kernel-fxtec-pro1x/arch/cris/arch-v32/drivers/sync_serial.c
Josef Sipek d817be9ca8 [PATCH] struct path: convert cris
Signed-off-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:28:44 -08:00

1282 lines
38 KiB
C

/*
* Simple synchronous serial port driver for ETRAX FS.
*
* Copyright (c) 2005 Axis Communications AB
*
* Author: Mikael Starvik
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/arch/dma.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/hwregs/reg_rdwr.h>
#include <asm/arch/hwregs/sser_defs.h>
#include <asm/arch/hwregs/dma_defs.h>
#include <asm/arch/hwregs/dma.h>
#include <asm/arch/hwregs/intr_vect_defs.h>
#include <asm/arch/hwregs/intr_vect.h>
#include <asm/arch/hwregs/reg_map.h>
#include <asm/sync_serial.h>
/* The receiver is a bit tricky beacuse of the continuous stream of data.*/
/* */
/* Three DMA descriptors are linked together. Each DMA descriptor is */
/* responsible for port->bufchunk of a common buffer. */
/* */
/* +---------------------------------------------+ */
/* | +----------+ +----------+ +----------+ | */
/* +-> | Descr[0] |-->| Descr[1] |-->| Descr[2] |-+ */
/* +----------+ +----------+ +----------+ */
/* | | | */
/* v v v */
/* +-------------------------------------+ */
/* | BUFFER | */
/* +-------------------------------------+ */
/* |<- data_avail ->| */
/* readp writep */
/* */
/* If the application keeps up the pace readp will be right after writep.*/
/* If the application can't keep the pace we have to throw away data. */
/* The idea is that readp should be ready with the data pointed out by */
/* Descr[i] when the DMA has filled in Descr[i+1]. */
/* Otherwise we will discard */
/* the rest of the data pointed out by Descr1 and set readp to the start */
/* of Descr2 */
#define SYNC_SERIAL_MAJOR 125
/* IN_BUFFER_SIZE should be a multiple of 6 to make sure that 24 bit */
/* words can be handled */
#define IN_BUFFER_SIZE 12288
#define IN_DESCR_SIZE 256
#define NUM_IN_DESCR (IN_BUFFER_SIZE/IN_DESCR_SIZE)
#define OUT_BUFFER_SIZE 4096
#define DEFAULT_FRAME_RATE 0
#define DEFAULT_WORD_RATE 7
/* NOTE: Enabling some debug will likely cause overrun or underrun,
* especially if manual mode is use.
*/
#define DEBUG(x)
#define DEBUGREAD(x)
#define DEBUGWRITE(x)
#define DEBUGPOLL(x)
#define DEBUGRXINT(x)
#define DEBUGTXINT(x)
typedef struct sync_port
{
reg_scope_instances regi_sser;
reg_scope_instances regi_dmain;
reg_scope_instances regi_dmaout;
char started; /* 1 if port has been started */
char port_nbr; /* Port 0 or 1 */
char busy; /* 1 if port is busy */
char enabled; /* 1 if port is enabled */
char use_dma; /* 1 if port uses dma */
char tr_running;
char init_irqs;
int output;
int input;
volatile unsigned int out_count; /* Remaining bytes for current transfer */
unsigned char* outp; /* Current position in out_buffer */
volatile unsigned char* volatile readp; /* Next byte to be read by application */
volatile unsigned char* volatile writep; /* Next byte to be written by etrax */
unsigned int in_buffer_size;
unsigned int inbufchunk;
unsigned char out_buffer[OUT_BUFFER_SIZE] __attribute__ ((aligned(32)));
unsigned char in_buffer[IN_BUFFER_SIZE]__attribute__ ((aligned(32)));
unsigned char flip[IN_BUFFER_SIZE] __attribute__ ((aligned(32)));
struct dma_descr_data* next_rx_desc;
struct dma_descr_data* prev_rx_desc;
int full;
dma_descr_data in_descr[NUM_IN_DESCR] __attribute__ ((__aligned__(16)));
dma_descr_context in_context __attribute__ ((__aligned__(32)));
dma_descr_data out_descr __attribute__ ((__aligned__(16)));
dma_descr_context out_context __attribute__ ((__aligned__(32)));
wait_queue_head_t out_wait_q;
wait_queue_head_t in_wait_q;
spinlock_t lock;
} sync_port;
static int etrax_sync_serial_init(void);
static void initialize_port(int portnbr);
static inline int sync_data_avail(struct sync_port *port);
static int sync_serial_open(struct inode *, struct file*);
