kernel-fxtec-pro1x/arch/mips/kernel/smtc.c
Ralf Baechle 41c594ab65 [MIPS] MT: Improved multithreading support.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-04-19 04:14:28 +02:00

1322 lines
33 KiB
C

/* Copyright (C) 2004 Mips Technologies, Inc */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/hardirq.h>
#include <asm/hazards.h>
#include <asm/mmu_context.h>
#include <asm/smp.h>
#include <asm/mipsregs.h>
#include <asm/cacheflush.h>
#include <asm/time.h>
#include <asm/addrspace.h>
#include <asm/smtc.h>
#include <asm/smtc_ipi.h>
#include <asm/smtc_proc.h>
/*
* This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
*/
/*
* MIPSCPU_INT_BASE is identically defined in both
* asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
* but as yet there's no properly organized include structure that
* will ensure that the right *int.h file will be included for a
* given platform build.
*/
#define MIPSCPU_INT_BASE 16
#define MIPS_CPU_IPI_IRQ 1
#define LOCK_MT_PRA() \
local_irq_save(flags); \
mtflags = dmt()
#define UNLOCK_MT_PRA() \
emt(mtflags); \
local_irq_restore(flags)
#define LOCK_CORE_PRA() \
local_irq_save(flags); \
mtflags = dvpe()
#define UNLOCK_CORE_PRA() \
evpe(mtflags); \
local_irq_restore(flags)
/*
* Data structures purely associated with SMTC parallelism
*/
/*
* Table for tracking ASIDs whose lifetime is prolonged.
*/
asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
/*
* Clock interrupt "latch" buffers, per "CPU"
*/
unsigned int ipi_timer_latch[NR_CPUS];
/*
* Number of InterProcessor Interupt (IPI) message buffers to allocate
*/
#define IPIBUF_PER_CPU 4
struct smtc_ipi_q IPIQ[NR_CPUS];
struct smtc_ipi_q freeIPIq;
/* Forward declarations */
void ipi_decode(struct pt_regs *, struct smtc_ipi *);
void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
void setup_cross_vpe_interrupts(void);
void init_smtc_stats(void);
/* Global SMTC Status */
unsigned int smtc_status = 0;
/* Boot command line configuration overrides */
static int vpelimit = 0;
static int tclimit = 0;
static int ipibuffers = 0;
static int nostlb = 0;
static int asidmask = 0;
unsigned long smtc_asid_mask = 0xff;
static int __init maxvpes(char *str)
{
get_option(&str, &vpelimit);
return 1;
}
static int __init maxtcs(char *str)
{
get_option(&str, &tclimit);
return 1;
}
static int __init ipibufs(char *str)
{
get_option(&str, &ipibuffers);
return 1;
}
static int __init stlb_disable(char *s)
{
nostlb = 1;
return 1;
}
static int __init asidmask_set(char *str)
{
get_option(&str, &asidmask);
switch(asidmask) {
case 0x1:
case 0x3:
case 0x7:
case 0xf:
case 0x1f:
case 0x3f:
case 0x7f:
case 0xff:
smtc_asid_mask = (unsigned long)asidmask;
break;
default:
printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
}
return 1;
}
__setup("maxvpes=", maxvpes);
__setup("maxtcs=", maxtcs);
__setup("ipibufs=", ipibufs);
__setup("nostlb", stlb_disable);
__setup("asidmask=", asidmask_set);
/* Enable additional debug checks before going into CPU idle loop */
#define SMTC_IDLE_HOOK_DEBUG
#ifdef SMTC_IDLE_HOOK_DEBUG
static int hang_trig = 0;
static int __init hangtrig_enable(char *s)
{
hang_trig = 1;
return 1;
}
__setup("hangtrig", hangtrig_enable);
#define DEFAULT_BLOCKED_IPI_LIMIT 32
static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
static int __init tintq(char *str)
{
get_option(&str, &timerq_limit);
return 1;
}
__setup("tintq=", tintq);
int imstuckcount[2][8];
/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
int tcnoprog[NR_CPUS];
static atomic_t idle_hook_initialized = {0};
static int clock_hang_reported[NR_CPUS];
#endif /* SMTC_IDLE_HOOK_DEBUG */
/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
void __init sanitize_tlb_entries(void)
{
printk("Deprecated sanitize_tlb_entries() invoked\n");
}
/*
* Configure shared TLB - VPC configuration bit must be set by caller
*/
void smtc_configure_tlb(void)
{
int i,tlbsiz,vpes;
unsigned long mvpconf0;
unsigned long config1val;
/* Set up ASID preservation table */
for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
for(i = 0; i < MAX_SMTC_ASIDS; i++) {
smtc_live_asid[vpes][i] = 0;
}
}
mvpconf0 = read_c0_mvpconf0();
if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
/* If we have multiple VPEs, try to share the TLB */
if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
/*
* If TLB sizing is programmable, shared TLB
* size is the total available complement.
