kernel-fxtec-pro1x/drivers/ide/pci/cmd64x.c
Bartlomiej Zolnierkiewicz 4728d546d7 ide: remove ide_dma_enable()
* check ->speedproc return value in ide_tune_dma()
* use ide_tune_dma() in cmd64x/cs5530/sc1200/siimage/sl82c105/scc_pata drivers
* remove no longer needed ide_dma_enable()

Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
2007-05-16 00:51:46 +02:00

735 lines
21 KiB
C

/*
* linux/drivers/ide/pci/cmd64x.c Version 1.47 Mar 19, 2007
*
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
* Due to massive hardware bugs, UltraDMA is only supported
* on the 646U2 and not on the 646U.
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 David S. Miller (davem@redhat.com)
*
* Copyright (C) 1999-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2007 MontaVista Software, Inc. <source@mvista.com>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <asm/io.h>
#define DISPLAY_CMD64X_TIMINGS
#define CMD_DEBUG 0
#if CMD_DEBUG
#define cmdprintk(x...) printk(x)
#else
#define cmdprintk(x...)
#endif
/*
* CMD64x specific registers definition.
*/
#define CFR 0x50
#define CFR_INTR_CH0 0x04
#define CNTRL 0x51
#define CNTRL_ENA_1ST 0x04
#define CNTRL_ENA_2ND 0x08
#define CNTRL_DIS_RA0 0x40
#define CNTRL_DIS_RA1 0x80
#define CMDTIM 0x52
#define ARTTIM0 0x53
#define DRWTIM0 0x54
#define ARTTIM1 0x55
#define DRWTIM1 0x56
#define ARTTIM23 0x57
#define ARTTIM23_DIS_RA2 0x04
#define ARTTIM23_DIS_RA3 0x08
#define ARTTIM23_INTR_CH1 0x10
#define ARTTIM2 0x57
#define ARTTIM3 0x57
#define DRWTIM23 0x58
#define DRWTIM2 0x58
#define BRST 0x59
#define DRWTIM3 0x5b
#define BMIDECR0 0x70
#define MRDMODE 0x71
#define MRDMODE_INTR_CH0 0x04
#define MRDMODE_INTR_CH1 0x08
#define MRDMODE_BLK_CH0 0x10
#define MRDMODE_BLK_CH1 0x20
#define BMIDESR0 0x72
#define UDIDETCR0 0x73
#define DTPR0 0x74
#define BMIDECR1 0x78
#define BMIDECSR 0x79
#define BMIDESR1 0x7A
#define UDIDETCR1 0x7B
#define DTPR1 0x7C
#if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS)
#include <linux/stat.h>
#include <linux/proc_fs.h>
static u8 cmd64x_proc = 0;
#define CMD_MAX_DEVS 5
static struct pci_dev *cmd_devs[CMD_MAX_DEVS];
static int n_cmd_devs;
static char * print_cmd64x_get_info (char *buf, struct pci_dev *dev, int index)
{
char *p = buf;
u8 reg72 = 0, reg73 = 0; /* primary */
u8 reg7a = 0, reg7b = 0; /* secondary */
u8 reg50 = 1, reg51 = 1, reg57 = 0, reg71 = 0; /* extra */
u8 rev = 0;
p += sprintf(p, "\nController: %d\n", index);
p += sprintf(p, "PCI-%x Chipset.\n", dev->device);
(void) pci_read_config_byte(dev, CFR, &reg50);
(void) pci_read_config_byte(dev, CNTRL, &reg51);
(void) pci_read_config_byte(dev, ARTTIM23, &reg57);
(void) pci_read_config_byte(dev, MRDMODE, &reg71);
(void) pci_read_config_byte(dev, BMIDESR0, &reg72);
(void) pci_read_config_byte(dev, UDIDETCR0, &reg73);
(void) pci_read_config_byte(dev, BMIDESR1, &reg7a);