static int sync_serial_release(struct inode*, struct file*);
static unsigned int sync_serial_poll(struct file *filp, poll_table *wait);
static int sync_serial_ioctl(struct inode*, struct file*,
unsigned int cmd, unsigned long arg);
static ssize_t sync_serial_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t sync_serial_read(struct file *file, char *buf,
size_t count, loff_t *ppos);
#if (defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)) || \
(defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA))
#define SYNC_SER_DMA
#endif
static void send_word(sync_port* port);
static void start_dma(struct sync_port *port, const char* data, int count);
static void start_dma_in(sync_port* port);
#ifdef SYNC_SER_DMA
static irqreturn_t tr_interrupt(int irq, void *dev_id, struct pt_regs * regs);
static irqreturn_t rx_interrupt(int irq, void *dev_id, struct pt_regs * regs);
#endif
#if (defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) && \
!defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)) || \
(defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) && \
!defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA))
#define SYNC_SER_MANUAL
#endif
#ifdef SYNC_SER_MANUAL
static irqreturn_t manual_interrupt(int irq, void *dev_id, struct pt_regs * regs);
#endif
/* The ports */
static struct sync_port ports[]=
{
{
.regi_sser = regi_sser0,
.regi_dmaout = regi_dma4,
.regi_dmain = regi_dma5,
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)
.use_dma = 1,
#else
.use_dma = 0,
#endif
},
{
.regi_sser = regi_sser1,
.regi_dmaout = regi_dma6,
.regi_dmain = regi_dma7,
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA)
.use_dma = 1,
#else
.use_dma = 0,
#endif
}
};
#define NUMBER_OF_PORTS (sizeof(ports)/sizeof(sync_port))
static struct file_operations sync_serial_fops = {
.owner = THIS_MODULE,
.write = sync_serial_write,
.read = sync_serial_read,
.poll = sync_serial_poll,
.ioctl = sync_serial_ioctl,
.open = sync_serial_open,
.release = sync_serial_release
};
static int __init etrax_sync_serial_init(void)
{
ports[0].enabled = 0;
ports[1].enabled = 0;
if (register_chrdev(SYNC_SERIAL_MAJOR,"sync serial", &sync_serial_fops) <0 )
{
printk("unable to get major for synchronous serial port\n");
return -EBUSY;
}
/* Initialize Ports */
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0)
if (crisv32_pinmux_alloc_fixed(pinmux_sser0))
{
printk("Unable to allocate pins for syncrhronous serial port 0\n");
return -EIO;
}
ports[0].enabled = 1;
initialize_port(0);
#endif
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1)
if (crisv32_pinmux_alloc_fixed(pinmux_sser1))
{
printk("Unable to allocate pins for syncrhronous serial port 0\n");
return -EIO;
}
ports[1].enabled = 1;
initialize_port(1);
#endif
printk("ETRAX FS synchronous serial port driver\n");
return 0;
}
static void __init initialize_port(int portnbr)
{
struct sync_port* port = &ports[portnbr];
reg_sser_rw_cfg cfg = {0};
reg_sser_rw_frm_cfg frm_cfg = {0};
reg_sser_rw_tr_cfg tr_cfg = {0};
reg_sser_rw_rec_cfg rec_cfg = {0};
DEBUG(printk("Init sync serial port %d\n", portnbr));
port->port_nbr = portnbr;
port->init_irqs = 1;
port->outp = port->out_buffer;
port->output = 1;
port->input = 0;
port->readp = port->flip;
port->writep = port->flip;
port->in_buffer_size = IN_BUFFER_SIZE;
port->inbufchunk = IN_DESCR_SIZE;
port->next_rx_desc = &port->in_descr[0];
port->prev_rx_desc = &port->in_descr[NUM_IN_DESCR-1];
port->prev_rx_desc->eol = 1;
init_waitqueue_head(&port->out_wait_q);
init_waitqueue_head(&port->in_wait_q);
spin_lock_init(&port->lock);
cfg.out_clk_src = regk_sser_intern_clk;
cfg.out_clk_pol = regk_sser_pos;
cfg.clk_od_mode = regk_sser_no;
cfg.clk_dir = regk_sser_out;
cfg.gate_clk = regk_sser_no;
cfg.base_freq = regk_sser_f29_493;
cfg.clk_div = 256;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
frm_cfg.wordrate = DEFAULT_WORD_RATE;