* Otherwise, we have to take the sum of all
* static VPE TLB entries.
*/
if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
>> MVPCONF0_PTLBE_SHIFT)) == 0) {
/*
* If there's more than one VPE, there had better
* be more than one TC, because we need one to bind
* to each VPE in turn to be able to read
* its configuration state!
*/
settc(1);
/* Stop the TC from doing anything foolish */
write_tc_c0_tchalt(TCHALT_H);
mips_ihb();
/* No need to un-Halt - that happens later anyway */
for (i=0; i < vpes; i++) {
write_tc_c0_tcbind(i);
/*
* To be 100% sure we're really getting the right
* information, we exit the configuration state
* and do an IHB after each rebinding.
*/
write_c0_mvpcontrol(
read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
mips_ihb();
/*
* Only count if the MMU Type indicated is TLB
*/
if(((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
config1val = read_vpe_c0_config1();
tlbsiz += ((config1val >> 25) & 0x3f) + 1;
}
/* Put core back in configuration state */
write_c0_mvpcontrol(
read_c0_mvpcontrol() | MVPCONTROL_VPC );
mips_ihb();
}
}
write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
/*
* Setup kernel data structures to use software total,
* rather than read the per-VPE Config1 value. The values
* for "CPU 0" gets copied to all the other CPUs as part
* of their initialization in smtc_cpu_setup().
*/
tlbsiz = tlbsiz & 0x3f; /* MIPS32 limits TLB indices to 64 */
cpu_data[0].tlbsize = tlbsiz;
smtc_status |= SMTC_TLB_SHARED;
printk("TLB of %d entry pairs shared by %d VPEs\n",
tlbsiz, vpes);
} else {
printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
}
}
}
/*
* Incrementally build the CPU map out of constituent MIPS MT cores,
* using the specified available VPEs and TCs. Plaform code needs
* to ensure that each MIPS MT core invokes this routine on reset,
* one at a time(!).
*
* This version of the build_cpu_map and prepare_cpus routines assumes
* that *all* TCs of a MIPS MT core will be used for Linux, and that
* they will be spread across *all* available VPEs (to minimise the
* loss of efficiency due to exception service serialization).
* An improved version would pick up configuration information and
* possibly leave some TCs/VPEs as "slave" processors.
*
* Use c0_MVPConf0 to find out how many TCs are available, setting up
* phys_cpu_present_map and the logical/physical mappings.
*/
int __init mipsmt_build_cpu_map(int start_cpu_slot)
{
int i, ntcs;
/*
* The CPU map isn't actually used for anything at this point,
* so it's not clear what else we should do apart from set
* everything up so that "logical" = "physical".
*/
ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
cpu_set(i, phys_cpu_present_map);
__cpu_number_map[i] = i;
__cpu_logical_map[i] = i;
}
/* Initialize map of CPUs with FPUs */
cpus_clear(mt_fpu_cpumask);
/* One of those TC's is the one booting, and not a secondary... */
printk("%i available secondary CPU TC(s)\n", i - 1);
return i;
}
/*
* Common setup before any secondaries are started
* Make sure all CPU's are in a sensible state before we boot any of the
* secondaries.
*
* For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
* as possible across the available VPEs.
*/
static void smtc_tc_setup(int vpe, int tc, int cpu)
{
settc(tc);
write_tc_c0_tchalt(TCHALT_H);
mips_ihb();
write_tc_c0_tcstatus((read_tc_c0_tcstatus()
& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
| TCSTATUS_A);
write_tc_c0_tccontext(0);
/* Bind tc to vpe */
write_tc_c0_tcbind(vpe);
/* In general, all TCs should have the same cpu_data indications */
memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
if (cpu_data[0].cputype == CPU_34K)
cpu_data[cpu].options &= ~MIPS_CPU_FPU;
cpu_data[cpu].vpe_id = vpe;
cpu_data[cpu].tc_id = tc;
}
void mipsmt_prepare_cpus(void)
{
int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
unsigned long flags;
unsigned long val;
int nipi;
struct smtc_ipi *pipi;
/* disable interrupts so we can disable MT */
local_irq_save(flags);
/* disable MT so we can configure */
dvpe();
dmt();
freeIPIq.lock = SPIN_LOCK_UNLOCKED;
/*
* We probably don't have as many VPEs as we do SMP "CPUs",
* but it's possible - and in any case we'll never use more!
