "and" CPU_MASK_ALL (which ends up being just cpu_online_map). The mask comparison in irq_choose_cpu() will always fail since the two masks are not the same. So the CPU chosen is the first CPU in the intersection of cpu_online_map and CPU_MASK_ALL, which is always CPU0. That means all interrupts are reassigned to CPU0... Distributing interrupts to CPUs in a linearly increasing round robin fashion is not optimal for the UltraSPARC T1/T2. Also, the irq_rover in irq_choose_cpu() causes an interrupt to be assigned to a different processor each time the interrupt is allocated and released. This may lead to an unbalanced distribution over time. A static mapping of interrupts to processors is done to optimize and balance interrupt distribution. For the T1/T2, interrupts are spread to different cores first, and then to strands within a core. The following is some benchmarks showing the effects of interrupt distribution on a T2. The test was done with iperf using a pair of T5220 boxes, each with a 10GBe NIU (XAUI) connected back to back. TCP | Stock Linear RR IRQ Optimized IRQ Streams | 2.6.30-rc5 Distribution Distribution | GBits/sec GBits/sec GBits/sec --------+----------------------------------------- 1 0.839 0.862 0.868 8 1.16 4.96 5.88 16 1.15 6.40 8.04 100 1.09 7.28 8.68 Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
431 lines
11 KiB
C
431 lines
11 KiB
C
/* cpumap.c: used for optimizing CPU assignment
|
|
*
|
|
* Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/cpudata.h>
|
|
#include "cpumap.h"
|
|
|
|
|
|
enum {
|
|
CPUINFO_LVL_ROOT = 0,
|
|
CPUINFO_LVL_NODE,
|
|
CPUINFO_LVL_CORE,
|
|
CPUINFO_LVL_PROC,
|
|
CPUINFO_LVL_MAX,
|
|
};
|
|
|
|
enum {
|
|
ROVER_NO_OP = 0,
|
|
/* Increment rover every time level is visited */
|
|
ROVER_INC_ON_VISIT = 1 << 0,
|
|
/* Increment parent's rover every time rover wraps around */
|
|
ROVER_INC_PARENT_ON_LOOP = 1 << 1,
|
|
};
|
|
|
|
struct cpuinfo_node {
|
|
int id;
|
|
int level;
|
|
int num_cpus; /* Number of CPUs in this hierarchy */
|
|
int parent_index;
|
|
int child_start; /* Array index of the first child node */
|
|
int child_end; /* Array index of the last child node */
|
|
int rover; /* Child node iterator */
|
|
};
|
|
|
|
struct cpuinfo_level {
|
|
int start_index; /* Index of first node of a level in a cpuinfo tree */
|
|
int end_index; /* Index of last node of a level in a cpuinfo tree */
|
|
int num_nodes; /* Number of nodes in a level in a cpuinfo tree */
|
|
};
|
|
|
|
struct cpuinfo_tree {
|
|
int total_nodes;
|
|
|
|
/* Offsets into nodes[] for each level of the tree */
|
|
struct cpuinfo_level level[CPUINFO_LVL_MAX];
|
|
struct cpuinfo_node nodes[0];
|
|
};
|
|
|
|
|
|
static struct cpuinfo_tree *cpuinfo_tree;
|
|
|
|
static u16 cpu_distribution_map[NR_CPUS];
|
|
static DEFINE_SPINLOCK(cpu_map_lock);
|
|
|
|
|
|
/* Niagara optimized cpuinfo tree traversal. */
|
|
static const int niagara_iterate_method[] = {
|
|
[CPUINFO_LVL_ROOT] = ROVER_NO_OP,
|
|
|
|
/* Strands (or virtual CPUs) within a core may not run concurrently
|
|
* on the Niagara, as instruction pipeline(s) are shared. Distribute
|
|
* work to strands in different cores first for better concurrency.
|
|
* Go to next NUMA node when all cores are used.
|
|
*/
|
|
[CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
|
|
|
|
/* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
|
|
* a proc_id represents an instruction pipeline. Distribute work to
|
|
* strands in different proc_id groups if the core has multiple
|
|
* instruction pipelines (e.g. the Niagara 2/2+ has two).