frm_cfg.type = regk_sser_edge;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.status_pin_dir = regk_sser_in;
frm_cfg.status_pin_use = regk_sser_hold;
frm_cfg.out_on = regk_sser_tr;
frm_cfg.tr_delay = 1;
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
tr_cfg.urun_stop = regk_sser_no;
tr_cfg.sample_size = 7;
tr_cfg.sh_dir = regk_sser_msbfirst;
tr_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
tr_cfg.rate_ctrl = regk_sser_bulk;
tr_cfg.data_pin_use = regk_sser_dout;
tr_cfg.bulk_wspace = 1;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
rec_cfg.sample_size = 7;
rec_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
rec_cfg.fifo_thr = regk_sser_inf;
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
}
static inline int sync_data_avail(struct sync_port *port)
{
int avail;
unsigned char *start;
unsigned char *end;
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
/* 0123456789 0123456789
* ----- - -----
* ^rp ^wp ^wp ^rp
*/
if (end >= start)
avail = end - start;
else
avail = port->in_buffer_size - (start - end);
return avail;
}
static inline int sync_data_avail_to_end(struct sync_port *port)
{
int avail;
unsigned char *start;
unsigned char *end;
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
/* 0123456789 0123456789
* ----- -----
* ^rp ^wp ^wp ^rp
*/
if (end >= start)
avail = end - start;
else
avail = port->flip + port->in_buffer_size - start;
return avail;
}
static int sync_serial_open(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
sync_port* port;
reg_dma_rw_cfg cfg = {.en = regk_dma_yes};
reg_dma_rw_intr_mask intr_mask = {.data = regk_dma_yes};
DEBUG(printk("Open sync serial port %d\n", dev));
if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
/* Allow open this device twice (assuming one reader and one writer) */
if (port->busy == 2)
{
DEBUG(printk("Device is busy.. \n"));
return -EBUSY;
}
if (port->init_irqs) {
if (port->use_dma) {
if (port == &ports[0]){
#ifdef SYNC_SER_DMA
if(request_irq(DMA4_INTR_VECT,
tr_interrupt,
0,
"synchronous serial 0 dma tr",
&ports[0])) {
printk(KERN_CRIT "Can't allocate sync serial port 0 IRQ");
return -EBUSY;
} else if(request_irq(DMA5_INTR_VECT,
rx_interrupt,
0,
"synchronous serial 1 dma rx",
&ports[0])) {
free_irq(DMA4_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 0 IRQ");
return -EBUSY;
} else if (crisv32_request_dma(SYNC_SER0_TX_DMA_NBR,
"synchronous serial 0 dma tr",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser0)) {
free_irq(DMA4_INTR_VECT, &port[0]);
free_irq(DMA5_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 0 TX DMA channel");
return -EBUSY;
} else if (crisv32_request_dma(SYNC_SER0_RX_DMA_NBR,
"synchronous serial 0 dma rec",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser0)) {
crisv32_free_dma(SYNC_SER0_TX_DMA_NBR);
free_irq(DMA4_INTR_VECT, &port[0]);
free_irq(DMA5_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 1 RX DMA channel");
return -EBUSY;
}
#endif
}
else if (port == &ports[1]){
#ifdef SYNC_SER_DMA
if (request_irq(DMA6_INTR_VECT,
tr_interrupt,
0,
"synchronous serial 1 dma tr",
&ports[1])) {
printk(KERN_CRIT "Can't allocate sync serial port 1 IRQ");
return -EBUSY;
} else if (request_irq(DMA7_INTR_VECT,
rx_interrupt,
0,
"synchronous serial 1 dma rx",
&ports[1])) {
free_irq(DMA6_INTR_VECT, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 IRQ");
return -EBUSY;
} else if (crisv32_request_dma(SYNC_SER1_TX_DMA_NBR,
"synchronous serial 1 dma tr",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser1)) {
free_irq(21, &ports[1]);
free_irq(20, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 TX DMA channel");
return -EBUSY;
} else if (crisv32_request_dma(SYNC_SER1_RX_DMA_NBR,
"synchronous serial 3 dma rec",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser1)) {
crisv32_free_dma(SYNC_SER1_TX_DMA_NBR);
free_irq(DMA6_INTR_VECT, &ports[1]);
free_irq(DMA7_INTR_VECT, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 RX DMA channel");
