kernel-fxtec-pro1x/drivers/acpi/processor_idle.c
Andi Kleen ddb25f9ac1 x86: don't disable TSC in any C states on AMD Fam10h
The ACPI code currently disables TSC use in any C2 and C3
states. But the AMD Fam10h BKDG documents that the TSC
will never stop in any C states when the CONSTANT_TSC bit is
set. Make this disabling conditional on CONSTANT_TSC
not set on AMD.

I actually think this is true on Intel too for C2 states
on CPUs with p-state invariant TSC, but this needs
further discussions with Len to really confirm :-)

So far it is only enabled on AMD.

Cc: lenb@kernel.org

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:32:41 +01:00

1815 lines
46 KiB
C

/*
* processor_idle - idle state submodule to the ACPI processor driver
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* - Added processor hotplug support
* Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* - Added support for C3 on SMP
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/moduleparam.h>
#include <linux/sched.h> /* need_resched() */
#include <linux/latency.h>
#include <linux/clockchips.h>
#include <linux/cpuidle.h>
/*
* Include the apic definitions for x86 to have the APIC timer related defines
* available also for UP (on SMP it gets magically included via linux/smp.h).
* asm/acpi.h is not an option, as it would require more include magic. Also
* creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
*/
#ifdef CONFIG_X86
#include <asm/apic.h>
#endif
#include <asm/io.h>
#include <asm/uaccess.h>
#include <acpi/acpi_bus.h>
#include <acpi/processor.h>
#define ACPI_PROCESSOR_COMPONENT 0x01000000
#define ACPI_PROCESSOR_CLASS "processor"
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
ACPI_MODULE_NAME("processor_idle");
#define ACPI_PROCESSOR_FILE_POWER "power"
#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
#ifndef CONFIG_CPU_IDLE
#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
static void (*pm_idle_save) (void) __read_mostly;
#else
#define C2_OVERHEAD 1 /* 1us */
#define C3_OVERHEAD 1 /* 1us */
#endif
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
#ifdef CONFIG_CPU_IDLE
module_param(max_cstate, uint, 0000);
#else
module_param(max_cstate, uint, 0644);
#endif
static unsigned int nocst __read_mostly;
module_param(nocst, uint, 0000);
#ifndef CONFIG_CPU_IDLE
/*
* bm_history -- bit-mask with a bit per jiffy of bus-master activity
* 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
* 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
* 100 HZ: 0x0000000F: 4 jiffies = 40ms
* reduce history for more aggressive entry into C3
*/
static unsigned int bm_history __read_mostly =
(HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
module_param(bm_history, uint, 0644);
static int acpi_processor_set_power_policy(struct acpi_processor *pr);
#endif
/*
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
* For now disable this. Probably a bug somewhere else.
*
* To skip this limit, boot/load with a large max_cstate limit.
*/
static int set_max_cstate(const struct dmi_system_id *id)
{
if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
return 0;
printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
" Override with \"processor.max_cstate=%d\"\n", id->ident,
(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
max_cstate = (long)id->driver_data;
return 0;
}
/* Actually this shouldn't be __cpuinitdata, would be better to fix the
callers to only run once -AK */
static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
{ set_max_cstate, "IBM ThinkPad R40e", {
DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
{ set_max_cstate, "Medion 41700", {
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
{ set_max_cstate, "Clevo 5600D", {
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
(void *)2},
{},
};
static inline u32 ticks_elapsed(u32 t1, u32 t2)
{
if (t2 >= t1)
return (t2 - t1);
else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
else
return ((0xFFFFFFFF - t1) + t2);
}
static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
{
if (t2 >= t1)
return PM_TIMER_TICKS_TO_US(t2 - t1);
else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
else
return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
}
static void acpi_safe_halt(void)
{
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (!need_resched())
safe_halt();
current_thread_info()->status |= TS_POLLING;
}
#ifndef CONFIG_CPU_IDLE
static void
acpi_processor_power_activate(struct acpi_processor *pr,
struct acpi_processor_cx *new)
{
struct acpi_processor_cx *old;
if (!pr || !new)
return;
old = pr->power.state;
if (old)
old->promotion.count = 0;
new->demotion.count = 0;
/* Cleanup from old state. */
if (old) {
switch (old->type) {
case ACPI_STATE_C3:
/* Disable bus master reload */
if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
break;
}
}
/* Prepare to use new state. */
switch (new->type) {
case ACPI_STATE_C3:
/* Enable bus master reload */
if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
break;
}
pr->power.state = new;
return;
}
static atomic_t c3_cpu_count;
/* Common C-state entry for C2, C3, .. */
static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
{
if (cstate->space_id == ACPI_CSTATE_FFH) {
/* Call into architectural FFH based C-state */
acpi_processor_ffh_cstate_enter(cstate);
} else {
int unused;
/* IO port based C-state */
inb(cstate->address);
/* Dummy wait op - must do something useless after P_LVL2 read
because chipsets cannot guarantee that STPCLK# signal
gets asserted in time to freeze execution properly. */
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
}
#endif /* !CONFIG_CPU_IDLE */
#ifdef ARCH_APICTIMER_STOPS_ON_C3
/*
* Some BIOS implementations switch to C3 in the published C2 state.
