3ac94932a2
Beautify x86_64 stacktraces to be more readable. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
840 lines
19 KiB
C
840 lines
19 KiB
C
/*
|
|
* linux/arch/x86-64/kernel/process.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*
|
|
* X86-64 port
|
|
* Andi Kleen.
|
|
*
|
|
* CPU hotplug support - ashok.raj@intel.com
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/module.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/random.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pda.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/kdebug.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/idle.h>
|
|
|
|
asmlinkage extern void ret_from_fork(void);
|
|
|
|
unsigned long kernel_thread_flags = CLONE_VM | CLONE_UNTRACED;
|
|
|
|
unsigned long boot_option_idle_override = 0;
|
|
EXPORT_SYMBOL(boot_option_idle_override);
|
|
|
|
/*
|
|
* Powermanagement idle function, if any..
|
|
*/
|
|
void (*pm_idle)(void);
|
|
EXPORT_SYMBOL(pm_idle);
|
|
static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
|
|
|
|
static ATOMIC_NOTIFIER_HEAD(idle_notifier);
|
|
|
|
void idle_notifier_register(struct notifier_block *n)
|
|
{
|
|
atomic_notifier_chain_register(&idle_notifier, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(idle_notifier_register);
|
|
|
|
void idle_notifier_unregister(struct notifier_block *n)
|
|
{
|
|
atomic_notifier_chain_unregister(&idle_notifier, n);
|
|
}
|
|
EXPORT_SYMBOL(idle_notifier_unregister);
|
|
|
|
enum idle_state { CPU_IDLE, CPU_NOT_IDLE };
|
|
static DEFINE_PER_CPU(enum idle_state, idle_state) = CPU_NOT_IDLE;
|
|
|
|
void enter_idle(void)
|
|
{
|
|
__get_cpu_var(idle_state) = CPU_IDLE;
|
|
atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
|
|
}
|
|
|
|
static void __exit_idle(void)
|
|
{
|
|
__get_cpu_var(idle_state) = CPU_NOT_IDLE;
|
|
atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
|
|
}
|
|
|
|
/* Called from interrupts to signify idle end */
|
|
void exit_idle(void)
|
|
{
|
|
if (current->pid | read_pda(irqcount))
|
|
return;
|
|
__exit_idle();
|
|
}
|
|
|
|
/*
|
|
* We use this if we don't have any better
|
|
* idle routine..
|
|
*/
|
|
static void default_idle(void)
|
|
{
|
|
local_irq_enable();
|
|
|
|
current_thread_info()->status &= ~TS_POLLING;
|
|
smp_mb__after_clear_bit();
|
|
while (!need_resched()) {
|
|
local_irq_disable();
|
|
if (!need_resched())
|
|
safe_halt();
|
|
else
|
|
local_irq_enable();
|
|
}
|
|
current_thread_info()->status |= TS_POLLING;
|
|
}
|
|
|
|
/*
|
|
* On SMP it's slightly faster (but much more power-consuming!)
|
|
* to poll the ->need_resched flag instead of waiting for the
|
|
* cross-CPU IPI to arrive. Use this option with caution.