*/
for (i=0; i<NR_CPUS; i++) {
IPIQ[i].head = IPIQ[i].tail = NULL;
IPIQ[i].lock = SPIN_LOCK_UNLOCKED;
IPIQ[i].depth = 0;
ipi_timer_latch[i] = 0;
}
/* cpu_data index starts at zero */
cpu = 0;
cpu_data[cpu].vpe_id = 0;
cpu_data[cpu].tc_id = 0;
cpu++;
/* Report on boot-time options */
mips_mt_set_cpuoptions ();
if (vpelimit > 0)
printk("Limit of %d VPEs set\n", vpelimit);
if (tclimit > 0)
printk("Limit of %d TCs set\n", tclimit);
if (nostlb) {
printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
}
if (asidmask)
printk("ASID mask value override to 0x%x\n", asidmask);
/* Temporary */
#ifdef SMTC_IDLE_HOOK_DEBUG
if (hang_trig)
printk("Logic Analyser Trigger on suspected TC hang\n");
#endif /* SMTC_IDLE_HOOK_DEBUG */
/* Put MVPE's into 'configuration state' */
write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
val = read_c0_mvpconf0();
nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
if (vpelimit > 0 && nvpe > vpelimit)
nvpe = vpelimit;
ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
if (ntc > NR_CPUS)
ntc = NR_CPUS;
if (tclimit > 0 && ntc > tclimit)
ntc = tclimit;
tcpervpe = ntc / nvpe;
slop = ntc % nvpe; /* Residual TCs, < NVPE */
/* Set up shared TLB */
smtc_configure_tlb();
for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
/*
* Set the MVP bits.
*/
settc(tc);
write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
if (vpe != 0)
printk(", ");
printk("VPE %d: TC", vpe);
for (i = 0; i < tcpervpe; i++) {
/*
* TC 0 is bound to VPE 0 at reset,
* and is presumably executing this
* code. Leave it alone!
*/
if (tc != 0) {
smtc_tc_setup(vpe,tc, cpu);
cpu++;
}
printk(" %d", tc);
tc++;
}
if (slop) {
if (tc != 0) {
smtc_tc_setup(vpe,tc, cpu);
cpu++;
}
printk(" %d", tc);
tc++;
slop--;
}
if (vpe != 0) {
/*
* Clear any stale software interrupts from VPE's Cause
*/
write_vpe_c0_cause(0);
/*
* Clear ERL/EXL of VPEs other than 0
* and set restricted interrupt enable/mask.
*/
write_vpe_c0_status((read_vpe_c0_status()
& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
| ST0_IE));
/*
* set config to be the same as vpe0,
* particularly kseg0 coherency alg
*/
write_vpe_c0_config(read_c0_config());
/* Clear any pending timer interrupt */
write_vpe_c0_compare(0);
/* Propagate Config7 */
write_vpe_c0_config7(read_c0_config7());
}
/* enable multi-threading within VPE */
write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
/* enable the VPE */
write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
}
/*
* Pull any physically present but unused TCs out of circulation.
*/
while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
cpu_clear(tc, phys_cpu_present_map);
cpu_clear(tc, cpu_present_map);
tc++;
}
/* release config state */
write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
printk("\n");
/* Set up coprocessor affinity CPU mask(s) */
for (tc = 0; tc < ntc; tc++) {
if(cpu_data[tc].options & MIPS_CPU_FPU)
cpu_set(tc, mt_fpu_cpumask);
}
/* set up ipi interrupts... */
/* If we have multiple VPEs running, set up the cross-VPE interrupt */
if (nvpe > 1)
setup_cross_vpe_interrupts();
/* Set up queue of free IPI "messages". */
nipi = NR_CPUS * IPIBUF_PER_CPU;
if (ipibuffers > 0)
nipi = ipibuffers;
pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
if (pipi == NULL)
panic("kmalloc of IPI message buffers failed\n");
else
printk("IPI buffer pool of %d buffers\n", nipi);
for (i = 0; i < nipi; i++) {
smtc_ipi_nq(&freeIPIq, pipi);
pipi++;
}
/* Arm multithreading and enable other VPEs - but all TCs are Halted */
emt(EMT_ENABLE);
evpe(EVPE_ENABLE);
local_irq_restore(flags);
/* Initialize SMTC /proc statistics/diagnostics */
init_smtc_stats();
}
/*
* Setup the PC, SP, and GP of a secondary processor and start it
* running!