* This seems to be a common problem on AMD boxen, but other vendors
* are affected too. We pick the most conservative approach: we assume
* that the local APIC stops in both C2 and C3.
*/
static void acpi_timer_check_state(int state, struct acpi_processor *pr,
struct acpi_processor_cx *cx)
{
struct acpi_processor_power *pwr = &pr->power;
u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
/*
* Check, if one of the previous states already marked the lapic
* unstable
*/
if (pwr->timer_broadcast_on_state < state)
return;
if (cx->type >= type)
pr->power.timer_broadcast_on_state = state;
}
static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
{
unsigned long reason;
reason = pr->power.timer_broadcast_on_state < INT_MAX ?
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
clockevents_notify(reason, &pr->id);
}
/* Power(C) State timer broadcast control */
static void acpi_state_timer_broadcast(struct acpi_processor *pr,
struct acpi_processor_cx *cx,
int broadcast)
{
int state = cx - pr->power.states;
if (state >= pr->power.timer_broadcast_on_state) {
unsigned long reason;
reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
clockevents_notify(reason, &pr->id);
}
}
#else
static void acpi_timer_check_state(int state, struct acpi_processor *pr,
struct acpi_processor_cx *cstate) { }
static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
static void acpi_state_timer_broadcast(struct acpi_processor *pr,
struct acpi_processor_cx *cx,
int broadcast)
{
}
#endif
/*
* Suspend / resume control
*/
static int acpi_idle_suspend;
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
{
acpi_idle_suspend = 1;
return 0;
}
int acpi_processor_resume(struct acpi_device * device)
{
acpi_idle_suspend = 0;
return 0;
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
static int tsc_halts_in_c(int state)
{
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
/*
* AMD Fam10h TSC will tick in all
* C/P/S0/S1 states when this bit is set.
*/
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
/*FALL THROUGH*/
case X86_VENDOR_INTEL:
/* Several cases known where TSC halts in C2 too */
default:
return state > ACPI_STATE_C1;
}
}
#endif
#ifndef CONFIG_CPU_IDLE
static void acpi_processor_idle(void)
{
struct acpi_processor *pr = NULL;
struct acpi_processor_cx *cx = NULL;
struct acpi_processor_cx *next_state = NULL;
int sleep_ticks = 0;
u32 t1, t2 = 0;
/*
* Interrupts must be disabled during bus mastering calculations and
* for C2/C3 transitions.
*/
local_irq_disable();
pr = processors[smp_processor_id()];
if (!pr) {
local_irq_enable();
return;
}
/*
* Check whether we truly need to go idle, or should
* reschedule:
*/
if (unlikely(need_resched())) {
local_irq_enable();
return;
}
cx = pr->power.state;
if (!cx || acpi_idle_suspend) {
if (pm_idle_save)
pm_idle_save();
else
acpi_safe_halt();
return;
}
/*
* Check BM Activity
* -----------------
* Check for bus mastering activity (if required), record, and check
* for demotion.
*/
if (pr->flags.bm_check) {
u32 bm_status = 0;
unsigned long diff = jiffies - pr->power.bm_check_timestamp;
if (diff > 31)
diff = 31;
pr->power.bm_activity <<= diff;
acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
if (bm_status) {
pr->power.bm_activity |= 0x1;
acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
}
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
pr->power.bm_activity |= 0x1;
}
pr->power.bm_check_timestamp = jiffies;
/*
* If bus mastering is or was active this jiffy, demote
* to avoid a faulty transition. Note that the processor
* won't enter a low-power state during this call (to this
* function) but should upon the next.
*
* TBD: A better policy might be to fallback to the demotion
* state (use it for this quantum only) istead of
* demoting -- and rely on duration as our sole demotion
* qualification. This may, however, introduce DMA
* issues (e.g. floppy DMA transfer overrun/underrun).