(void) pci_read_config_byte(dev, UDIDETCR1, &reg7b);
/* PCI0643/6 originally didn't have the primary channel enable bit */
(void) pci_read_config_byte(dev, PCI_REVISION_ID, &rev);
if ((dev->device == PCI_DEVICE_ID_CMD_643) ||
(dev->device == PCI_DEVICE_ID_CMD_646 && rev < 3))
reg51 |= CNTRL_ENA_1ST;
p += sprintf(p, "---------------- Primary Channel "
"---------------- Secondary Channel ------------\n");
p += sprintf(p, " %s %s\n",
(reg51 & CNTRL_ENA_1ST) ? "enabled " : "disabled",
(reg51 & CNTRL_ENA_2ND) ? "enabled " : "disabled");
p += sprintf(p, "---------------- drive0 --------- drive1 "
"-------- drive0 --------- drive1 ------\n");
p += sprintf(p, "DMA enabled: %s %s"
" %s %s\n",
(reg72 & 0x20) ? "yes" : "no ", (reg72 & 0x40) ? "yes" : "no ",
(reg7a & 0x20) ? "yes" : "no ", (reg7a & 0x40) ? "yes" : "no ");
p += sprintf(p, "UltraDMA mode: %s (%c) %s (%c)",
( reg73 & 0x01) ? " on" : "off",
((reg73 & 0x30) == 0x30) ? ((reg73 & 0x04) ? '3' : '0') :
((reg73 & 0x30) == 0x20) ? ((reg73 & 0x04) ? '3' : '1') :
((reg73 & 0x30) == 0x10) ? ((reg73 & 0x04) ? '4' : '2') :
((reg73 & 0x30) == 0x00) ? ((reg73 & 0x04) ? '5' : '2') : '?',
( reg73 & 0x02) ? " on" : "off",
((reg73 & 0xC0) == 0xC0) ? ((reg73 & 0x08) ? '3' : '0') :
((reg73 & 0xC0) == 0x80) ? ((reg73 & 0x08) ? '3' : '1') :
((reg73 & 0xC0) == 0x40) ? ((reg73 & 0x08) ? '4' : '2') :
((reg73 & 0xC0) == 0x00) ? ((reg73 & 0x08) ? '5' : '2') : '?');
p += sprintf(p, " %s (%c) %s (%c)\n",
( reg7b & 0x01) ? " on" : "off",
((reg7b & 0x30) == 0x30) ? ((reg7b & 0x04) ? '3' : '0') :
((reg7b & 0x30) == 0x20) ? ((reg7b & 0x04) ? '3' : '1') :
((reg7b & 0x30) == 0x10) ? ((reg7b & 0x04) ? '4' : '2') :
((reg7b & 0x30) == 0x00) ? ((reg7b & 0x04) ? '5' : '2') : '?',
( reg7b & 0x02) ? " on" : "off",
((reg7b & 0xC0) == 0xC0) ? ((reg7b & 0x08) ? '3' : '0') :
((reg7b & 0xC0) == 0x80) ? ((reg7b & 0x08) ? '3' : '1') :
((reg7b & 0xC0) == 0x40) ? ((reg7b & 0x08) ? '4' : '2') :
((reg7b & 0xC0) == 0x00) ? ((reg7b & 0x08) ? '5' : '2') : '?');
p += sprintf(p, "Interrupt: %s, %s %s, %s\n",
(reg71 & MRDMODE_BLK_CH0 ) ? "blocked" : "enabled",
(reg50 & CFR_INTR_CH0 ) ? "pending" : "clear ",
(reg71 & MRDMODE_BLK_CH1 ) ? "blocked" : "enabled",
(reg57 & ARTTIM23_INTR_CH1) ? "pending" : "clear ");
return (char *)p;
}
static int cmd64x_get_info (char *buffer, char **addr, off_t offset, int count)
{
char *p = buffer;
int i;
for (i = 0; i < n_cmd_devs; i++) {
struct pci_dev *dev = cmd_devs[i];
p = print_cmd64x_get_info(p, dev, i);
}
return p-buffer; /* => must be less than 4k! */
}
#endif /* defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS) */
static u8 quantize_timing(int timing, int quant)
{
return (timing + quant - 1) / quant;
}
/*
* This routine calculates active/recovery counts and then writes them into
* the chipset registers.