|
|
*/
|
|
static void poll_idle (void)
|
|
{
|
|
local_irq_enable();
|
|
|
|
asm volatile(
|
|
"2:"
|
|
"testl %0,%1;"
|
|
"rep; nop;"
|
|
"je 2b;"
|
|
: :
|
|
"i" (_TIF_NEED_RESCHED),
|
|
"m" (current_thread_info()->flags));
|
|
}
|
|
|
|
void cpu_idle_wait(void)
|
|
{
|
|
unsigned int cpu, this_cpu = get_cpu();
|
|
cpumask_t map;
|
|
|
|
set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
|
|
put_cpu();
|
|
|
|
cpus_clear(map);
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu(cpu_idle_state, cpu) = 1;
|
|
cpu_set(cpu, map);
|
|
}
|
|
|
|
__get_cpu_var(cpu_idle_state) = 0;
|
|
|
|
wmb();
|
|
do {
|
|
ssleep(1);
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu_isset(cpu, map) &&
|
|
!per_cpu(cpu_idle_state, cpu))
|
|
cpu_clear(cpu, map);
|
|
}
|
|
cpus_and(map, map, cpu_online_map);
|
|
} while (!cpus_empty(map));
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_idle_wait);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
DECLARE_PER_CPU(int, cpu_state);
|
|
|
|
#include <asm/nmi.h>
|
|
/* We halt the CPU with physical CPU hotplug */
|
|
static inline void play_dead(void)
|
|
{
|
|
idle_task_exit();
|
|
wbinvd();
|
|
mb();
|
|
/* Ack it */
|
|
__get_cpu_var(cpu_state) = CPU_DEAD;
|
|
|
|
local_irq_disable();
|
|
while (1)
|
|
halt();
|
|
}
|
|
#else
|
|
static inline void play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* The idle thread. There's no useful work to be
|
|
* done, so just try to conserve power and have a
|
|
* low exit latency (ie sit in a loop waiting for
|
|
* somebody to say that they'd like to reschedule)
|
|
*/
|
|
void cpu_idle (void)
|
|
{
|
|
current_thread_info()->status |= TS_POLLING;
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
while (!need_resched()) {
|
|
void (*idle)(void);
|
|
|
|
if (__get_cpu_var(cpu_idle_state))
|
|
__get_cpu_var(cpu_idle_state) = 0;
|
|
|
|
rmb();
|
|
idle = pm_idle;
|
|
if (!idle)
|
|
idle = default_idle;
|
|
if (cpu_is_offline(smp_processor_id()))
|
|
play_dead();
|
|
enter_idle();
|
|
idle();
|
|
__exit_idle();
|
|
}
|
|
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
|
|
* which can obviate IPI to trigger checking of need_resched.
|
|
* We execute MONITOR against need_resched and enter optimized wait state
|
|
* through MWAIT. Whenever someone changes need_resched, we would be woken
|
|
* up from MWAIT (without an IPI).
|
|
*/
|
|
static void mwait_idle(void)
|
|
{
|
|
local_irq_enable();
|
|
|
|
while (!need_resched()) {
|
|
__monitor((void *)¤t_thread_info()->flags, 0, 0);
|
|
smp_mb();
|
|
if (need_resched())
|
|
break;
|
|
__mwait(0, 0);
|
|
}
|
|
}
|
|
|
|
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
|
|
{
|
|
static int printed;
|
|
if (cpu_has(c, X86_FEATURE_MWAIT)) {
|
|
/*
|
|
* Skip, if setup has overridden idle.
|
|
* One CPU supports mwait => All CPUs supports mwait
|
|
*/
|
|
if (!pm_idle) {
|
|
if (!printed) {
|
|
printk("using mwait in idle threads.\n");
|
|
printed = 1;
|
|
}
|
|
pm_idle = mwait_idle;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init idle_setup (char *str)
|
|
{
|
|
if (!strncmp(str, "poll", 4)) {
|
|
printk("using polling idle threads.\n");
|
|
pm_idle = poll_idle;
|
|
}
|
|
|
|
boot_option_idle_override = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("idle=", idle_setup);
|
|
|
|
/* Prints also some state that isn't saved in the pt_regs */
|
|
void __show_regs(struct pt_regs * regs)
|
|
{
|
|
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
|
|
unsigned int fsindex,gsindex;
|
|
unsigned int ds,cs,es;
|
|
|
|
printk("\n");
|
|
print_modules();
|
|
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
|
|
current->pid, current->comm, print_tainted(),
|
|