*/
if ((pr->power.bm_activity & 0x1) &&
cx->demotion.threshold.bm) {
local_irq_enable();
next_state = cx->demotion.state;
goto end;
}
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Check for P_LVL2_UP flag before entering C2 and above on
* an SMP system. We do it here instead of doing it at _CST/P_LVL
* detection phase, to work cleanly with logical CPU hotplug.
*/
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
cx = &pr->power.states[ACPI_STATE_C1];
#endif
/*
* Sleep:
* ------
* Invoke the current Cx state to put the processor to sleep.
*/
if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (need_resched()) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return;
}
}
switch (cx->type) {
case ACPI_STATE_C1:
/*
* Invoke C1.
* Use the appropriate idle routine, the one that would
* be used without acpi C-states.
*/
if (pm_idle_save)
pm_idle_save();
else
acpi_safe_halt();
/*
* TBD: Can't get time duration while in C1, as resumes
* go to an ISR rather than here. Need to instrument
* base interrupt handler.
*
* Note: the TSC better not stop in C1, sched_clock() will
* skew otherwise.
*/
sleep_ticks = 0xFFFFFFFF;
break;
case ACPI_STATE_C2:
/* Get start time (ticks) */
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
/* Invoke C2 */
acpi_state_timer_broadcast(pr, cx, 1);
acpi_cstate_enter(cx);
/* Get end time (ticks) */
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC halts in C2, so notify users */
if (tsc_halts_in_c(ACPI_STATE_C2))
mark_tsc_unstable("possible TSC halt in C2");
#endif
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
/* Re-enable interrupts */
local_irq_enable();
/* Do not account our idle-switching overhead: */
sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
current_thread_info()->status |= TS_POLLING;
acpi_state_timer_broadcast(pr, cx, 0);
break;
case ACPI_STATE_C3:
acpi_unlazy_tlb(smp_processor_id());
/*
* Must be done before busmaster disable as we might
* need to access HPET !
*/
acpi_state_timer_broadcast(pr, cx, 1);
/*
* disable bus master
* bm_check implies we need ARB_DIS
* !bm_check implies we need cache flush
* bm_control implies whether we can do ARB_DIS
*
* That leaves a case where bm_check is set and bm_control is
* not set. In that case we cannot do much, we enter C3
* without doing anything.
*/
if (pr->flags.bm_check && pr->flags.bm_control) {
if (atomic_inc_return(&c3_cpu_count) ==
num_online_cpus()) {
/*
* All CPUs are trying to go to C3
* Disable bus master arbitration
*/
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
}
} else if (!pr->flags.bm_check) {
/* SMP with no shared cache... Invalidate cache */
ACPI_FLUSH_CPU_CACHE();
}
/* Get start time (ticks) */
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Invoke C3 */
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
acpi_cstate_enter(cx);
/* Get end time (ticks) */
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
if (pr->flags.bm_check && pr->flags.bm_control) {
/* Enable bus master arbitration */
atomic_dec(&c3_cpu_count);
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC halts in C3, so notify users */
if (tsc_halts_in_c(ACPI_STATE_C3))
mark_tsc_unstable("TSC halts in C3");
#endif
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
/* Re-enable interrupts */
local_irq_enable();
/* Do not account our idle-switching overhead: */
sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
current_thread_info()->status |= TS_POLLING;
acpi_state_timer_broadcast(pr, cx, 0);
break;
default:
local_irq_enable();
return;
}
cx->usage++;
if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
cx->time += sleep_ticks;
next_state = pr->power.state;
#ifdef CONFIG_HOTPLUG_CPU
/* Don't do promotion/demotion */
if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
next_state = cx;
goto end;
}
#endif
/*
* Promotion?
* ----------
* Track the number of longs (time asleep is greater than threshold)
* and promote when the count threshold is reached. Note that bus
* mastering activity may prevent promotions.
* Do not promote above max_cstate.
*/
if (cx->promotion.state &&
((cx->promotion.state - pr->power.states) <= max_cstate)) {
if (sleep_ticks > cx->promotion.threshold.ticks &&
cx->promotion.state->latency <= system_latency_constraint()) {
cx->promotion.count++;
cx->demotion.count = 0;
if (cx->promotion.count >=
cx->promotion.threshold.count) {
if (pr->flags.bm_check) {
if (!