*/
static void program_cycle_times (ide_drive_t *drive, int cycle_time, int active_time)
{
struct pci_dev *dev = HWIF(drive)->pci_dev;
int clock_time = 1000 / system_bus_clock();
u8 cycle_count, active_count, recovery_count, drwtim;
static const u8 recovery_values[] =
{15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0};
static const u8 drwtim_regs[4] = {DRWTIM0, DRWTIM1, DRWTIM2, DRWTIM3};
cmdprintk("program_cycle_times parameters: total=%d, active=%d\n",
cycle_time, active_time);
cycle_count = quantize_timing( cycle_time, clock_time);
active_count = quantize_timing(active_time, clock_time);
recovery_count = cycle_count - active_count;
/*
* In case we've got too long recovery phase, try to lengthen
* the active phase
*/
if (recovery_count > 16) {
active_count += recovery_count - 16;
recovery_count = 16;
}
if (active_count > 16) /* shouldn't actually happen... */
active_count = 16;
cmdprintk("Final counts: total=%d, active=%d, recovery=%d\n",
cycle_count, active_count, recovery_count);
/*
* Convert values to internal chipset representation
*/
recovery_count = recovery_values[recovery_count];
active_count &= 0x0f;
/* Program the active/recovery counts into the DRWTIM register */
drwtim = (active_count << 4) | recovery_count;
(void) pci_write_config_byte(dev, drwtim_regs[drive->dn], drwtim);
cmdprintk("Write 0x%02x to reg 0x%x\n", drwtim, drwtim_regs[drive->dn]);
}
/*
* This routine selects drive's best PIO mode and writes into the chipset
* registers setup/active/recovery timings.
*/
static u8 cmd64x_tune_pio (ide_drive_t *drive, u8 mode_wanted)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
ide_pio_data_t pio;
u8 pio_mode, setup_count, arttim = 0;
static const u8 setup_values[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0};
static const u8 arttim_regs[4] = {ARTTIM0, ARTTIM1, ARTTIM23, ARTTIM23};
pio_mode = ide_get_best_pio_mode(drive, mode_wanted, 5, &pio);
cmdprintk("%s: PIO mode wanted %d, selected %d (%d ns)%s\n",
drive->name, mode_wanted, pio_mode, pio.cycle_time,
pio.overridden ? " (overriding vendor mode)" : "");
program_cycle_times(drive, pio.cycle_time,
ide_pio_timings[pio_mode].active_time);
setup_count = quantize_timing(ide_pio_timings[pio_mode].setup_time,
1000 / system_bus_clock());
/*
* The primary channel has individual address setup timing registers
* for each drive and the hardware selects the slowest timing itself.
* The secondary channel has one common register and we have to select
* the slowest address setup timing ourselves.
*/
if (hwif->channel) {
ide_drive_t *drives = hwif->drives;
drive->drive_data = setup_count;
setup_count = max(drives[0].drive_data, drives[1].drive_data);
}
if (setup_count > 5) /* shouldn't actually happen... */
setup_count = 5;
cmdprintk("Final address setup count: %d\n", setup_count);
/*
* Program the address setup clocks into the ARTTIM registers.
* Avoid clearing the secondary channel's interrupt bit.
*/
(void) pci_read_config_byte (dev, arttim_regs[drive->dn], &arttim);
if (hwif->channel)
arttim &= ~ARTTIM23_INTR_CH1;
arttim &= ~0xc0;
arttim |= setup_values[setup_count];
(void) pci_write_config_byte(dev, arttim_regs[drive->dn], arttim);
cmdprintk("Write 0x%02x to reg 0x%x\n", arttim, arttim_regs[drive->dn]);
return pio_mode;
}
/*
* Attempts to set drive's PIO mode.
* Special cases are 8: prefetch off, 9: prefetch on (both never worked),
* and 255: auto-select best mode (used at boot time).