return -EBUSY;
}
#endif
}
/* Enable DMAs */
REG_WR(dma, port->regi_dmain, rw_cfg, cfg);
REG_WR(dma, port->regi_dmaout, rw_cfg, cfg);
/* Enable DMA IRQs */
REG_WR(dma, port->regi_dmain, rw_intr_mask, intr_mask);
REG_WR(dma, port->regi_dmaout, rw_intr_mask, intr_mask);
/* Set up wordsize = 2 for DMAs. */
DMA_WR_CMD (port->regi_dmain, regk_dma_set_w_size1);
DMA_WR_CMD (port->regi_dmaout, regk_dma_set_w_size1);
start_dma_in(port);
port->init_irqs = 0;
} else { /* !port->use_dma */
#ifdef SYNC_SER_MANUAL
if (port == &ports[0]) {
if (request_irq(SSER0_INTR_VECT,
manual_interrupt,
0,
"synchronous serial manual irq",
&ports[0])) {
printk("Can't allocate sync serial manual irq");
return -EBUSY;
}
} else if (port == &ports[1]) {
if (request_irq(SSER1_INTR_VECT,
manual_interrupt,
0,
"synchronous serial manual irq",
&ports[1])) {
printk(KERN_CRIT "Can't allocate sync serial manual irq");
return -EBUSY;
}
}
port->init_irqs = 0;
#else
panic("sync_serial: Manual mode not supported.\n");
#endif /* SYNC_SER_MANUAL */
}
} /* port->init_irqs */
port->busy++;
return 0;
}
static int sync_serial_release(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
sync_port* port;
if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
if (port->busy)
port->busy--;
if (!port->busy)
/* XXX */ ;
return 0;
}
static unsigned int sync_serial_poll(struct file *file, poll_table *wait)
{
int dev = iminor(file->f_path.dentry->d_inode);
unsigned int mask = 0;
sync_port* port;
DEBUGPOLL( static unsigned int prev_mask = 0; );
port = &ports[dev];
poll_wait(file, &port->out_wait_q, wait);
poll_wait(file, &port->in_wait_q, wait);
/* Some room to write */
if (port->out_count < OUT_BUFFER_SIZE)
mask |= POLLOUT | POLLWRNORM;
/* At least an inbufchunk of data */
if (sync_data_avail(port) >= port->inbufchunk)
mask |= POLLIN | POLLRDNORM;
DEBUGPOLL(if (mask != prev_mask)
printk("sync_serial_poll: mask 0x%08X %s %s\n", mask,
mask&POLLOUT?"POLLOUT":"", mask&POLLIN?"POLLIN":"");
prev_mask = mask;
);
return mask;
}
static int sync_serial_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int return_val = 0;
int dev = iminor(file->f_path.dentry->d_inode);
sync_port* port;
reg_sser_rw_tr_cfg tr_cfg;
reg_sser_rw_rec_cfg rec_cfg;
reg_sser_rw_frm_cfg frm_cfg;
reg_sser_rw_cfg gen_cfg;
reg_sser_rw_intr_mask intr_mask;
if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -1;
}
port = &ports[dev];
spin_lock_irq(&port->lock);
tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
frm_cfg = REG_RD(sser, port->regi_sser, rw_frm_cfg);
gen_cfg = REG_RD(sser, port->regi_sser, rw_cfg);
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
switch(cmd)
{
case SSP_SPEED:
if (GET_SPEED(arg) == CODEC)
{
gen_cfg.base_freq = regk_sser_f32;
/* FREQ = 0 => 4 MHz => clk_div = 7*/
gen_cfg.clk_div = 6 + (1 << GET_FREQ(arg));
}
else
{
gen_cfg.base_freq = regk_sser_f29_493;
switch (GET_SPEED(arg))
{
case SSP150:
gen_cfg.clk_div = 29493000 / (150 * 8) - 1;
break;
case SSP300:
gen_cfg.clk_div = 29493000 / (300 * 8) - 1;
break;
case SSP600:
gen_cfg.clk_div = 29493000 / (600 * 8) - 1;
break;
case SSP1200:
gen_cfg.clk_div = 29493000 / (1200 * 8) - 1;
break;
case SSP2400:
gen_cfg.clk_div = 29493000 / (2400 * 8) - 1;
break;
case SSP4800:
gen_cfg.clk_div = 29493000 / (4800 * 8) - 1;
break;
case SSP9600:
gen_cfg.clk_div = 29493000 / (9600 * 8) - 1;
break;
case SSP19200:
gen_cfg.clk_div = 29493000 / (19200 * 8) - 1;
break;
case SSP28800:
gen_cfg.clk_div = 29493000 / (28800 * 8) - 1;
break;
case SSP57600:
gen_cfg.clk_div = 29493000 / (57600 * 8) - 1;
break;
case SSP115200:
gen_cfg.clk_div = 29493000 / (115200 * 8) - 1;
break;
case SSP230400:
gen_cfg.clk_div = 29493000 / (230400 * 8) - 1;
break;
case SSP460800:
gen_cfg.clk_div = 29493000 / (460800 * 8) - 1;
break;
case SSP921600:
gen_cfg.clk_div = 29493000 / (921600 * 8) - 1;
break;
case SSP3125000:
gen_cfg.base_freq = regk_sser_f100;