* smp_bootstrap is the place to resume from
* __KSTK_TOS(idle) is apparently the stack pointer
* (unsigned long)idle->thread_info the gp
*
*/
void smtc_boot_secondary(int cpu, struct task_struct *idle)
{
extern u32 kernelsp[NR_CPUS];
long flags;
int mtflags;
LOCK_MT_PRA();
if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
dvpe();
}
settc(cpu_data[cpu].tc_id);
/* pc */
write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
/* stack pointer */
kernelsp[cpu] = __KSTK_TOS(idle);
write_tc_gpr_sp(__KSTK_TOS(idle));
/* global pointer */
write_tc_gpr_gp((unsigned long)idle->thread_info);
smtc_status |= SMTC_MTC_ACTIVE;
write_tc_c0_tchalt(0);
if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
evpe(EVPE_ENABLE);
}
UNLOCK_MT_PRA();
}
void smtc_init_secondary(void)
{
/*
* Start timer on secondary VPEs if necessary.
* mips_timer_setup should already have been invoked by init/main
* on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
* SMTC init code assigns TCs consdecutively and in ascending order
* to across available VPEs.
*/
if(((read_c0_tcbind() & TCBIND_CURTC) != 0)
&& ((read_c0_tcbind() & TCBIND_CURVPE)
!= cpu_data[smp_processor_id() - 1].vpe_id)){
write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
}
local_irq_enable();
}
void smtc_smp_finish(void)
{
printk("TC %d going on-line as CPU %d\n",
cpu_data[smp_processor_id()].tc_id, smp_processor_id());
}
void smtc_cpus_done(void)
{
}
/*
* Support for SMTC-optimized driver IRQ registration
*/
/*
* SMTC Kernel needs to manipulate low-level CPU interrupt mask
* in do_IRQ. These are passed in setup_irq_smtc() and stored
* in this table.
*/
int setup_irq_smtc(unsigned int irq, struct irqaction * new,
unsigned long hwmask)
{
irq_hwmask[irq] = hwmask;
return setup_irq(irq, new);
}
/*
* IPI model for SMTC is tricky, because interrupts aren't TC-specific.
* Within a VPE one TC can interrupt another by different approaches.
* The easiest to get right would probably be to make all TCs except
* the target IXMT and set a software interrupt, but an IXMT-based
* scheme requires that a handler must run before a new IPI could
* be sent, which would break the "broadcast" loops in MIPS MT.
* A more gonzo approach within a VPE is to halt the TC, extract
* its Restart, Status, and a couple of GPRs, and program the Restart
* address to emulate an interrupt.
*
* Within a VPE, one can be confident that the target TC isn't in
* a critical EXL state when halted, since the write to the Halt
* register could not have issued on the writing thread if the
* halting thread had EXL set. So k0 and k1 of the target TC
* can be used by the injection code. Across VPEs, one can't
* be certain that the target TC isn't in a critical exception
* state. So we try a two-step process of sending a software
* interrupt to the target VPE, which either handles the event
* itself (if it was the target) or injects the event within
* the VPE.
*/
void smtc_ipi_qdump(void)
{
int i;
for (i = 0; i < NR_CPUS ;i++) {
printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
IPIQ[i].depth);
}
}
/*
* The standard atomic.h primitives don't quite do what we want
* here: We need an atomic add-and-return-previous-value (which
* could be done with atomic_add_return and a decrement) and an
* atomic set/zero-and-return-previous-value (which can't really
* be done with the atomic.h primitives). And since this is
* MIPS MT, we can assume that we have LL/SC.