(pr->power.bm_activity & cx->
promotion.threshold.bm)) {
next_state =
cx->promotion.state;
goto end;
}
} else {
next_state = cx->promotion.state;
goto end;
}
}
}
}
/*
* Demotion?
* ---------
* Track the number of shorts (time asleep is less than time threshold)
* and demote when the usage threshold is reached.
*/
if (cx->demotion.state) {
if (sleep_ticks < cx->demotion.threshold.ticks) {
cx->demotion.count++;
cx->promotion.count = 0;
if (cx->demotion.count >= cx->demotion.threshold.count) {
next_state = cx->demotion.state;
goto end;
}
}
}
end:
/*
* Demote if current state exceeds max_cstate
* or if the latency of the current state is unacceptable
*/
if ((pr->power.state - pr->power.states) > max_cstate ||
pr->power.state->latency > system_latency_constraint()) {
if (cx->demotion.state)
next_state = cx->demotion.state;
}
/*
* New Cx State?
* -------------
* If we're going to start using a new Cx state we must clean up
* from the previous and prepare to use the new.
*/
if (next_state != pr->power.state)
acpi_processor_power_activate(pr, next_state);
}
static int acpi_processor_set_power_policy(struct acpi_processor *pr)
{
unsigned int i;
unsigned int state_is_set = 0;
struct acpi_processor_cx *lower = NULL;
struct acpi_processor_cx *higher = NULL;
struct acpi_processor_cx *cx;
if (!pr)
return -EINVAL;
/*
* This function sets the default Cx state policy (OS idle handler).
* Our scheme is to promote quickly to C2 but more conservatively
* to C3. We're favoring C2 for its characteristics of low latency
* (quick response), good power savings, and ability to allow bus
* mastering activity. Note that the Cx state policy is completely
* customizable and can be altered dynamically.
*/
/* startup state */
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (!state_is_set)
pr->power.state = cx;
state_is_set++;
break;
}
if (!state_is_set)
return -ENODEV;
/* demotion */
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (lower) {
cx->demotion.state = lower;
cx->demotion.threshold.ticks = cx->latency_ticks;
cx->demotion.threshold.count = 1;
if (cx->type == ACPI_STATE_C3)
cx->demotion.threshold.bm = bm_history;
}
lower = cx;
}
/* promotion */
for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (higher) {
cx->promotion.state = higher;
cx->promotion.threshold.ticks = cx->latency_ticks;
if (cx->type >= ACPI_STATE_C2)
cx->promotion.threshold.count = 4;
else
cx->promotion.threshold.count = 10;
if (higher->type == ACPI_STATE_C3)
cx->promotion.threshold.bm = bm_history;
}
higher = cx;
}
return 0;
}
#endif /* !CONFIG_CPU_IDLE */
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
{
if (!pr)
return -EINVAL;
if (!pr->pblk)
return -ENODEV;
/* if info is obtained from pblk/fadt, type equals state */
pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
#ifndef CONFIG_HOTPLUG_CPU
/*
* Check for P_LVL2_UP flag before entering C2 and above on
* an SMP system.
*/
if ((num_online_cpus() > 1) &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
return -ENODEV;
#endif
/* determine C2 and C3 address from pblk */
pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
/* determine latencies from FADT */
pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"lvl2[0x%08x] lvl3[0x%08x]\n",
pr->power.states[ACPI_STATE_C2].address,
pr->power.states[ACPI_STATE_C3].address));
return 0;
}
static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
{
if (!pr->power.states[ACPI_STATE_C1].valid) {
/* set the first C-State to C1 */
/* all processors need to support C1 */
pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
pr->power.states[ACPI_STATE_C1].valid = 1;
}
/* the C0 state only exists as a filler in our array */
pr->power.states[ACPI_STATE_C0].valid = 1;
return 0;
}
static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
{
acpi_status status = 0;
acpi_integer count;
int current_count;
int i;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *cst;
if (nocst)
return -ENODEV;
current_count = 0;
status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
return -ENODEV;
}
cst = buffer.pointer;
/* There must be at least 2 elements */
if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
printk(KERN_ERR PREFIX "not enough elements in _CST\n");
status = -EFAULT;
goto end;
}
count = cst->package.elements[0].integer.value;
/* Validate number of power states. */
if (count < 1 || count != cst->package.count - 1) {
printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
status = -EFAULT;
goto end;
}
/* Tell driver that at least _CST is supported. */
pr->flags.has_cst = 1;
for (i = 1; i <= count; i++) {
union acpi_object *element;
union acpi_object *obj;
struct acpi_power_register *reg;
struct acpi_processor_cx cx;
memset(&cx, 0, sizeof(cx));
element = &(cst->package.elements[i]);
if (element->type != ACPI_TYPE_PACKAGE)
continue;
if (element->package.count != 4)
continue;
obj = &(element->package.elements[0]);
if (obj->type != ACPI_TYPE_BUFFER)
continue;
reg = (struct acpi_power_register *)obj->buffer.pointer;
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
(reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
continue;
/* There should be an easy way to extract an integer... */
obj = &(element->package.elements[1]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.type = obj->integer.value;
/*
* Some buggy BIOSes won't list C1 in _CST -
* Let acpi_processor_get_power_info_default() handle them later
*/
if (i == 1 && cx.type != ACPI_STATE_C1)
current_count++;
cx.address = reg->address;
cx.index = current_count + 1;
cx.space_id = ACPI_CSTATE_SYSTEMIO;
if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
if (acpi_processor_ffh_cstate_probe
(pr->id, &cx, reg) == 0) {
cx.space_id = ACPI_CSTATE_FFH;
} else if (cx.type != ACPI_STATE_C1) {
/*
* C1 is a special case where FIXED_HARDWARE
* can be handled in non-MWAIT way as well.