gen_cfg.clk_div = 100000000 / (3125000 * 8) - 1;
break;
}
}
frm_cfg.wordrate = GET_WORD_RATE(arg);
break;
case SSP_MODE:
switch(arg)
{
case MASTER_OUTPUT:
port->output = 1;
port->input = 0;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_OUTPUT:
port->output = 1;
port->input = 0;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_INPUT:
port->output = 0;
port->input = 1;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_INPUT:
port->output = 0;
port->input = 1;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_BIDIR:
port->output = 1;
port->input = 1;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_BIDIR:
port->output = 1;
port->input = 1;
gen_cfg.clk_dir = regk_sser_in;
break;
default:
spin_unlock_irq(&port->lock);
return -EINVAL;
}
if (!port->use_dma || (arg == MASTER_OUTPUT || arg == SLAVE_OUTPUT))
intr_mask.rdav = regk_sser_yes;
break;
case SSP_FRAME_SYNC:
if (arg & NORMAL_SYNC)
frm_cfg.tr_delay = 1;
else if (arg & EARLY_SYNC)
frm_cfg.tr_delay = 0;
tr_cfg.bulk_wspace = frm_cfg.tr_delay;
frm_cfg.early_wend = regk_sser_yes;
if (arg & BIT_SYNC)
frm_cfg.type = regk_sser_edge;
else if (arg & WORD_SYNC)
frm_cfg.type = regk_sser_level;
else if (arg & EXTENDED_SYNC)
frm_cfg.early_wend = regk_sser_no;
if (arg & SYNC_ON)
frm_cfg.frame_pin_use = regk_sser_frm;
else if (arg & SYNC_OFF)
frm_cfg.frame_pin_use = regk_sser_gio0;
if (arg & WORD_SIZE_8)
rec_cfg.sample_size = tr_cfg.sample_size = 7;
else if (arg & WORD_SIZE_12)
rec_cfg.sample_size = tr_cfg.sample_size = 11;
else if (arg & WORD_SIZE_16)
rec_cfg.sample_size = tr_cfg.sample_size = 15;
else if (arg & WORD_SIZE_24)
rec_cfg.sample_size = tr_cfg.sample_size = 23;
else if (arg & WORD_SIZE_32)
rec_cfg.sample_size = tr_cfg.sample_size = 31;
if (arg & BIT_ORDER_MSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
else if (arg & BIT_ORDER_LSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_lsbfirst;
if (arg & FLOW_CONTROL_ENABLE)
rec_cfg.fifo_thr = regk_sser_thr16;
else if (arg & FLOW_CONTROL_DISABLE)
rec_cfg.fifo_thr = regk_sser_inf;
if (arg & CLOCK_NOT_GATED)
gen_cfg.gate_clk = regk_sser_no;
else if (arg & CLOCK_GATED)
gen_cfg.gate_clk = regk_sser_yes;
break;
case SSP_IPOLARITY:
/* NOTE!! negedge is considered NORMAL */
if (arg & CLOCK_NORMAL)
rec_cfg.clk_pol = regk_sser_neg;
else if (arg & CLOCK_INVERT)
rec_cfg.clk_pol = regk_sser_pos;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_OPOLARITY:
if (arg & CLOCK_NORMAL)
gen_cfg.out_clk_pol = regk_sser_neg;
else if (arg & CLOCK_INVERT)
gen_cfg.out_clk_pol = regk_sser_pos;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_SPI:
rec_cfg.fifo_thr = regk_sser_inf;
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.sample_size = tr_cfg.sample_size = 7;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.type = regk_sser_level;
frm_cfg.tr_delay = 1;
frm_cfg.level = regk_sser_neg_lo;
if (arg & SPI_SLAVE)
{
rec_cfg.clk_pol = regk_sser_neg;
gen_cfg.clk_dir = regk_sser_in;
port->input = 1;
port->output = 0;
}
else
{
gen_cfg.out_clk_pol = regk_sser_pos;
port->input = 0;
port->output = 1;
gen_cfg.clk_dir = regk_sser_out;
}
break;
case SSP_INBUFCHUNK:
break;
default:
return_val = -1;
}
if (port->started)
{
tr_cfg.tr_en = port->output;
rec_cfg.rec_en = port->input;
}
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
spin_unlock_irq(&port->lock);
return return_val;
}
static ssize_t sync_serial_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
int dev = iminor(file->f_path.dentry->d_inode);
DECLARE_WAITQUEUE(wait, current);
sync_port *port;
unsigned long c, c1;
unsigned long free_outp;
unsigned long outp;
unsigned long out_buffer;
unsigned long flags;
if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
DEBUGWRITE(printk("W d%d c %lu (%d/%d)\n", port->port_nbr, count, port->out_count, OUT_BUFFER_SIZE));
/* Space to end of buffer */
/*
* out_buffer <c1>012345<- c ->OUT_BUFFER_SIZE