*/
static void cmd64x_tune_drive (ide_drive_t *drive, u8 pio)
{
/*
* Filter out the prefetch control values
* to prevent PIO5 from being programmed
*/
if (pio == 8 || pio == 9)
return;
pio = cmd64x_tune_pio(drive, pio);
(void) ide_config_drive_speed(drive, XFER_PIO_0 + pio);
}
static int cmd64x_tune_chipset (ide_drive_t *drive, u8 speed)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
u8 unit = drive->dn & 0x01;
u8 regU = 0, pciU = hwif->channel ? UDIDETCR1 : UDIDETCR0;
speed = ide_rate_filter(drive, speed);
if (speed >= XFER_SW_DMA_0) {
(void) pci_read_config_byte(dev, pciU, &regU);
regU &= ~(unit ? 0xCA : 0x35);
}
switch(speed) {
case XFER_UDMA_5:
regU |= unit ? 0x0A : 0x05;
break;
case XFER_UDMA_4:
regU |= unit ? 0x4A : 0x15;
break;
case XFER_UDMA_3:
regU |= unit ? 0x8A : 0x25;
break;
case XFER_UDMA_2:
regU |= unit ? 0x42 : 0x11;
break;
case XFER_UDMA_1:
regU |= unit ? 0x82 : 0x21;
break;
case XFER_UDMA_0:
regU |= unit ? 0xC2 : 0x31;
break;
case XFER_MW_DMA_2:
program_cycle_times(drive, 120, 70);
break;
case XFER_MW_DMA_1:
program_cycle_times(drive, 150, 80);
break;
case XFER_MW_DMA_0:
program_cycle_times(drive, 480, 215);
break;
case XFER_PIO_5:
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
(void) cmd64x_tune_pio(drive, speed - XFER_PIO_0);
break;
default:
return 1;
}
if (speed >= XFER_SW_DMA_0)
(void) pci_write_config_byte(dev, pciU, regU);
return ide_config_drive_speed(drive, speed);
}
static int cmd64x_config_drive_for_dma (ide_drive_t *drive)
{
if (ide_tune_dma(drive))
return 0;
if (ide_use_fast_pio(drive))
cmd64x_tune_drive(drive, 255);
return -1;
}
static int cmd648_ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
int err = __ide_dma_end(drive);
u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 :
MRDMODE_INTR_CH0;
u8 mrdmode = inb(hwif->dma_master + 0x01);
/* clear the interrupt bit */
outb(mrdmode | irq_mask, hwif->dma_master + 0x01);
return err;
}
static int cmd64x_ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
int irq_reg = hwif->channel ? ARTTIM23 : CFR;
u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 :
CFR_INTR_CH0;
u8 irq_stat = 0;
int err = __ide_dma_end(drive);
(void) pci_read_config_byte(dev, irq_reg, &irq_stat);
/* clear the interrupt bit */
(void) pci_write_config_byte(dev, irq_reg, irq_stat | irq_mask);
return err;
}
static int cmd648_ide_dma_test_irq (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 :
MRDMODE_INTR_CH0;
u8 dma_stat = inb(hwif->dma_status);
u8 mrdmode = inb(hwif->dma_master + 0x01);
#ifdef DEBUG
printk("%s: dma_stat: 0x%02x mrdmode: 0x%02x irq_mask: 0x%02x\n",
drive->name, dma_stat, mrdmode, irq_mask);
#endif
if (!(mrdmode & irq_mask))
return 0;
/* return 1 if INTR asserted */
if (dma_stat & 4)
return 1;
return 0;
}
static int cmd64x_ide_dma_test_irq (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
int irq_reg = hwif->channel ? ARTTIM23 : CFR;
u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 :
CFR_INTR_CH0;
u8 dma_stat = inb(hwif->dma_status);
u8 irq_stat = 0;
(void) pci_read_config_byte(dev, irq_reg, &irq_stat);
#ifdef DEBUG
printk("%s: dma_stat: 0x%02x irq_stat: 0x%02x irq_mask: 0x%02x\n",
drive->name, dma_stat, irq_stat, irq_mask);
#endif
if (!(irq_stat & irq_mask))
return 0;
/* return 1 if INTR asserted */
if (dma_stat & 4)
return 1;
return 0;
}
/*
* ASUS P55T2P4D with CMD646 chipset revision 0x01 requires the old
* event order for DMA transfers.