*/
static __inline__ int atomic_postincrement(unsigned int *pv)
{
unsigned long result;
unsigned long temp;
__asm__ __volatile__(
"1: ll %0, %2 \n"
" addu %1, %0, 1 \n"
" sc %1, %2 \n"
" beqz %1, 1b \n"
" sync \n"
: "=&r" (result), "=&r" (temp), "=m" (*pv)
: "m" (*pv)
: "memory");
return result;
}
/* No longer used in IPI dispatch, but retained for future recycling */
static __inline__ int atomic_postclear(unsigned int *pv)
{
unsigned long result;
unsigned long temp;
__asm__ __volatile__(
"1: ll %0, %2 \n"
" or %1, $0, $0 \n"
" sc %1, %2 \n"
" beqz %1, 1b \n"
" sync \n"
: "=&r" (result), "=&r" (temp), "=m" (*pv)
: "m" (*pv)
: "memory");
return result;
}
void smtc_send_ipi(int cpu, int type, unsigned int action)
{
int tcstatus;
struct smtc_ipi *pipi;
long flags;
int mtflags;
if (cpu == smp_processor_id()) {
printk("Cannot Send IPI to self!\n");
return;
}
/* Set up a descriptor, to be delivered either promptly or queued */
pipi = smtc_ipi_dq(&freeIPIq);
if (pipi == NULL) {
bust_spinlocks(1);
mips_mt_regdump(dvpe());
panic("IPI Msg. Buffers Depleted\n");
}
pipi->type = type;
pipi->arg = (void *)action;
pipi->dest = cpu;
if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
/* If not on same VPE, enqueue and send cross-VPE interupt */
smtc_ipi_nq(&IPIQ[cpu], pipi);
LOCK_CORE_PRA();
settc(cpu_data[cpu].tc_id);
write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
UNLOCK_CORE_PRA();
} else {
/*
* Not sufficient to do a LOCK_MT_PRA (dmt) here,
* since ASID shootdown on the other VPE may
* collide with this operation.
*/
LOCK_CORE_PRA();
settc(cpu_data[cpu].tc_id);
/* Halt the targeted TC */
write_tc_c0_tchalt(TCHALT_H);
mips_ihb();
/*
* Inspect TCStatus - if IXMT is set, we have to queue
* a message. Otherwise, we set up the "interrupt"
* of the other TC
*/
tcstatus = read_tc_c0_tcstatus();
if ((tcstatus & TCSTATUS_IXMT) != 0) {
/*
* Spin-waiting here can deadlock,
* so we queue the message for the target TC.
*/
write_tc_c0_tchalt(0);
UNLOCK_CORE_PRA();
/* Try to reduce redundant timer interrupt messages */
if(type == SMTC_CLOCK_TICK) {
if(atomic_postincrement(&ipi_timer_latch[cpu])!=0) {
smtc_ipi_nq(&freeIPIq, pipi);
return;
}
}
smtc_ipi_nq(&IPIQ[cpu], pipi);
} else {
post_direct_ipi(cpu, pipi);
write_tc_c0_tchalt(0);
UNLOCK_CORE_PRA();
}
}
}
/*
* Send IPI message to Halted TC, TargTC/TargVPE already having been set
*/
void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
{
struct pt_regs *kstack;
unsigned long tcstatus;
unsigned long tcrestart;
extern u32 kernelsp[NR_CPUS];
extern void __smtc_ipi_vector(void);
/* Extract Status, EPC from halted TC */
tcstatus = read_tc_c0_tcstatus();
tcrestart = read_tc_c0_tcrestart();
/* If TCRestart indicates a WAIT instruction, advance the PC */
if ((tcrestart & 0x80000000)
&& ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
tcrestart += 4;
}
/*
* Save on TC's future kernel stack
*
* CU bit of Status is indicator that TC was
* already running on a kernel stack...