* outp^ +out_count
^free_outp
* out_buffer 45<- c ->0123OUT_BUFFER_SIZE
* +out_count outp^
* free_outp
*
*/
/* Read variables that may be updated by interrupts */
spin_lock_irqsave(&port->lock, flags);
count = count > OUT_BUFFER_SIZE - port->out_count ? OUT_BUFFER_SIZE - port->out_count : count;
outp = (unsigned long)port->outp;
free_outp = outp + port->out_count;
spin_unlock_irqrestore(&port->lock, flags);
out_buffer = (unsigned long)port->out_buffer;
/* Find out where and how much to write */
if (free_outp >= out_buffer + OUT_BUFFER_SIZE)
free_outp -= OUT_BUFFER_SIZE;
if (free_outp >= outp)
c = out_buffer + OUT_BUFFER_SIZE - free_outp;
else
c = outp - free_outp;
if (c > count)
c = count;
// DEBUGWRITE(printk("w op %08lX fop %08lX c %lu\n", outp, free_outp, c));
if (copy_from_user((void*)free_outp, buf, c))
return -EFAULT;
if (c != count) {
buf += c;
c1 = count - c;
DEBUGWRITE(printk("w2 fi %lu c %lu c1 %lu\n", free_outp-out_buffer, c, c1));
if (copy_from_user((void*)out_buffer, buf, c1))
return -EFAULT;
}
spin_lock_irqsave(&port->lock, flags);
port->out_count += count;
spin_unlock_irqrestore(&port->lock, flags);
/* Make sure transmitter/receiver is running */
if (!port->started)
{
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
tr_cfg.tr_en = port->output;
rec_cfg.rec_en = port->input;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
if (file->f_flags & O_NONBLOCK) {
spin_lock_irqsave(&port->lock, flags);
if (!port->tr_running) {
if (!port->use_dma) {
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
/* Start sender by writing data */
send_word(port);
/* and enable transmitter ready IRQ */
intr_mask.trdy = 1;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
} else {
start_dma(port, (unsigned char* volatile )port->outp, c);
}
}
spin_unlock_irqrestore(&port->lock, flags);
DEBUGWRITE(printk("w d%d c %lu NB\n",
port->port_nbr, count));
return count;
}
/* Sleep until all sent */
add_wait_queue(&port->out_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&port->lock, flags);
if (!port->tr_running) {
if (!port->use_dma) {
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
/* Start sender by writing data */
send_word(port);
/* and enable transmitter ready IRQ */
intr_mask.trdy = 1;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
} else {
start_dma(port, port->outp, c);
}
}
spin_unlock_irqrestore(&port->lock, flags);
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&port->out_wait_q, &wait);
if (signal_pending(current))
{
return -EINTR;
}
DEBUGWRITE(printk("w d%d c %lu\n", port->port_nbr, count));
return count;
}
static ssize_t sync_serial_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
int dev = iminor(file->f_path.dentry->d_inode);
int avail;
sync_port *port;
unsigned char* start;
unsigned char* end;
unsigned long flags;
if (dev < 0 || dev >= NUMBER_OF_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
DEBUGREAD(printk("R%d c %d ri %lu wi %lu /%lu\n", dev, count, port->readp - port->flip, port->writep - port->flip, port->in_buffer_size));
if (!port->started)
{
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
tr_cfg.tr_en = regk_sser_yes;
rec_cfg.rec_en = regk_sser_yes;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
/* Calculate number of available bytes */
/* Save pointers to avoid that they are modified by interrupt */
spin_lock_irqsave(&port->lock, flags);
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
spin_unlock_irqrestore(&port->lock, flags);
while ((start == end) && !port->full) /* No data */
{
if (file->f_flags & O_NONBLOCK)
{
return -EAGAIN;
}
interruptible_sleep_on(&port->in_wait_q);
if (signal_pending(current))
{
return -EINTR;
}
spin_lock_irqsave(&port->lock, flags);
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
spin_unlock_irqrestore(&port->lock, flags);
}
/* Lazy read, never return wrapped data. */
if (port->full)
avail = port->in_buffer_size;
