kernel-fxtec-pro1x/drivers/net/chelsio/sge.c
Herbert Xu 7967168cef [NET]: Merge TSO/UFO fields in sk_buff
Having separate fields in sk_buff for TSO/UFO (tso_size/ufo_size) is not
going to scale if we add any more segmentation methods (e.g., DCCP).  So
let's merge them.

They were used to tell the protocol of a packet.  This function has been
subsumed by the new gso_type field.  This is essentially a set of netdev
feature bits (shifted by 16 bits) that are required to process a specific
skb.  As such it's easy to tell whether a given device can process a GSO
skb: you just have to and the gso_type field and the netdev's features
field.

I've made gso_type a conjunction.  The idea is that you have a base type
(e.g., SKB_GSO_TCPV4) that can be modified further to support new features.
For example, if we add a hardware TSO type that supports ECN, they would
declare NETIF_F_TSO | NETIF_F_TSO_ECN.  All TSO packets with CWR set would
have a gso_type of SKB_GSO_TCPV4 | SKB_GSO_TCPV4_ECN while all other TSO
packets would be SKB_GSO_TCPV4.  This means that only the CWR packets need
to be emulated in software.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-23 02:07:29 -07:00

1684 lines
48 KiB
C

/*****************************************************************************
* *
* File: sge.c *
* $Revision: 1.26 $ *
* $Date: 2005/06/21 18:29:48 $ *
* Description: *
* DMA engine. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"
#ifdef NETIF_F_TSO
#include <linux/tcp.h>
#endif
#define SGE_CMDQ_N 2
#define SGE_FREELQ_N 2
#define SGE_CMDQ0_E_N 1024
#define SGE_CMDQ1_E_N 128
#define SGE_FREEL_SIZE 4096
#define SGE_JUMBO_FREEL_SIZE 512
#define SGE_FREEL_REFILL_THRESH 16
#define SGE_RESPQ_E_N 1024
#define SGE_INTRTIMER_NRES 1000
#define SGE_RX_COPY_THRES 256
#define SGE_RX_SM_BUF_SIZE 1536
# define SGE_RX_DROP_THRES 2
#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
/*
* Period of the TX buffer reclaim timer. This timer does not need to run
* frequently as TX buffers are usually reclaimed by new TX packets.
*/
#define TX_RECLAIM_PERIOD (HZ / 4)
#ifndef NET_IP_ALIGN
# define NET_IP_ALIGN 2
#endif
#define M_CMD_LEN 0x7fffffff
#define V_CMD_LEN(v) (v)
#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
#define V_CMD_GEN1(v) ((v) << 31)
#define V_CMD_GEN2(v) (v)
#define F_CMD_DATAVALID (1 << 1)
#define F_CMD_SOP (1 << 2)
#define V_CMD_EOP(v) ((v) << 3)
/*
* Command queue, receive buffer list, and response queue descriptors.
*/
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 addr_lo;
u32 len_gen;
u32 flags;
u32 addr_hi;
};
struct freelQ_e {
u32 addr_lo;
u32 len_gen;
u32 gen2;
u32 addr_hi;
};
struct respQ_e {
u32 Qsleeping : 4;
u32 Cmdq1CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq0DmaComplete : 5;
u32 FreelistQid : 2;
u32 CreditValid : 1;
u32 DataValid : 1;
u32 Offload : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 GenerationBit : 1;
u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 flags;
};
struct freelQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 gen2;
};
struct respQ_e {
u32 BufferLength;
u32 GenerationBit : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 Offload : 1;
u32 DataValid : 1;
u32 CreditValid : 1;
u32 FreelistQid : 2;
u32 Cmdq0DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq1CreditReturn : 5;
u32 Qsleeping : 4;
} ;
#endif
/*
* SW Context Command and Freelist Queue Descriptors
*/
struct cmdQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
struct freelQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
/*
* SW command, freelist and response rings
*/
struct cmdQ {
unsigned long status; /* HW DMA fetch status */
unsigned int in_use; /* # of in-use command descriptors */
unsigned int size; /* # of descriptors */
unsigned int processed; /* total # of descs HW has processed */
unsigned int cleaned; /* total # of descs SW has reclaimed */
unsigned int stop_thres; /* SW TX queue suspend threshold */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u8 genbit; /* current generation (=valid) bit */
u8 sop; /* is next entry start of packet? */
struct cmdQ_e *entries; /* HW command descriptor Q */
struct cmdQ_ce *centries; /* SW command context descriptor Q */
spinlock_t lock; /* Lock to protect cmdQ enqueuing */
dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
};
struct freelQ {
unsigned int credits; /* # of available RX buffers */
unsigned int size; /* free list capacity */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u16 rx_buffer_size; /* Buffer size on this free list */
u16 dma_offset; /* DMA offset to align IP headers */
u16 recycleq_idx; /* skb recycle q to use */
u8 genbit; /* current generation (=valid) bit */
struct freelQ_e *entries; /* HW freelist descriptor Q */
struct freelQ_ce *centries; /* SW freelist context descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
};
struct respQ {
unsigned int credits; /* credits to be returned to SGE */
unsigned int size; /* # of response Q descriptors */
u16 cidx; /* consumer index (SW) */
u8 genbit; /* current generation(=valid) bit */
struct respQ_e *entries; /* HW response descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
};
/* Bit flags for cmdQ.status */
enum {
CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
};
/*
* Main SGE data structure
*
* Interrupts are handled by a single CPU and it is likely that on a MP system
* the application is migrated to another CPU. In that scenario, we try to
* seperate the RX(in irq context) and TX state in order to decrease memory
* contention.