|
|
*/
|
|
[CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
|
|
|
|
/* Pick the next strand in the proc_id group. */
|
|
[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
|
|
};
|
|
|
|
/* Generic cpuinfo tree traversal. Distribute work round robin across NUMA
|
|
* nodes.
|
|
*/
|
|
static const int generic_iterate_method[] = {
|
|
[CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
|
|
[CPUINFO_LVL_NODE] = ROVER_NO_OP,
|
|
[CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
|
|
[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
|
|
};
|
|
|
|
|
|
static int cpuinfo_id(int cpu, int level)
|
|
{
|
|
int id;
|
|
|
|
switch (level) {
|
|
case CPUINFO_LVL_ROOT:
|
|
id = 0;
|
|
break;
|
|
case CPUINFO_LVL_NODE:
|
|
id = cpu_to_node(cpu);
|
|
break;
|
|
case CPUINFO_LVL_CORE:
|
|
id = cpu_data(cpu).core_id;
|
|
break;
|
|
case CPUINFO_LVL_PROC:
|
|
id = cpu_data(cpu).proc_id;
|
|
break;
|
|
default:
|
|
id = -EINVAL;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
/*
|
|
* Enumerate the CPU information in __cpu_data to determine the start index,
|
|
* end index, and number of nodes for each level in the cpuinfo tree. The
|
|
* total number of cpuinfo nodes required to build the tree is returned.
|
|
*/
|
|
static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
|
|
{
|
|
int prev_id[CPUINFO_LVL_MAX];
|
|
int i, n, num_nodes;
|
|
|
|
for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
|
|
struct cpuinfo_level *lv = &tree_level[i];
|
|
|
|
prev_id[i] = -1;
|
|
lv->start_index = lv->end_index = lv->num_nodes = 0;
|
|
}
|
|
|
|
num_nodes = 1; /* Include the root node */
|
|
|
|
for (i = 0; i < num_possible_cpus(); i++) {
|
|
if (!cpu_online(i))
|
|
continue;
|
|
|
|
n = cpuinfo_id(i, CPUINFO_LVL_NODE);
|
|
if (n > prev_id[CPUINFO_LVL_NODE]) {
|
|
tree_level[CPUINFO_LVL_NODE].num_nodes++;
|
|
prev_id[CPUINFO_LVL_NODE] = n;
|
|
num_nodes++;
|
|
}
|
|
n = cpuinfo_id(i, CPUINFO_LVL_CORE);
|
|
if (n > prev_id[CPUINFO_LVL_CORE]) {
|
|
tree_level[CPUINFO_LVL_CORE].num_nodes++;
|
|
prev_id[CPUINFO_LVL_CORE] = n;
|
|
num_nodes++;
|
|
}
|
|
n = cpuinfo_id(i, CPUINFO_LVL_PROC);
|
|
if (n > prev_id[CPUINFO_LVL_PROC]) {
|
|
tree_level[CPUINFO_LVL_PROC].num_nodes++;
|
|
prev_id[CPUINFO_LVL_PROC] = n;
|
|
num_nodes++;
|
|
}
|
|
}
|
|
|
|
tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
|
|
|
|
n = tree_level[CPUINFO_LVL_NODE].num_nodes;
|
|
tree_level[CPUINFO_LVL_NODE].start_index = 1;
|
|
tree_level[CPUINFO_LVL_NODE].end_index = n;
|
|
|
|
n++;
|
|
tree_level[CPUINFO_LVL_CORE].start_index = n;
|
|
n += tree_level[CPUINFO_LVL_CORE].num_nodes;
|
|
tree_level[CPUINFO_LVL_CORE].end_index = n - 1;
|
|
|
|
tree_level[CPUINFO_LVL_PROC].start_index = n;
|
|
n += tree_level[CPUINFO_LVL_PROC].num_nodes;
|
|
tree_level[CPUINFO_LVL_PROC].end_index = n - 1;
|
|
|
|
return num_nodes;
|
|
}
|
|
|
|
/* Build a tree representation of the CPU hierarchy using the per CPU
|
|
* information in __cpu_data. Entries in __cpu_data[0..NR_CPUS] are
|
|
* assumed to be sorted in ascending order based on node, core_id, and
|
|
* proc_id (in order of significance).