* In that case, save this _CST entry info.
* That is, we retain space_id of SYSTEM_IO for
* halt based C1.
* Otherwise, ignore this info and continue.
*/
continue;
}
}
obj = &(element->package.elements[2]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.latency = obj->integer.value;
obj = &(element->package.elements[3]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.power = obj->integer.value;
current_count++;
memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
/*
* We support total ACPI_PROCESSOR_MAX_POWER - 1
* (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
*/
if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
printk(KERN_WARNING
"Limiting number of power states to max (%d)\n",
ACPI_PROCESSOR_MAX_POWER);
printk(KERN_WARNING
"Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
break;
}
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
current_count));
/* Validate number of power states discovered */
if (current_count < 2)
status = -EFAULT;
end:
kfree(buffer.pointer);
return status;
}
static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
{
if (!cx->address)
return;
/*
* C2 latency must be less than or equal to 100
* microseconds.
*/
else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"latency too large [%d]\n", cx->latency));
return;
}
/*
* Otherwise we've met all of our C2 requirements.
* Normalize the C2 latency to expidite policy
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
return;
}
static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
struct acpi_processor_cx *cx)
{
static int bm_check_flag;
if (!cx->address)
return;
/*
* C3 latency must be less than or equal to 1000
* microseconds.
*/
else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"latency too large [%d]\n", cx->latency));
return;
}
/*
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
* DMA transfers are used by any ISA device to avoid livelock.
* Note that we could disable Type-F DMA (as recommended by
* the erratum), but this is known to disrupt certain ISA
* devices thus we take the conservative approach.
*/
else if (errata.piix4.fdma) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 not supported on PIIX4 with Type-F DMA\n"));
return;
}
/* All the logic here assumes flags.bm_check is same across all CPUs */
if (!bm_check_flag) {
/* Determine whether bm_check is needed based on CPU */
acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
bm_check_flag = pr->flags.bm_check;
} else {
pr->flags.bm_check = bm_check_flag;
}
if (pr->flags.bm_check) {
if (!pr->flags.bm_control) {
if (pr->flags.has_cst != 1) {
/* bus mastering control is necessary */
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 support requires BM control\n"));
return;
} else {
/* Here we enter C3 without bus mastering */
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 support without BM control\n"));
}
}
} else {
/*
* WBINVD should be set in fadt, for C3 state to be
* supported on when bm_check is not required.
*/
if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Cache invalidation should work properly"
" for C3 to be enabled on SMP systems\n"));
return;
}
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
}
/*
* Otherwise we've met all of our C3 requirements.