else if (end > start)
avail = end - start;
else
avail = port->flip + port->in_buffer_size - start;
count = count > avail ? avail : count;
if (copy_to_user(buf, start, count))
return -EFAULT;
/* Disable interrupts while updating readp */
spin_lock_irqsave(&port->lock, flags);
port->readp += count;
if (port->readp >= port->flip + port->in_buffer_size) /* Wrap? */
port->readp = port->flip;
port->full = 0;
spin_unlock_irqrestore(&port->lock, flags);
DEBUGREAD(printk("r %d\n", count));
return count;
}
static void send_word(sync_port* port)
{
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_tr_data tr_data = {0};
switch(tr_cfg.sample_size)
{
case 8:
port->out_count--;
tr_data.data = *port->outp++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
break;
case 12:
{
int data = (*port->outp++) << 8;
data |= *port->outp++;
port->out_count-=2;
tr_data.data = data;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
}
break;
case 16:
port->out_count-=2;
tr_data.data = *(unsigned short *)port->outp;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->outp+=2;
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
break;
case 24:
port->out_count-=3;
tr_data.data = *(unsigned short *)port->outp;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->outp+=2;
tr_data.data = *port->outp++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
break;
case 32:
port->out_count-=4;
tr_data.data = *(unsigned short *)port->outp;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->outp+=2;
tr_data.data = *(unsigned short *)port->outp;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->outp+=2;
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
break;
}
}
static void start_dma(struct sync_port* port, const char* data, int count)
{
port->tr_running = 1;
port->out_descr.buf = (char*)virt_to_phys((char*)data);
port->out_descr.after = port->out_descr.buf + count;
port->out_descr.eol = port->out_descr.intr = 1;
port->out_context.saved_data = (dma_descr_data*)virt_to_phys(&port->out_descr);
port->out_context.saved_data_buf = port->out_descr.buf;
DMA_START_CONTEXT(port->regi_dmaout, virt_to_phys((char*)&port->out_context));
DEBUGTXINT(printk("dma %08lX c %d\n", (unsigned long)data, count));
}
static void start_dma_in(sync_port* port)
{
int i;
char* buf;
port->writep = port->flip;
if (port->writep > port->flip + port->in_buffer_size)
{
panic("Offset too large in sync serial driver\n");
return;
}
buf = (char*)virt_to_phys(port->in_buffer);
for (i = 0; i < NUM_IN_DESCR; i++) {
port->in_descr[i].buf = buf;
port->in_descr[i].after = buf + port->inbufchunk;
port->in_descr[i].intr = 1;
port->in_descr[i].next = (dma_descr_data*)virt_to_phys(&port->in_descr[i+1]);
port->in_descr[i].buf = buf;
buf += port->inbufchunk;
}
/* Link the last descriptor to the first */
port->in_descr[i-1].next = (dma_descr_data*)virt_to_phys(&port->in_descr[0]);
port->in_descr[i-1].eol = regk_sser_yes;
port->next_rx_desc = &port->in_descr[0];
port->prev_rx_desc = &port->in_descr[NUM_IN_DESCR - 1];
port->in_context.saved_data = (dma_descr_data*)virt_to_phys(&port->in_descr[0]);
port->in_context.saved_data_buf = port->in_descr[0].buf;
DMA_START_CONTEXT(port->regi_dmain, virt_to_phys(&port->in_context));
}
#ifdef SYNC_SER_DMA
static irqreturn_t tr_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
reg_dma_r_masked_intr masked;
reg_dma_rw_ack_intr ack_intr = {.data = regk_dma_yes};
int i;
struct dma_descr_data *descr;
unsigned int sentl;
int found = 0;
for (i = 0; i < NUMBER_OF_PORTS; i++)
{
sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma )
continue;
masked = REG_RD(dma, port->regi_dmaout, r_masked_intr);
if (masked.data) /* IRQ active for the port? */
{
found = 1;
/* Clear IRQ */
REG_WR(dma, port->regi_dmaout, rw_ack_intr, ack_intr);
descr = &port->out_descr;
sentl = descr->after - descr->buf;
port->out_count -= sentl;
port->outp += sentl;