*/
struct sge {
struct adapter *adapter; /* adapter backpointer */
struct net_device *netdev; /* netdevice backpointer */
struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
struct respQ respQ; /* response Q */
unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
unsigned int jumbo_fl; /* jumbo freelist Q index */
unsigned int intrtimer_nres; /* no-resource interrupt timer */
unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
struct timer_list espibug_timer;
unsigned int espibug_timeout;
struct sk_buff *espibug_skb;
u32 sge_control; /* shadow value of sge control reg */
struct sge_intr_counts stats;
struct sge_port_stats port_stats[MAX_NPORTS];
struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
};
/*
* PIO to indicate that memory mapped Q contains valid descriptor(s).
*/
static inline void doorbell_pio(struct adapter *adapter, u32 val)
{
wmb();
writel(val, adapter->regs + A_SG_DOORBELL);
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
{
unsigned int cidx = q->cidx;
while (q->credits--) {
struct freelQ_ce *ce = &q->centries[cidx];
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(ce->skb);
ce->skb = NULL;
if (++cidx == q->size)
cidx = 0;
}
}
/*
* Free RX free list and response queue resources.
*/
static void free_rx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
if (sge->respQ.entries) {
size = sizeof(struct respQ_e) * sge->respQ.size;
pci_free_consistent(pdev, size, sge->respQ.entries,
sge->respQ.dma_addr);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
if (q->centries) {
free_freelQ_buffers(pdev, q);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct freelQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response queue.
*/
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
q->genbit = 1;
q->size = p->freelQ_size[i];
q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
size = sizeof(struct freelQ_e) * q->size;
q->entries = (struct freelQ_e *)
pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
memset(q->entries, 0, size);
size = sizeof(struct freelQ_ce) * q->size;
q->centries = kmalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
memset(q->centries, 0, size);
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
*
* Note: For T2 FL0 and FL1 are reversed.
*/
sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof(struct cpl_rx_data) +
sge->freelQ[!sge->jumbo_fl].dma_offset;
sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
/*
* Setup which skb recycle Q should be used when recycling buffers from
* each free list.
*/
sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
sge->respQ.genbit = 1;
sge->respQ.size = SGE_RESPQ_E_N;
sge->respQ.credits = 0;
size = sizeof(struct respQ_e) * sge->respQ.size;
sge->respQ.entries = (struct respQ_e *)
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
if (!sge->respQ.entries)
goto err_no_mem;
memset(sge->respQ.entries, 0, size);
return 0;
err_no_mem:
free_rx_resources(sge);
return -ENOMEM;
}
/*
* Reclaims n TX descriptors and frees the buffers associated with them.
*/
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
{
struct cmdQ_ce *ce;
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int cidx = q->cidx;
q->in_use -= n;
ce = &q->centries[cidx];
while (n--) {
if (q->sop)
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
q->sop = 0;
if (ce->skb) {
dev_kfree_skb(ce->skb);
q->sop = 1;
}
ce++;
if (++cidx == q->size) {
cidx = 0;
ce = q->centries;
}
}
q->cidx = cidx;
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
if (q->centries) {
if (q->in_use)
free_cmdQ_buffers(sge, q, q->in_use);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct cmdQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
q->genbit = 1;
q->sop = 1;
q->size = p->cmdQ_size[i];
q->in_use = 0;
q->status = 0;
q->processed = q->cleaned = 0;
q->stop_thres = 0;
spin_lock_init(&q->lock);
size = sizeof(struct cmdQ_e) * q->size;
q->entries = (struct cmdQ_e *)
pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
memset(q->entries, 0, size);
size = sizeof(struct cmdQ_ce) * q->size;
q->centries = kmalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
memset(q->centries, 0, size);
}
/*
* CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
* only. For queue 0 set the stop threshold so we can handle one more
* packet from each port, plus reserve an additional 24 entries for
* Ethernet packets only. Queue 1 never suspends nor do we reserve
* space for Ethernet packets.