* Normalize the C3 latency to expidite policy. Enable
* checking of bus mastering status (bm_check) so we can
* use this in our C3 policy
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
return;
}
static int acpi_processor_power_verify(struct acpi_processor *pr)
{
unsigned int i;
unsigned int working = 0;
pr->power.timer_broadcast_on_state = INT_MAX;
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
struct acpi_processor_cx *cx = &pr->power.states[i];
switch (cx->type) {
case ACPI_STATE_C1:
cx->valid = 1;
break;
case ACPI_STATE_C2:
acpi_processor_power_verify_c2(cx);
if (cx->valid)
acpi_timer_check_state(i, pr, cx);
break;
case ACPI_STATE_C3:
acpi_processor_power_verify_c3(pr, cx);
if (cx->valid)
acpi_timer_check_state(i, pr, cx);
break;
}
if (cx->valid)
working++;
}
acpi_propagate_timer_broadcast(pr);
return (working);
}
static int acpi_processor_get_power_info(struct acpi_processor *pr)
{
unsigned int i;
int result;
/* NOTE: the idle thread may not be running while calling
* this function */
/* Zero initialize all the C-states info. */
memset(pr->power.states, 0, sizeof(pr->power.states));
result = acpi_processor_get_power_info_cst(pr);
if (result == -ENODEV)
result = acpi_processor_get_power_info_fadt(pr);
if (result)
return result;
acpi_processor_get_power_info_default(pr);
pr->power.count = acpi_processor_power_verify(pr);
#ifndef CONFIG_CPU_IDLE
/*
* Set Default Policy
* ------------------
* Now that we know which states are supported, set the default
* policy. Note that this policy can be changed dynamically
* (e.g. encourage deeper sleeps to conserve battery life when
* not on AC).
*/
result = acpi_processor_set_power_policy(pr);
if (result)
return result;
#endif
/*
* if one state of type C2 or C3 is available, mark this
* CPU as being "idle manageable"
*/
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
if (pr->power.states[i].valid) {
pr->power.count = i;
if (pr->power.states[i].type >= ACPI_STATE_C2)
pr->flags.power = 1;
}
}
return 0;
}
static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_processor *pr = seq->private;
unsigned int i;
if (!pr)
goto end;
seq_printf(seq, "active state: C%zd\n"
"max_cstate: C%d\n"
"bus master activity: %08x\n"
"maximum allowed latency: %d usec\n",
pr->power.state ? pr->power.state - pr->power.states : 0,
max_cstate, (unsigned)pr->power.bm_activity,
system_latency_constraint());
seq_puts(seq, "states:\n");
for (i = 1; i <= pr->power.count; i++) {
seq_printf(seq, " %cC%d: ",
(&pr->power.states[i] ==
pr->power.state ? '*' : ' '), i);
if (!pr->power.states[i].valid) {
seq_puts(seq, "<not supported>\n");
continue;
}
switch (pr->power.states[i].type) {
case ACPI_STATE_C1:
seq_printf(seq, "type[C1] ");
break;
case ACPI_STATE_C2:
seq_printf(seq, "type[C2] ");
break;
case ACPI_STATE_C3:
seq_printf(seq, "type[C3] ");
break;
default:
seq_printf(seq, "type[--] ");
break;
}
if (pr->power.states[i].promotion.state)
seq_printf(seq, "promotion[C%zd] ",
(pr->power.states[i].promotion.state -
pr->power.states));
else
seq_puts(seq, "promotion[--] ");
if (pr->power.states[i].demotion.state)
seq_printf(seq, "demotion[C%zd] ",
(pr->power.states[i].demotion.state -
pr->power.states));
else
seq_puts(seq, "demotion[--] ");
seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
pr->power.states[i].latency,
pr->power.states[i].usage,
(unsigned long long)pr->power.states[i].time);
}
end:
return 0;
}
static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_processor_power_seq_show,
PDE(inode)->data);
}
static const struct file_operations acpi_processor_power_fops = {
.open = acpi_processor_power_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#ifndef CONFIG_CPU_IDLE
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int result = 0;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
/* Fall back to the default idle loop */
pm_idle = pm_idle_save;
synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
pr->flags.power = 0;
result = acpi_processor_get_power_info(pr);
if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
pm_idle = acpi_processor_idle;
return result;
}
#ifdef CONFIG_SMP
static void smp_callback(void *v)
{
/* we already woke the CPU up, nothing more to do */
}
/*
* This function gets called when a part of the kernel has a new latency
* requirement. This means we need to get all processors out of their C-state,
* and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
* wakes them all right up.