system_utsname.release,
|
|
(int)strcspn(system_utsname.version, " "),
|
|
system_utsname.version);
|
|
printk("RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->rip);
|
|
printk_address(regs->rip);
|
|
printk("RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, regs->rsp,
|
|
regs->eflags);
|
|
printk("RAX: %016lx RBX: %016lx RCX: %016lx\n",
|
|
regs->rax, regs->rbx, regs->rcx);
|
|
printk("RDX: %016lx RSI: %016lx RDI: %016lx\n",
|
|
regs->rdx, regs->rsi, regs->rdi);
|
|
printk("RBP: %016lx R08: %016lx R09: %016lx\n",
|
|
regs->rbp, regs->r8, regs->r9);
|
|
printk("R10: %016lx R11: %016lx R12: %016lx\n",
|
|
regs->r10, regs->r11, regs->r12);
|
|
printk("R13: %016lx R14: %016lx R15: %016lx\n",
|
|
regs->r13, regs->r14, regs->r15);
|
|
|
|
asm("movl %%ds,%0" : "=r" (ds));
|
|
asm("movl %%cs,%0" : "=r" (cs));
|
|
asm("movl %%es,%0" : "=r" (es));
|
|
asm("movl %%fs,%0" : "=r" (fsindex));
|
|
asm("movl %%gs,%0" : "=r" (gsindex));
|
|
|
|
rdmsrl(MSR_FS_BASE, fs);
|
|
rdmsrl(MSR_GS_BASE, gs);
|
|
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
|
|
|
asm("movq %%cr0, %0": "=r" (cr0));
|
|
asm("movq %%cr2, %0": "=r" (cr2));
|
|
asm("movq %%cr3, %0": "=r" (cr3));
|
|
asm("movq %%cr4, %0": "=r" (cr4));
|
|
|
|
printk("FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
|
|
fs,fsindex,gs,gsindex,shadowgs);
|
|
printk("CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0);
|
|
printk("CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4);
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
printk("CPU %d:", smp_processor_id());
|
|
__show_regs(regs);
|
|
show_trace(NULL, regs, (void *)(regs + 1));
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
struct task_struct *me = current;
|
|
struct thread_struct *t = &me->thread;
|
|
|
|
if (me->thread.io_bitmap_ptr) {
|
|
struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
|
|
|
|
kfree(t->io_bitmap_ptr);
|
|
t->io_bitmap_ptr = NULL;
|
|
/*
|
|
* Careful, clear this in the TSS too:
|
|
*/
|
|
memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
|
|
t->io_bitmap_max = 0;
|
|
put_cpu();
|
|
}
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct thread_info *t = current_thread_info();
|
|
|
|
if (t->flags & _TIF_ABI_PENDING) {
|
|
t->flags ^= (_TIF_ABI_PENDING | _TIF_IA32);
|
|
if (t->flags & _TIF_IA32)
|
|
current_thread_info()->status |= TS_COMPAT;
|
|
}
|
|
|
|
tsk->thread.debugreg0 = 0;
|
|
tsk->thread.debugreg1 = 0;
|
|
tsk->thread.debugreg2 = 0;
|
|
tsk->thread.debugreg3 = 0;
|
|
tsk->thread.debugreg6 = 0;
|
|
tsk->thread.debugreg7 = 0;
|
|
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
|
|
/*
|
|
* Forget coprocessor state..
|
|
*/
|
|
clear_fpu(tsk);
|
|
clear_used_math();
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
if (dead_task->mm) {
|
|
if (dead_task->mm->context.size) {
|
|
printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
|
|
dead_task->comm,
|
|
dead_task->mm->context.ldt,
|
|
dead_task->mm->context.size);
|
|
BUG();
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
|
|
{
|
|
struct user_desc ud = {
|
|
.base_addr = addr,
|
|
.limit = 0xfffff,
|
|
.seg_32bit = 1,
|
|
.limit_in_pages = 1,
|
|
.useable = 1,
|
|
};
|
|
struct n_desc_struct *desc = (void *)t->thread.tls_array;
|
|
desc += tls;
|
|
desc->a = LDT_entry_a(&ud);
|
|
desc->b = LDT_entry_b(&ud);
|
|
}
|
|
|
|
static inline u32 read_32bit_tls(struct task_struct *t, int tls)
|
|
{
|
|
struct desc_struct *desc = (void *)t->thread.tls_array;
|
|
desc += tls;
|
|
return desc->base0 |
|
|
(((u32)desc->base1) << 16) |
|
|
(((u32)desc->base2) << 24);
|
|
}
|
|
|
|
/*
|
|
* This gets called before we allocate a new thread and copy
|
|
* the current task into it.