*/
static int cmd646_1_ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_stat = 0, dma_cmd = 0;
drive->waiting_for_dma = 0;
/* get DMA status */
dma_stat = inb(hwif->dma_status);
/* read DMA command state */
dma_cmd = inb(hwif->dma_command);
/* stop DMA */
outb(dma_cmd & ~1, hwif->dma_command);
/* clear the INTR & ERROR bits */
outb(dma_stat | 6, hwif->dma_status);
/* and free any DMA resources */
ide_destroy_dmatable(drive);
/* verify good DMA status */
return (dma_stat & 7) != 4;
}
static unsigned int __devinit init_chipset_cmd64x(struct pci_dev *dev, const char *name)
{
u32 class_rev = 0;
u8 mrdmode = 0;
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
switch(dev->device) {
case PCI_DEVICE_ID_CMD_643:
break;
case PCI_DEVICE_ID_CMD_646:
printk(KERN_INFO "%s: chipset revision 0x%02X, ", name, class_rev);
switch(class_rev) {
case 0x07:
case 0x05:
printk("UltraDMA Capable");
break;
case 0x03:
printk("MultiWord DMA Force Limited");
break;
case 0x01:
default:
printk("MultiWord DMA Limited, IRQ workaround enabled");
break;
}
printk("\n");
break;
case PCI_DEVICE_ID_CMD_648:
case PCI_DEVICE_ID_CMD_649:
break;
default:
break;
}
/* Set a good latency timer and cache line size value. */
(void) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
/* FIXME: pci_set_master() to ensure a good latency timer value */
/* Setup interrupts. */
(void) pci_read_config_byte(dev, MRDMODE, &mrdmode);
mrdmode &= ~(0x30);
(void) pci_write_config_byte(dev, MRDMODE, mrdmode);
/* Use MEMORY READ LINE for reads.
* NOTE: Although not mentioned in the PCI0646U specs,
* these bits are write only and won't be read
* back as set or not. The PCI0646U2 specs clarify
* this point.
*/
(void) pci_write_config_byte(dev, MRDMODE, mrdmode | 0x02);
/* Set reasonable active/recovery/address-setup values. */
(void) pci_write_config_byte(dev, ARTTIM0, 0x40);
(void) pci_write_config_byte(dev, DRWTIM0, 0x3f);
(void) pci_write_config_byte(dev, ARTTIM1, 0x40);
(void) pci_write_config_byte(dev, DRWTIM1, 0x3f);
#ifdef __i386__
(void) pci_write_config_byte(dev, ARTTIM23, 0x1c);
#else
(void) pci_write_config_byte(dev, ARTTIM23, 0x5c);
#endif
(void) pci_write_config_byte(dev, DRWTIM23, 0x3f);
(void) pci_write_config_byte(dev, DRWTIM3, 0x3f);
#ifdef CONFIG_PPC
(void) pci_write_config_byte(dev, UDIDETCR0, 0xf0);
#endif /* CONFIG_PPC */
#if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS)
cmd_devs[n_cmd_devs++] = dev;
if (!cmd64x_proc) {
cmd64x_proc = 1;
ide_pci_create_host_proc("cmd64x", cmd64x_get_info);
}
#endif /* DISPLAY_CMD64X_TIMINGS && CONFIG_IDE_PROC_FS */
return 0;
}
static unsigned int __devinit ata66_cmd64x(ide_hwif_t *hwif)
{
u8 ata66 = 0, mask = (hwif->channel) ? 0x02 : 0x01;
switch(hwif->pci_dev->device) {
case PCI_DEVICE_ID_CMD_643:
case PCI_DEVICE_ID_CMD_646:
return ata66;
default:
break;
}
pci_read_config_byte(hwif->pci_dev, BMIDECSR, &ata66);
return (ata66 & mask) ? 1 : 0;
}
static void __devinit init_hwif_cmd64x(ide_hwif_t *hwif)
{
struct pci_dev *dev = hwif->pci_dev;
unsigned int class_rev;
hwif->autodma = 0;
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
hwif->tuneproc = &cmd64x_tune_drive;
hwif->speedproc = &cmd64x_tune_chipset;
hwif->drives[0].autotune = hwif->drives[1].autotune = 1;
if (!hwif->dma_base)
return;
hwif->atapi_dma = 1;
hwif->ultra_mask = hwif->cds->udma_mask;
/*
* UltraDMA only supported on PCI646U and PCI646U2, which
* correspond to revisions 0x03, 0x05 and 0x07 respectively.