*/
static int acpi_processor_latency_notify(struct notifier_block *b,
unsigned long l, void *v)
{
smp_call_function(smp_callback, NULL, 0, 1);
return NOTIFY_OK;
}
static struct notifier_block acpi_processor_latency_notifier = {
.notifier_call = acpi_processor_latency_notify,
};
#endif
#else /* CONFIG_CPU_IDLE */
/**
* acpi_idle_bm_check - checks if bus master activity was detected
*/
static int acpi_idle_bm_check(void)
{
u32 bm_status = 0;
acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
if (bm_status)
acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
bm_status = 1;
}
return bm_status;
}
/**
* acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
* @pr: the processor
* @target: the new target state
*/
static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
struct acpi_processor_cx *target)
{
if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
pr->flags.bm_rld_set = 0;
}
if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
pr->flags.bm_rld_set = 1;
}
}
/**
* acpi_idle_do_entry - a helper function that does C2 and C3 type entry
* @cx: cstate data
*/
static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
{
if (cx->space_id == ACPI_CSTATE_FFH) {
/* Call into architectural FFH based C-state */
acpi_processor_ffh_cstate_enter(cx);
} else {
int unused;
/* IO port based C-state */
inb(cx->address);
/* Dummy wait op - must do something useless after P_LVL2 read
because chipsets cannot guarantee that STPCLK# signal
gets asserted in time to freeze execution properly. */
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
}
/**
* acpi_idle_enter_c1 - enters an ACPI C1 state-type
* @dev: the target CPU
* @state: the state data
*
* This is equivalent to the HALT instruction.
*/
static int acpi_idle_enter_c1(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (pr->flags.bm_check)
acpi_idle_update_bm_rld(pr, cx);
acpi_safe_halt();
cx->usage++;
return 0;
}
/**
* acpi_idle_enter_simple - enters an ACPI state without BM handling
* @dev: the target CPU
* @state: the state data
*/
static int acpi_idle_enter_simple(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
u32 t1, t2;
int sleep_ticks = 0;
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
acpi_unlazy_tlb(smp_processor_id());
/*
* Must be done before busmaster disable as we might need to
* access HPET !
*/
acpi_state_timer_broadcast(pr, cx, 1);
if (pr->flags.bm_check)
acpi_idle_update_bm_rld(pr, cx);
if (cx->type == ACPI_STATE_C3)
ACPI_FLUSH_CPU_CACHE();
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
acpi_idle_do_entry(cx);
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC could halt in idle, so notify users */
if (tsc_halts_in_c(cx->type))
mark_tsc_unstable("TSC halts in idle");;
#endif
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
acpi_state_timer_broadcast(pr, cx, 0);
cx->time += sleep_ticks;
return ticks_elapsed_in_us(t1, t2);
}
static int c3_cpu_count;
static DEFINE_SPINLOCK(c3_lock);
/**
* acpi_idle_enter_bm - enters C3 with proper BM handling
* @dev: the target CPU
* @state: the state data
*
* If BM is detected, the deepest non-C3 idle state is entered instead.
*/
static int acpi_idle_enter_bm(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
u32 t1, t2;
int sleep_ticks = 0;
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
if (acpi_idle_bm_check()) {
if (dev->safe_state) {
return dev->safe_state->enter(dev, dev->safe_state);
} else {
acpi_safe_halt();
return 0;
}
}
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
/*
* Must be done before busmaster disable as we might need to
* access HPET !
*/
acpi_state_timer_broadcast(pr, cx, 1);
acpi_idle_update_bm_rld(pr, cx);
/*
* disable bus master
* bm_check implies we need ARB_DIS
* !bm_check implies we need cache flush
* bm_control implies whether we can do ARB_DIS
*
* That leaves a case where bm_check is set and bm_control is
* not set. In that case we cannot do much, we enter C3
* without doing anything.
*/
if (pr->flags.bm_check && pr->flags.bm_control) {
spin_lock(&c3_lock);
c3_cpu_count++;
/* Disable bus master arbitration when all CPUs are in C3 */
if (c3_cpu_count == num_online_cpus())
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
spin_unlock(&c3_lock);
} else if (!pr->flags.bm_check) {
ACPI_FLUSH_CPU_CACHE();
}
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
acpi_idle_do_entry(cx);
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Re-enable bus master arbitration */
if (pr->flags.bm_check && pr->flags.bm_control) {
spin_lock(&c3_lock);
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
c3_cpu_count--;
spin_unlock(&c3_lock);
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC could halt in idle, so notify users */
if (tsc_halts_in_c(ACPI_STATE_C3))
mark_tsc_unstable("TSC halts in idle");
#endif
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
acpi_state_timer_broadcast(pr, cx, 0);
cx->time += sleep_ticks;
return ticks_elapsed_in_us(t1, t2);
}
struct cpuidle_driver acpi_idle_driver = {
.name = "acpi_idle",
.owner = THIS_MODULE,
};
/**
* acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
* @pr: the ACPI processor
*/
static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
{
int i, count = 0;
struct acpi_processor_cx *cx;
struct cpuidle_state *state;
struct cpuidle_device *dev = &pr->power.dev;
if (!pr->flags.power_setup_done)
return -EINVAL;
if (pr->flags.power == 0) {
return -EINVAL;
}
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
cx = &pr->power.states[i];
state = &dev->states[count];
if (!cx->valid)
continue;
#ifdef CONFIG_HOTPLUG_CPU
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
continue;
#endif
cpuidle_set_statedata(state, cx);
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
state->exit_latency = cx->latency;
state->target_residency = cx->latency * 6;
state->power_usage = cx->power;
state->flags = 0;
switch (cx->type) {
case ACPI_STATE_C1:
state->flags |= CPUIDLE_FLAG_SHALLOW;
state->enter = acpi_idle_enter_c1;
dev->safe_state = state;
break;
case ACPI_STATE_C2:
state->flags |= CPUIDLE_FLAG_BALANCED;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->enter = acpi_idle_enter_simple;
dev->safe_state = state;
break;
case ACPI_STATE_C3:
state->flags |= CPUIDLE_FLAG_DEEP;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->flags |= CPUIDLE_FLAG_CHECK_BM;
state->enter = pr->flags.bm_check ?