if (port->outp >= port->out_buffer + OUT_BUFFER_SIZE)
port->outp = port->out_buffer;
if (port->out_count) {
int c;
c = port->out_buffer + OUT_BUFFER_SIZE - port->outp;
if (c > port->out_count)
c = port->out_count;
DEBUGTXINT(printk("tx_int DMAWRITE %i %i\n", sentl, c));
start_dma(port, port->outp, c);
} else {
DEBUGTXINT(printk("tx_int DMA stop %i\n", sentl));
port->tr_running = 0;
}
wake_up_interruptible(&port->out_wait_q); /* wake up the waiting process */
}
}
return IRQ_RETVAL(found);
} /* tr_interrupt */
static irqreturn_t rx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
reg_dma_r_masked_intr masked;
reg_dma_rw_ack_intr ack_intr = {.data = regk_dma_yes};
int i;
int found = 0;
for (i = 0; i < NUMBER_OF_PORTS; i++)
{
sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma )
continue;
masked = REG_RD(dma, port->regi_dmain, r_masked_intr);
if (masked.data) /* Descriptor interrupt */
{
found = 1;
while (REG_RD(dma, port->regi_dmain, rw_data) !=
virt_to_phys(port->next_rx_desc)) {
if (port->writep + port->inbufchunk > port->flip + port->in_buffer_size) {
int first_size = port->flip + port->in_buffer_size - port->writep;
memcpy((char*)port->writep, phys_to_virt((unsigned)port->next_rx_desc->buf), first_size);
memcpy(port->flip, phys_to_virt((unsigned)port->next_rx_desc->buf+first_size), port->inbufchunk - first_size);
port->writep = port->flip + port->inbufchunk - first_size;
} else {
memcpy((char*)port->writep,
phys_to_virt((unsigned)port->next_rx_desc->buf),
port->inbufchunk);
port->writep += port->inbufchunk;
if (port->writep >= port->flip + port->in_buffer_size)
port->writep = port->flip;
}
if (port->writep == port->readp)
{
port->full = 1;
}
port->next_rx_desc->eol = 0;
port->prev_rx_desc->eol = 1;
port->prev_rx_desc = phys_to_virt((unsigned)port->next_rx_desc);
port->next_rx_desc = phys_to_virt((unsigned)port->next_rx_desc->next);
wake_up_interruptible(&port->in_wait_q); /* wake up the waiting process */
DMA_CONTINUE(port->regi_dmain);
REG_WR(dma, port->regi_dmain, rw_ack_intr, ack_intr);
}
}
}
return IRQ_RETVAL(found);
} /* rx_interrupt */
#endif /* SYNC_SER_DMA */
#ifdef SYNC_SER_MANUAL
static irqreturn_t manual_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
int i;
int found = 0;
reg_sser_r_masked_intr masked;
for (i = 0; i < NUMBER_OF_PORTS; i++)
{
sync_port* port = &ports[i];
if (!port->enabled || port->use_dma)
{
continue;
}
masked = REG_RD(sser, port->regi_sser, r_masked_intr);
if (masked.rdav) /* Data received? */
{
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
reg_sser_r_rec_data data = REG_RD(sser, port->regi_sser, r_rec_data);
found = 1;
/* Read data */
switch(rec_cfg.sample_size)
{
case 8:
*port->writep++ = data.data & 0xff;
break;
case 12:
*port->writep = (data.data & 0x0ff0) >> 4;
*(port->writep + 1) = data.data & 0x0f;
port->writep+=2;
break;
case 16:
*(unsigned short*)port->writep = data.data;
port->writep+=2;
break;
case 24:
*(unsigned int*)port->writep = data.data;
port->writep+=3;
break;
case 32:
*(unsigned int*)port->writep = data.data;
port->writep+=4;
break;
}
if (port->writep >= port->flip + port->in_buffer_size) /* Wrap? */
port->writep = port->flip;
if (port->writep == port->readp) {
/* receive buffer overrun, discard oldest data
*/
port->readp++;
if (port->readp >= port->flip + port->in_buffer_size) /* Wrap? */
port->readp = port->flip;
}
if (sync_data_avail(port) >= port->inbufchunk)
wake_up_interruptible(&port->in_wait_q); /* Wake up application */
}
if (masked.trdy) /* Transmitter ready? */
{
found = 1;
if (port->out_count > 0) /* More data to send */
send_word(port);
else /* transmission finished */
{
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
intr_mask.trdy = 0;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
wake_up_interruptible(&port->out_wait_q); /* Wake up application */
}
}
}
return IRQ_RETVAL(found);
}
#endif
module_init(etrax_sync_serial_init);