* Actually, although the CMD tech support people won't
* tell me the details, the 0x03 revision cannot support
* UDMA correctly without hardware modifications, and even
* then it only works with Quantum disks due to some
* hold time assumptions in the 646U part which are fixed
* in the 646U2.
*
* So we only do UltraDMA on revision 0x05 and 0x07 chipsets.
*/
if (dev->device == PCI_DEVICE_ID_CMD_646 && class_rev < 5)
hwif->ultra_mask = 0x00;
hwif->mwdma_mask = 0x07;
hwif->ide_dma_check = &cmd64x_config_drive_for_dma;
if (!(hwif->udma_four))
hwif->udma_four = ata66_cmd64x(hwif);
switch(dev->device) {
case PCI_DEVICE_ID_CMD_648:
case PCI_DEVICE_ID_CMD_649:
alt_irq_bits:
hwif->ide_dma_end = &cmd648_ide_dma_end;
hwif->ide_dma_test_irq = &cmd648_ide_dma_test_irq;
break;
case PCI_DEVICE_ID_CMD_646:
hwif->chipset = ide_cmd646;
if (class_rev == 0x01) {
hwif->ide_dma_end = &cmd646_1_ide_dma_end;
break;
} else if (class_rev >= 0x03)
goto alt_irq_bits;
/* fall thru */
default:
hwif->ide_dma_end = &cmd64x_ide_dma_end;
hwif->ide_dma_test_irq = &cmd64x_ide_dma_test_irq;
break;
}
if (!noautodma)
hwif->autodma = 1;
hwif->drives[0].autodma = hwif->autodma;
hwif->drives[1].autodma = hwif->autodma;
}
static int __devinit init_setup_cmd64x(struct pci_dev *dev, ide_pci_device_t *d)
{
return ide_setup_pci_device(dev, d);
}
static int __devinit init_setup_cmd646(struct pci_dev *dev, ide_pci_device_t *d)
{
u8 rev = 0;
/*
* The original PCI0646 didn't have the primary channel enable bit,
* it appeared starting with PCI0646U (i.e. revision ID 3).
*/
pci_read_config_byte(dev, PCI_REVISION_ID, &rev);
if (rev < 3)
d->enablebits[0].reg = 0;
return ide_setup_pci_device(dev, d);
}
static ide_pci_device_t cmd64x_chipsets[] __devinitdata = {
{ /* 0 */
.name = "CMD643",
.init_setup = init_setup_cmd64x,
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.enablebits = {{0x00,0x00,0x00}, {0x51,0x08,0x08}},
.bootable = ON_BOARD,
.udma_mask = 0x00, /* no udma */
},{ /* 1 */
.name = "CMD646",
.init_setup = init_setup_cmd646,
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.bootable = ON_BOARD,
.udma_mask = 0x07, /* udma0-2 */
},{ /* 2 */
.name = "CMD648",
.init_setup = init_setup_cmd64x,
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.bootable = ON_BOARD,
.udma_mask = 0x1f, /* udma0-4 */
},{ /* 3 */
.name = "CMD649",
.init_setup = init_setup_cmd64x,
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}},
.bootable = ON_BOARD,
.udma_mask = 0x3f, /* udma0-5 */
}
};
/*
* We may have to modify enablebits for PCI0646, so we'd better pass
* a local copy of the ide_pci_device_t structure down the call chain...
*/
static int __devinit cmd64x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
ide_pci_device_t d = cmd64x_chipsets[id->driver_data];
return d.init_setup(dev, &d);
}
static struct pci_device_id cmd64x_pci_tbl[] = {
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_643, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_648, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_649, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, cmd64x_pci_tbl);
static struct pci_driver driver = {
.name = "CMD64x_IDE",
.id_table = cmd64x_pci_tbl,
.probe = cmd64x_init_one,
};
static int __init cmd64x_ide_init(void)
{
return ide_pci_register_driver(&driver);
}
module_init(cmd64x_ide_init);
MODULE_AUTHOR("Eddie Dost, David Miller, Andre Hedrick");
MODULE_DESCRIPTION("PCI driver module for CMD64x IDE");
MODULE_LICENSE("GPL");