|
|
*/
|
|
static struct cpuinfo_tree *build_cpuinfo_tree(void)
|
|
{
|
|
struct cpuinfo_tree *new_tree;
|
|
struct cpuinfo_node *node;
|
|
struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
|
|
int num_cpus[CPUINFO_LVL_MAX];
|
|
int level_rover[CPUINFO_LVL_MAX];
|
|
int prev_id[CPUINFO_LVL_MAX];
|
|
int n, id, cpu, prev_cpu, last_cpu, level;
|
|
|
|
n = enumerate_cpuinfo_nodes(tmp_level);
|
|
|
|
new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
|
|
(sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
|
|
if (!new_tree)
|
|
return NULL;
|
|
|
|
new_tree->total_nodes = n;
|
|
memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
|
|
|
|
prev_cpu = cpu = first_cpu(cpu_online_map);
|
|
|
|
/* Initialize all levels in the tree with the first CPU */
|
|
for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
|
|
n = new_tree->level[level].start_index;
|
|
|
|
level_rover[level] = n;
|
|
node = &new_tree->nodes[n];
|
|
|
|
id = cpuinfo_id(cpu, level);
|
|
if (unlikely(id < 0)) {
|
|
kfree(new_tree);
|
|
return NULL;
|
|
}
|
|
node->id = id;
|
|
node->level = level;
|
|
node->num_cpus = 1;
|
|
|
|
node->parent_index = (level > CPUINFO_LVL_ROOT)
|
|
? new_tree->level[level - 1].start_index : -1;
|
|
|
|
node->child_start = node->child_end = node->rover =
|
|
(level == CPUINFO_LVL_PROC)
|
|
? cpu : new_tree->level[level + 1].start_index;
|
|
|
|
prev_id[level] = node->id;
|
|
num_cpus[level] = 1;
|
|
}
|
|
|
|
for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
|
|
if (cpu_online(last_cpu))
|
|
break;
|
|
}
|
|
|
|
while (++cpu <= last_cpu) {
|
|
if (!cpu_online(cpu))
|
|
continue;
|
|
|
|
for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
|
|
level--) {
|
|
id = cpuinfo_id(cpu, level);
|
|
if (unlikely(id < 0)) {
|
|
kfree(new_tree);
|
|
return NULL;
|
|
}
|
|
|
|
if ((id != prev_id[level]) || (cpu == last_cpu)) {
|
|
prev_id[level] = id;
|
|
node = &new_tree->nodes[level_rover[level]];
|
|
node->num_cpus = num_cpus[level];
|
|
num_cpus[level] = 1;
|
|
|
|
if (cpu == last_cpu)
|
|
node->num_cpus++;
|
|
|
|
/* Connect tree node to parent */
|
|
if (level == CPUINFO_LVL_ROOT)
|
|
node->parent_index = -1;
|
|
else
|
|
node->parent_index =
|
|
level_rover[level - 1];
|
|
|
|
if (level == CPUINFO_LVL_PROC) {
|
|
node->child_end =
|
|
(cpu == last_cpu) ? cpu : prev_cpu;
|
|
} else {
|
|
node->child_end =
|
|
level_rover[level + 1] - 1;
|
|
}
|
|
|
|
/* Initialize the next node in the same level */
|
|
n = ++level_rover[level];
|
|
if (n <= new_tree->level[level].end_index) {
|
|
node = &new_tree->nodes[n];
|
|
node->id = id;
|
|
node->level = level;
|
|
|
|
/* Connect node to child */
|
|
node->child_start = node->child_end =
|
|
node->rover =
|
|
(level == CPUINFO_LVL_PROC)
|
|
? cpu : level_rover[level + 1];
|
|
}
|
|
} else
|
|
num_cpus[level]++;
|
|
}
|
|
prev_cpu = cpu;
|
|
}
|
|
|
|
return new_tree;
|
|
}
|
|
|
|
static void increment_rover(struct cpuinfo_tree *t, int node_index,
|
|
int root_index, const int *rover_inc_table)
|
|
{
|
|
struct cpuinfo_node *node = &t->nodes[node_index];
|
|
int top_level, level;
|
|
|
|
top_level = t->nodes[root_index].level;
|
|
for (level = node->level; level >= top_level; level--) {
|
|
node->rover++;
|
|