*/
if(tcstatus & ST0_CU0) {
/* Note that this "- 1" is pointer arithmetic */
kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
} else {
kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
}
kstack->cp0_epc = (long)tcrestart;
/* Save TCStatus */
kstack->cp0_tcstatus = tcstatus;
/* Pass token of operation to be performed kernel stack pad area */
kstack->pad0[4] = (unsigned long)pipi;
/* Pass address of function to be called likewise */
kstack->pad0[5] = (unsigned long)&ipi_decode;
/* Set interrupt exempt and kernel mode */
tcstatus |= TCSTATUS_IXMT;
tcstatus &= ~TCSTATUS_TKSU;
write_tc_c0_tcstatus(tcstatus);
ehb();
/* Set TC Restart address to be SMTC IPI vector */
write_tc_c0_tcrestart(__smtc_ipi_vector);
}
void ipi_resched_interrupt(struct pt_regs *regs)
{
/* Return from interrupt should be enough to cause scheduler check */
}
void ipi_call_interrupt(struct pt_regs *regs)
{
/* Invoke generic function invocation code in smp.c */
smp_call_function_interrupt();
}
void ipi_decode(struct pt_regs *regs, struct smtc_ipi *pipi)
{
void *arg_copy = pipi->arg;
int type_copy = pipi->type;
int dest_copy = pipi->dest;
smtc_ipi_nq(&freeIPIq, pipi);
switch (type_copy) {
case SMTC_CLOCK_TICK:
/* Invoke Clock "Interrupt" */
ipi_timer_latch[dest_copy] = 0;
#ifdef SMTC_IDLE_HOOK_DEBUG
clock_hang_reported[dest_copy] = 0;
#endif /* SMTC_IDLE_HOOK_DEBUG */
local_timer_interrupt(0, NULL, regs);
break;
case LINUX_SMP_IPI:
switch ((int)arg_copy) {
case SMP_RESCHEDULE_YOURSELF:
ipi_resched_interrupt(regs);
break;
case SMP_CALL_FUNCTION:
ipi_call_interrupt(regs);
break;
default:
printk("Impossible SMTC IPI Argument 0x%x\n",
(int)arg_copy);
break;
}
break;
default:
printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
break;
}
}
void deferred_smtc_ipi(struct pt_regs *regs)
{
struct smtc_ipi *pipi;
unsigned long flags;
/* DEBUG */
int q = smp_processor_id();
/*
* Test is not atomic, but much faster than a dequeue,
* and the vast majority of invocations will have a null queue.
*/
if(IPIQ[q].head != NULL) {
while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
/* ipi_decode() should be called with interrupts off */
local_irq_save(flags);
ipi_decode(regs, pipi);
local_irq_restore(flags);
}
}
}
/*
* Send clock tick to all TCs except the one executing the funtion
*/
void smtc_timer_broadcast(int vpe)
{
int cpu;
int myTC = cpu_data[smp_processor_id()].tc_id;
int myVPE = cpu_data[smp_processor_id()].vpe_id;
smtc_cpu_stats[smp_processor_id()].timerints++;
for_each_online_cpu(cpu) {
if (cpu_data[cpu].vpe_id == myVPE &&
cpu_data[cpu].tc_id != myTC)
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
}
}
/*
* Cross-VPE interrupts in the SMTC prototype use "software interrupts"
* set via cross-VPE MTTR manipulation of the Cause register. It would be
* in some regards preferable to have external logic for "doorbell" hardware
* interrupts.
*/
static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
static irqreturn_t ipi_interrupt(int irq, void *dev_idm, struct pt_regs *regs)
{
int my_vpe = cpu_data[smp_processor_id()].vpe_id;
int my_tc = cpu_data[smp_processor_id()].tc_id;
int cpu;
struct smtc_ipi *pipi;
unsigned long tcstatus;
int sent;
long flags;
unsigned int mtflags;
unsigned int vpflags;
/*
* So long as cross-VPE interrupts are done via
* MFTR/MTTR read-modify-writes of Cause, we need
* to stop other VPEs whenever the local VPE does
* anything similar.
*/
local_irq_save(flags);
vpflags = dvpe();
clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
irq_enable_hazard();
evpe(vpflags);
local_irq_restore(flags);
/*
* Cross-VPE Interrupt handler: Try to directly deliver IPIs
* queued for TCs on this VPE other than the current one.
* Return-from-interrupt should cause us to drain the queue
* for the current TC, so we ought not to have to do it explicitly here.
*/
for_each_online_cpu(cpu) {
if (cpu_data[cpu].vpe_id != my_vpe)
continue;
pipi = smtc_ipi_dq(&IPIQ[cpu]);
if (pipi != NULL) {
if (cpu_data[cpu].tc_id != my_tc) {
sent = 0;
LOCK_MT_PRA();
settc(cpu_data[cpu].tc_id);
write_tc_c0_tchalt(TCHALT_H);
mips_ihb();
tcstatus = read_tc_c0_tcstatus();
if ((tcstatus & TCSTATUS_IXMT) == 0) {
post_direct_ipi(cpu, pipi);
sent = 1;
}
write_tc_c0_tchalt(0);
UNLOCK_MT_PRA();
if (!sent) {
smtc_ipi_req(&IPIQ[cpu], pipi);
}
} else {
/*
* ipi_decode() should be called
* with interrupts off
*/
local_irq_save(flags);
ipi_decode(regs, pipi);
local_irq_restore(flags);
}
}
}
return IRQ_HANDLED;
}
static void ipi_irq_dispatch(struct pt_regs *regs)
{
do_IRQ(cpu_ipi_irq, regs);
}
static struct irqaction irq_ipi;
void setup_cross_vpe_interrupts(void)
{
if (!cpu_has_vint)
panic("SMTC Kernel requires Vectored Interupt support");
set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
irq_ipi.handler = ipi_interrupt;
irq_ipi.flags = SA_INTERRUPT;
irq_ipi.name = "SMTC_IPI";
setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
}
/*
* SMTC-specific hacks invoked from elsewhere in the kernel.