|
|
*/
|
|
void prepare_to_copy(struct task_struct *tsk)
|
|
{
|
|
unlazy_fpu(tsk);
|
|
}
|
|
|
|
int copy_thread(int nr, unsigned long clone_flags, unsigned long rsp,
|
|
unsigned long unused,
|
|
struct task_struct * p, struct pt_regs * regs)
|
|
{
|
|
int err;
|
|
struct pt_regs * childregs;
|
|
struct task_struct *me = current;
|
|
|
|
childregs = ((struct pt_regs *)
|
|
(THREAD_SIZE + task_stack_page(p))) - 1;
|
|
*childregs = *regs;
|
|
|
|
childregs->rax = 0;
|
|
childregs->rsp = rsp;
|
|
if (rsp == ~0UL)
|
|
childregs->rsp = (unsigned long)childregs;
|
|
|
|
p->thread.rsp = (unsigned long) childregs;
|
|
p->thread.rsp0 = (unsigned long) (childregs+1);
|
|
p->thread.userrsp = me->thread.userrsp;
|
|
|
|
set_tsk_thread_flag(p, TIF_FORK);
|
|
|
|
p->thread.fs = me->thread.fs;
|
|
p->thread.gs = me->thread.gs;
|
|
|
|
asm("mov %%gs,%0" : "=m" (p->thread.gsindex));
|
|
asm("mov %%fs,%0" : "=m" (p->thread.fsindex));
|
|
asm("mov %%es,%0" : "=m" (p->thread.es));
|
|
asm("mov %%ds,%0" : "=m" (p->thread.ds));
|
|
|
|
if (unlikely(me->thread.io_bitmap_ptr != NULL)) {
|
|
p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
|
|
if (!p->thread.io_bitmap_ptr) {
|
|
p->thread.io_bitmap_max = 0;
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
|
|
IO_BITMAP_BYTES);
|
|
}
|
|
|
|
/*
|
|
* Set a new TLS for the child thread?
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (test_thread_flag(TIF_IA32))
|
|
err = ia32_child_tls(p, childregs);
|
|
else
|
|
#endif
|
|
err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
err = 0;
|
|
out:
|
|
if (err && p->thread.io_bitmap_ptr) {
|
|
kfree(p->thread.io_bitmap_ptr);
|
|
p->thread.io_bitmap_max = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This special macro can be used to load a debugging register
|
|
*/
|
|
#define loaddebug(thread,r) set_debugreg(thread->debugreg ## r, r)
|
|
|
|
/*
|
|
* switch_to(x,y) should switch tasks from x to y.
|
|
*
|
|
* This could still be optimized:
|
|
* - fold all the options into a flag word and test it with a single test.
|
|
* - could test fs/gs bitsliced
|
|
*
|
|
* Kprobes not supported here. Set the probe on schedule instead.
|
|
*/
|
|
__kprobes struct task_struct *
|
|
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev = &prev_p->thread,
|
|
*next = &next_p->thread;
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct *tss = &per_cpu(init_tss, cpu);
|
|
|
|
/*
|
|
* Reload esp0, LDT and the page table pointer:
|
|
*/
|
|
tss->rsp0 = next->rsp0;
|
|
|
|
/*
|
|
* Switch DS and ES.
|
|
* This won't pick up thread selector changes, but I guess that is ok.
|
|
*/
|
|
asm volatile("mov %%es,%0" : "=m" (prev->es));
|
|
if (unlikely(next->es | prev->es))
|
|
loadsegment(es, next->es);
|
|
|
|
asm volatile ("mov %%ds,%0" : "=m" (prev->ds));
|
|
if (unlikely(next->ds | prev->ds))
|
|
loadsegment(ds, next->ds);
|
|
|
|
load_TLS(next, cpu);
|
|
|
|
/*
|
|
* Switch FS and GS.
|
|
*/
|
|
{
|
|
unsigned fsindex;
|
|
asm volatile("movl %%fs,%0" : "=r" (fsindex));
|
|
/* segment register != 0 always requires a reload.
|
|
also reload when it has changed.