acpi_idle_enter_bm :
acpi_idle_enter_simple;
break;
}
count++;
}
dev->state_count = count;
if (!count)
return -EINVAL;
return 0;
}
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int ret;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
cpuidle_pause_and_lock();
cpuidle_disable_device(&pr->power.dev);
acpi_processor_get_power_info(pr);
acpi_processor_setup_cpuidle(pr);
ret = cpuidle_enable_device(&pr->power.dev);
cpuidle_resume_and_unlock();
return ret;
}
#endif /* CONFIG_CPU_IDLE */
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
struct acpi_device *device)
{
acpi_status status = 0;
static int first_run;
struct proc_dir_entry *entry = NULL;
unsigned int i;
if (!first_run) {
dmi_check_system(processor_power_dmi_table);
max_cstate = acpi_processor_cstate_check(max_cstate);
if (max_cstate < ACPI_C_STATES_MAX)
printk(KERN_NOTICE
"ACPI: processor limited to max C-state %d\n",
max_cstate);
first_run++;
#if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
register_latency_notifier(&acpi_processor_latency_notifier);
#endif
}
if (!pr)
return -EINVAL;
if (acpi_gbl_FADT.cst_control && !nocst) {
status =
acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status,
"Notifying BIOS of _CST ability failed"));
}
}
acpi_processor_get_power_info(pr);
pr->flags.power_setup_done = 1;
/*
* Install the idle handler if processor power management is supported.
* Note that we use previously set idle handler will be used on
* platforms that only support C1.
*/
if ((pr->flags.power) && (!boot_option_idle_override)) {
#ifdef CONFIG_CPU_IDLE
acpi_processor_setup_cpuidle(pr);
pr->power.dev.cpu = pr->id;
if (cpuidle_register_device(&pr->power.dev))
return -EIO;
#endif
printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
for (i = 1; i <= pr->power.count; i++)
if (pr->power.states[i].valid)
printk(" C%d[C%d]", i,
pr->power.states[i].type);
printk(")\n");
#ifndef CONFIG_CPU_IDLE
if (pr->id == 0) {
pm_idle_save = pm_idle;
pm_idle = acpi_processor_idle;
}
#endif
}
/* 'power' [R] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
S_IRUGO, acpi_device_dir(device));
if (!entry)
return -EIO;
else {
entry->proc_fops = &acpi_processor_power_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
return 0;
}
int acpi_processor_power_exit(struct acpi_processor *pr,
struct acpi_device *device)
{
#ifdef CONFIG_CPU_IDLE
if ((pr->flags.power) && (!boot_option_idle_override))
cpuidle_unregister_device(&pr->power.dev);
#endif
pr->flags.power_setup_done = 0;
if (acpi_device_dir(device))
remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
acpi_device_dir(device));
#ifndef CONFIG_CPU_IDLE
/* Unregister the idle handler when processor #0 is removed. */
if (pr->id == 0) {
pm_idle = pm_idle_save;
/*
* We are about to unload the current idle thread pm callback
* (pm_idle), Wait for all processors to update cached/local
* copies of pm_idle before proceeding.
*/
cpu_idle_wait();
#ifdef CONFIG_SMP
unregister_latency_notifier(&acpi_processor_latency_notifier);
#endif
}
#endif
return 0;
}