*/
void smtc_idle_loop_hook(void)
{
#ifdef SMTC_IDLE_HOOK_DEBUG
int im;
int flags;
int mtflags;
int bit;
int vpe;
int tc;
int hook_ntcs;
/*
* printk within DMT-protected regions can deadlock,
* so buffer diagnostic messages for later output.
*/
char *pdb_msg;
char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
if (atomic_add_return(1, &idle_hook_initialized) == 1) {
int mvpconf0;
/* Tedious stuff to just do once */
mvpconf0 = read_c0_mvpconf0();
hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
if (hook_ntcs > NR_CPUS)
hook_ntcs = NR_CPUS;
for (tc = 0; tc < hook_ntcs; tc++) {
tcnoprog[tc] = 0;
clock_hang_reported[tc] = 0;
}
for (vpe = 0; vpe < 2; vpe++)
for (im = 0; im < 8; im++)
imstuckcount[vpe][im] = 0;
printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
atomic_set(&idle_hook_initialized, 1000);
} else {
/* Someone else is initializing in parallel - let 'em finish */
while (atomic_read(&idle_hook_initialized) < 1000)
;
}
}
/* Have we stupidly left IXMT set somewhere? */
if (read_c0_tcstatus() & 0x400) {
write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
ehb();
printk("Dangling IXMT in cpu_idle()\n");
}
/* Have we stupidly left an IM bit turned off? */
#define IM_LIMIT 2000
local_irq_save(flags);
mtflags = dmt();
pdb_msg = &id_ho_db_msg[0];
im = read_c0_status();
vpe = cpu_data[smp_processor_id()].vpe_id;
for (bit = 0; bit < 8; bit++) {
/*
* In current prototype, I/O interrupts
* are masked for VPE > 0
*/
if (vpemask[vpe][bit]) {
if (!(im & (0x100 << bit)))
imstuckcount[vpe][bit]++;
else
imstuckcount[vpe][bit] = 0;
if (imstuckcount[vpe][bit] > IM_LIMIT) {
set_c0_status(0x100 << bit);
ehb();
imstuckcount[vpe][bit] = 0;
pdb_msg += sprintf(pdb_msg,
"Dangling IM %d fixed for VPE %d\n", bit,
vpe);
}
}
}
/*
* Now that we limit outstanding timer IPIs, check for hung TC
*/
for (tc = 0; tc < NR_CPUS; tc++) {
/* Don't check ourself - we'll dequeue IPIs just below */
if ((tc != smp_processor_id()) &&
ipi_timer_latch[tc] > timerq_limit) {
if (clock_hang_reported[tc] == 0) {
pdb_msg += sprintf(pdb_msg,
"TC %d looks hung with timer latch at %d\n",
tc, ipi_timer_latch[tc]);
clock_hang_reported[tc]++;
}
}
}
emt(mtflags);
local_irq_restore(flags);
if (pdb_msg != &id_ho_db_msg[0])
printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
#endif /* SMTC_IDLE_HOOK_DEBUG */
/*
* To the extent that we've ever turned interrupts off,
* we may have accumulated deferred IPIs. This is subtle.
* If we use the smtc_ipi_qdepth() macro, we'll get an
* exact number - but we'll also disable interrupts
* and create a window of failure where a new IPI gets
* queued after we test the depth but before we re-enable
* interrupts. So long as IXMT never gets set, however,
* we should be OK: If we pick up something and dispatch
* it here, that's great. If we see nothing, but concurrent
* with this operation, another TC sends us an IPI, IXMT
* is clear, and we'll handle it as a real pseudo-interrupt
* and not a pseudo-pseudo interrupt.