|
|
when prev process used 64bit base always reload
|
|
to avoid an information leak. */
|
|
if (unlikely(fsindex | next->fsindex | prev->fs)) {
|
|
loadsegment(fs, next->fsindex);
|
|
/* check if the user used a selector != 0
|
|
* if yes clear 64bit base, since overloaded base
|
|
* is always mapped to the Null selector
|
|
*/
|
|
if (fsindex)
|
|
prev->fs = 0;
|
|
}
|
|
/* when next process has a 64bit base use it */
|
|
if (next->fs)
|
|
wrmsrl(MSR_FS_BASE, next->fs);
|
|
prev->fsindex = fsindex;
|
|
}
|
|
{
|
|
unsigned gsindex;
|
|
asm volatile("movl %%gs,%0" : "=r" (gsindex));
|
|
if (unlikely(gsindex | next->gsindex | prev->gs)) {
|
|
load_gs_index(next->gsindex);
|
|
if (gsindex)
|
|
prev->gs = 0;
|
|
}
|
|
if (next->gs)
|
|
wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
|
|
prev->gsindex = gsindex;
|
|
}
|
|
|
|
/*
|
|
* Switch the PDA and FPU contexts.
|
|
*/
|
|
prev->userrsp = read_pda(oldrsp);
|
|
write_pda(oldrsp, next->userrsp);
|
|
write_pda(pcurrent, next_p);
|
|
|
|
/* This must be here to ensure both math_state_restore() and
|
|
kernel_fpu_begin() work consistently.
|
|
And the AMD workaround requires it to be after DS reload. */
|
|
unlazy_fpu(prev_p);
|
|
write_pda(kernelstack,
|
|
task_stack_page(next_p) + THREAD_SIZE - PDA_STACKOFFSET);
|
|
|
|
/*
|
|
* Now maybe reload the debug registers
|
|
*/
|
|
if (unlikely(next->debugreg7)) {
|
|
loaddebug(next, 0);
|
|
loaddebug(next, 1);
|
|
loaddebug(next, 2);
|
|
loaddebug(next, 3);
|
|
/* no 4 and 5 */
|
|
loaddebug(next, 6);
|
|
loaddebug(next, 7);
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle the IO bitmap
|
|
*/
|
|
if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr)) {
|
|
if (next->io_bitmap_ptr)
|
|
/*
|
|
* Copy the relevant range of the IO bitmap.
|
|
* Normally this is 128 bytes or less:
|
|
*/
|
|
memcpy(tss->io_bitmap, next->io_bitmap_ptr,
|
|
max(prev->io_bitmap_max, next->io_bitmap_max));
|
|
else {
|
|
/*
|
|
* Clear any possible leftover bits:
|
|
*/
|
|
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
|
|
}
|
|
}
|
|
|
|
return prev_p;
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
asmlinkage
|
|
long sys_execve(char __user *name, char __user * __user *argv,
|
|
char __user * __user *envp, struct pt_regs regs)
|
|
{
|
|
long error;
|
|
char * filename;
|
|
|
|
filename = getname(name);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
return error;
|
|
error = do_execve(filename, argv, envp, ®s);
|
|
if (error == 0) {
|
|
task_lock(current);
|
|
current->ptrace &= ~PT_DTRACE;
|
|
task_unlock(current);
|
|
}
|
|
putname(filename);
|
|
return error;
|
|
}
|
|
|
|
void set_personality_64bit(void)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 64bit mode */
|
|
clear_thread_flag(TIF_IA32);
|
|
|
|
/* TBD: overwrites user setup. Should have two bits.
|
|
But 64bit processes have always behaved this way,
|
|
so it's not too bad. The main problem is just that
|
|
32bit childs are affected again. */
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
}
|
|
|
|
asmlinkage long sys_fork(struct pt_regs *regs)
|
|
{
|
|
return do_fork(SIGCHLD, regs->rsp, regs, 0, NULL, NULL);
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_clone(unsigned long clone_flags, unsigned long newsp,
|
|
void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
|
|
{
|
|
if (!newsp)
|
|
newsp = regs->rsp;
|
|
return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
|
|
}
|
|
|
|
/*
|
|
* This is trivial, and on the face of it looks like it
|
|
* could equally well be done in user mode.
|
|
*
|
|
* Not so, for quite unobvious reasons - register pressure.
|
|
* In user mode vfork() cannot have a stack frame, and if
|
|
* done by calling the "clone()" system call directly, you
|
|
* do not have enough call-clobbered registers to hold all
|
|
* the information you need.