if (node->rover <= node->child_end)
|
|
return;
|
|
|
|
node->rover = node->child_start;
|
|
/* If parent's rover does not need to be adjusted, stop here. */
|
|
if ((level == top_level) ||
|
|
!(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
|
|
return;
|
|
|
|
node = &t->nodes[node->parent_index];
|
|
}
|
|
}
|
|
|
|
static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
|
|
{
|
|
const int *rover_inc_table;
|
|
int level, new_index, index = root_index;
|
|
|
|
switch (sun4v_chip_type) {
|
|
case SUN4V_CHIP_NIAGARA1:
|
|
case SUN4V_CHIP_NIAGARA2:
|
|
rover_inc_table = niagara_iterate_method;
|
|
break;
|
|
default:
|
|
rover_inc_table = generic_iterate_method;
|
|
}
|
|
|
|
for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
|
|
level++) {
|
|
new_index = t->nodes[index].rover;
|
|
if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
|
|
increment_rover(t, index, root_index, rover_inc_table);
|
|
|
|
index = new_index;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
static void _cpu_map_rebuild(void)
|
|
{
|
|
int i;
|
|
|
|
if (cpuinfo_tree) {
|
|
kfree(cpuinfo_tree);
|
|
cpuinfo_tree = NULL;
|
|
}
|
|
|
|
cpuinfo_tree = build_cpuinfo_tree();
|
|
if (!cpuinfo_tree)
|
|
return;
|
|
|
|
/* Build CPU distribution map that spans all online CPUs. No need
|
|
* to check if the CPU is online, as that is done when the cpuinfo
|
|
* tree is being built.
|
|
*/
|
|
for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
|
|
cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
|
|
}
|
|
|
|
/* Fallback if the cpuinfo tree could not be built. CPU mapping is linear
|
|
* round robin.
|
|
*/
|
|
static int simple_map_to_cpu(unsigned int index)
|
|
{
|
|
int i, end, cpu_rover;
|
|
|
|
cpu_rover = 0;
|
|
end = index % num_online_cpus();
|
|
for (i = 0; i < num_possible_cpus(); i++) {
|
|
if (cpu_online(cpu_rover)) {
|
|
if (cpu_rover >= end)
|
|
return cpu_rover;
|
|
|
|
cpu_rover++;
|
|
}
|
|
}
|
|
|
|
/* Impossible, since num_online_cpus() <= num_possible_cpus() */
|
|
return first_cpu(cpu_online_map);
|
|
}
|
|
|
|
static int _map_to_cpu(unsigned int index)
|
|
{
|
|
struct cpuinfo_node *root_node;
|
|
|
|
if (unlikely(!cpuinfo_tree)) {
|
|
_cpu_map_rebuild();
|
|
if (!cpuinfo_tree)
|
|
return simple_map_to_cpu(index);
|
|
}
|
|
|
|
root_node = &cpuinfo_tree->nodes[0];
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (unlikely(root_node->num_cpus != num_online_cpus())) {
|
|
_cpu_map_rebuild();
|
|
if (!cpuinfo_tree)
|
|
return simple_map_to_cpu(index);
|
|
}
|
|
#endif
|
|
return cpu_distribution_map[index % root_node->num_cpus];
|
|
}
|
|
|
|
int map_to_cpu(unsigned int index)
|
|
{
|
|
int mapped_cpu;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&cpu_map_lock, flag);
|
|
mapped_cpu = _map_to_cpu(index);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
while (unlikely(!cpu_online(mapped_cpu)))
|
|
mapped_cpu = _map_to_cpu(index);
|
|
#endif
|
|
spin_unlock_irqrestore(&cpu_map_lock, flag);
|
|
return mapped_cpu;
|
|
}
|
|
EXPORT_SYMBOL(map_to_cpu);
|
|
|
|
void cpu_map_rebuild(void)
|
|
{
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&cpu_map_lock, flag);
|
|
_cpu_map_rebuild();
|
|
spin_unlock_irqrestore(&cpu_map_lock, flag);
|
|
}
|