*/
if (IPIQ[smp_processor_id()].depth > 0) {
struct smtc_ipi *pipi;
extern void self_ipi(struct smtc_ipi *);
if ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()])) != NULL) {
self_ipi(pipi);
smtc_cpu_stats[smp_processor_id()].selfipis++;
}
}
}
void smtc_soft_dump(void)
{
int i;
printk("Counter Interrupts taken per CPU (TC)\n");
for (i=0; i < NR_CPUS; i++) {
printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
}
printk("Self-IPI invocations:\n");
for (i=0; i < NR_CPUS; i++) {
printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
}
smtc_ipi_qdump();
printk("Timer IPI Backlogs:\n");
for (i=0; i < NR_CPUS; i++) {
printk("%d: %d\n", i, ipi_timer_latch[i]);
}
printk("%d Recoveries of \"stolen\" FPU\n",
atomic_read(&smtc_fpu_recoveries));
}
/*
* TLB management routines special to SMTC
*/
void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
{
unsigned long flags, mtflags, tcstat, prevhalt, asid;
int tlb, i;
/*
* It would be nice to be able to use a spinlock here,
* but this is invoked from within TLB flush routines
* that protect themselves with DVPE, so if a lock is
* held by another TC, it'll never be freed.
*
* DVPE/DMT must not be done with interrupts enabled,
* so even so most callers will already have disabled
* them, let's be really careful...
*/
local_irq_save(flags);
if (smtc_status & SMTC_TLB_SHARED) {
mtflags = dvpe();
tlb = 0;
} else {
mtflags = dmt();
tlb = cpu_data[cpu].vpe_id;
}
asid = asid_cache(cpu);
do {
if (!((asid += ASID_INC) & ASID_MASK) ) {
if (cpu_has_vtag_icache)
flush_icache_all();
/* Traverse all online CPUs (hack requires contigous range) */
for (i = 0; i < num_online_cpus(); i++) {
/*
* We don't need to worry about our own CPU, nor those of
* CPUs who don't share our TLB.
*/
if ((i != smp_processor_id()) &&
((smtc_status & SMTC_TLB_SHARED) ||
(cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
settc(cpu_data[i].tc_id);
prevhalt = read_tc_c0_tchalt() & TCHALT_H;
if (!prevhalt) {
write_tc_c0_tchalt(TCHALT_H);
mips_ihb();
}
tcstat = read_tc_c0_tcstatus();
smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
if (!prevhalt)
write_tc_c0_tchalt(0);
}
}
if (!asid) /* fix version if needed */
asid = ASID_FIRST_VERSION;
local_flush_tlb_all(); /* start new asid cycle */
}
} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
/*
* SMTC shares the TLB within VPEs and possibly across all VPEs.
*/
for (i = 0; i < num_online_cpus(); i++) {
if ((smtc_status & SMTC_TLB_SHARED) ||
(cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
cpu_context(i, mm) = asid_cache(i) = asid;
}
if (smtc_status & SMTC_TLB_SHARED)
evpe(mtflags);
else
emt(mtflags);
local_irq_restore(flags);
}
/*
* Invoked from macros defined in mmu_context.h
* which must already have disabled interrupts
* and done a DVPE or DMT as appropriate.
*/
void smtc_flush_tlb_asid(unsigned long asid)
{
int entry;
unsigned long ehi;
entry = read_c0_wired();
/* Traverse all non-wired entries */
while (entry < current_cpu_data.tlbsize) {
write_c0_index(entry);
ehb();
tlb_read();
ehb();
ehi = read_c0_entryhi();
if((ehi & ASID_MASK) == asid) {
/*
* Invalidate only entries with specified ASID,
* makiing sure all entries differ.
*/
write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
write_c0_entrylo0(0);
write_c0_entrylo1(0);
mtc0_tlbw_hazard();
tlb_write_indexed();
}
entry++;
}
write_c0_index(PARKED_INDEX);
tlbw_use_hazard();
}
/*
* Support for single-threading cache flush operations.
*/
int halt_state_save[NR_CPUS];
/*
* To really, really be sure that nothing is being done
* by other TCs, halt them all. This code assumes that
* a DVPE has already been done, so while their Halted
* state is theoretically architecturally unstable, in
* practice, it's not going to change while we're looking
* at it.
*/
void smtc_cflush_lockdown(void)
{
int cpu;
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id()) {
settc(cpu_data[cpu].tc_id);
halt_state_save[cpu] = read_tc_c0_tchalt();
write_tc_c0_tchalt(TCHALT_H);
}
}
mips_ihb();
}
/* It would be cheating to change the cpu_online states during a flush! */
void smtc_cflush_release(void)
{
int cpu;
/*
* Start with a hazard barrier to ensure
* that all CACHE ops have played through.
*/
mips_ihb();
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id()) {
settc(cpu_data[cpu].tc_id);
write_tc_c0_tchalt(halt_state_save[cpu]);
}
}
mips_ihb();
}