|
|
*/
|
|
asmlinkage long sys_vfork(struct pt_regs *regs)
|
|
{
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->rsp, regs, 0,
|
|
NULL, NULL);
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long stack;
|
|
u64 fp,rip;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state==TASK_RUNNING)
|
|
return 0;
|
|
stack = (unsigned long)task_stack_page(p);
|
|
if (p->thread.rsp < stack || p->thread.rsp > stack+THREAD_SIZE)
|
|
return 0;
|
|
fp = *(u64 *)(p->thread.rsp);
|
|
do {
|
|
if (fp < (unsigned long)stack ||
|
|
fp > (unsigned long)stack+THREAD_SIZE)
|
|
return 0;
|
|
rip = *(u64 *)(fp+8);
|
|
if (!in_sched_functions(rip))
|
|
return rip;
|
|
fp = *(u64 *)fp;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
|
|
{
|
|
int ret = 0;
|
|
int doit = task == current;
|
|
int cpu;
|
|
|
|
switch (code) {
|
|
case ARCH_SET_GS:
|
|
if (addr >= TASK_SIZE_OF(task))
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
/* handle small bases via the GDT because that's faster to
|
|
switch. */
|
|
if (addr <= 0xffffffff) {
|
|
set_32bit_tls(task, GS_TLS, addr);
|
|
if (doit) {
|
|
load_TLS(&task->thread, cpu);
|
|
load_gs_index(GS_TLS_SEL);
|
|
}
|
|
task->thread.gsindex = GS_TLS_SEL;
|
|
task->thread.gs = 0;
|
|
} else {
|
|
task->thread.gsindex = 0;
|
|
task->thread.gs = addr;
|
|
if (doit) {
|
|
load_gs_index(0);
|
|
ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
|
|
}
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_SET_FS:
|
|
/* Not strictly needed for fs, but do it for symmetry
|
|
with gs */
|
|
if (addr >= TASK_SIZE_OF(task))
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
/* handle small bases via the GDT because that's faster to
|
|
switch. */
|
|
if (addr <= 0xffffffff) {
|
|
set_32bit_tls(task, FS_TLS, addr);
|
|
if (doit) {
|
|
load_TLS(&task->thread, cpu);
|
|
asm volatile("movl %0,%%fs" :: "r"(FS_TLS_SEL));
|
|
}
|
|
task->thread.fsindex = FS_TLS_SEL;
|
|
task->thread.fs = 0;
|
|
} else {
|
|
task->thread.fsindex = 0;
|
|
task->thread.fs = addr;
|
|
if (doit) {
|
|
/* set the selector to 0 to not confuse
|
|
__switch_to */
|
|
asm volatile("movl %0,%%fs" :: "r" (0));
|
|
ret = checking_wrmsrl(MSR_FS_BASE, addr);
|
|
}
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_GET_FS: {
|
|
unsigned long base;
|
|
if (task->thread.fsindex == FS_TLS_SEL)
|
|
base = read_32bit_tls(task, FS_TLS);
|
|
else if (doit)
|
|
rdmsrl(MSR_FS_BASE, base);
|
|
else
|
|
base = task->thread.fs;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
case ARCH_GET_GS: {
|
|
unsigned long base;
|
|
unsigned gsindex;
|
|
if (task->thread.gsindex == GS_TLS_SEL)
|
|
base = read_32bit_tls(task, GS_TLS);
|
|
else if (doit) {
|
|
asm("movl %%gs,%0" : "=r" (gsindex));
|
|
if (gsindex)
|
|
rdmsrl(MSR_KERNEL_GS_BASE, base);
|
|
else
|
|
base = task->thread.gs;
|
|
}
|
|
else
|
|
base = task->thread.gs;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long sys_arch_prctl(int code, unsigned long addr)
|
|
{
|
|
return do_arch_prctl(current, code, addr);
|
|
}
|
|
|
|
/*
|
|
* Capture the user space registers if the task is not running (in user space)
|
|
*/
|
|
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
|
|
{
|
|
struct pt_regs *pp, ptregs;
|
|
|
|
pp = task_pt_regs(tsk);
|
|
|
|
ptregs = *pp;
|
|
ptregs.cs &= 0xffff;
|
|
ptregs.ss &= 0xffff;
|
|
|
|
elf_core_copy_regs(regs, &ptregs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (randomize_va_space)
|
|
sp -= get_random_int() % 8192;
|
|
return sp & ~0xf;
|
|
}
|