*/
sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
(MAX_SKB_FRAGS + 1);
return 0;
err_no_mem:
free_tx_resources(sge);
return -ENOMEM;
}
static inline void setup_ring_params(struct adapter *adapter, u64 addr,
u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
writel((u32)addr, adapter->regs + base_reg_lo);
writel(addr >> 32, adapter->regs + base_reg_hi);
writel(size, adapter->regs + size_reg);
}
/*
* Enable/disable VLAN acceleration.
*/
void t1_set_vlan_accel(struct adapter *adapter, int on_off)
{
struct sge *sge = adapter->sge;
sge->sge_control &= ~F_VLAN_XTRACT;
if (on_off)
sge->sge_control |= F_VLAN_XTRACT;
if (adapter->open_device_map) {
writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
readl(adapter->regs + A_SG_CONTROL); /* flush */
}
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void configure_sge(struct sge *sge, struct sge_params *p)
{
struct adapter *ap = sge->adapter;
writel(0, ap->regs + A_SG_CONTROL);
setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].dma_addr,
sge->freelQ[0].size, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].dma_addr,
sge->freelQ[1].size, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS |
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if defined(__BIG_ENDIAN_BITFIELD)
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/* Initialize no-resource timer */
sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
t1_sge_set_coalesce_params(sge, p);
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
sge->freelQ[sge->jumbo_fl].dma_offset -
sizeof(struct cpl_rx_data);
}
/*
* Frees all SGE related resources and the sge structure itself
*/
void t1_sge_destroy(struct sge *sge)
{
if (sge->espibug_skb)
kfree_skb(sge->espibug_skb);
free_tx_resources(sge);
free_rx_resources(sge);
kfree(sge);
}
/*
* Allocates new RX buffers on the freelist Q (and tracks them on the freelist
* context Q) until the Q is full or alloc_skb fails.
*
* It is possible that the generation bits already match, indicating that the
* buffer is already valid and nothing needs to be done. This happens when we
* copied a received buffer into a new sk_buff during the interrupt processing.
*
* If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
* aligned.
*/
static void refill_free_list(struct sge *sge, struct freelQ *q)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct freelQ_ce *ce = &q->centries[q->pidx];
struct freelQ_e *e = &q->entries[q->pidx];
unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
while (q->credits < q->size) {
struct sk_buff *skb;
dma_addr_t mapping;
skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
if (!skb)
break;
skb_reserve(skb, q->dma_offset);
mapping = pci_map_single(pdev, skb->data, dma_len,
PCI_DMA_FROMDEVICE);
ce->skb = skb;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, dma_len);
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
wmb();
e->gen2 = V_CMD_GEN2(q->genbit);
e++;
ce++;
if (++q->pidx == q->size) {
q->pidx = 0;
q->genbit ^= 1;
ce = q->centries;
e = q->entries;
}
q->credits++;
}
}
/*
* Calls refill_free_list for both free lists. If we cannot fill at least 1/4
* of both rings, we go into 'few interrupt mode' in order to give the system
* time to free up resources.
*/
static void freelQs_empty(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
u32 irqholdoff_reg;
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->fixed_intrtimer;
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
/* We reenable the Qs to force a freelist GTS interrupt later */
doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Disable SGE Interrupts
*/
void t1_sge_intr_disable(struct sge *sge)
{
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
}
/*
* Enable SGE interrupts.
*/
void t1_sge_intr_enable(struct sge *sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
if (sge->adapter->flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
}
/*
* Clear SGE interrupts.
*/
void t1_sge_intr_clear(struct sge *sge)
{
writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
}
/*
* SGE 'Error' interrupt handler
*/
int t1_sge_intr_error_handler(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
if (adapter->flags & TSO_CAPABLE)
cause &= ~F_PACKET_TOO_BIG;
if (cause & F_RESPQ_EXHAUSTED)
sge->stats.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->stats.respQ_overflow++;
CH_ALERT("%s: SGE response queue overflow\n",
adapter->name);
}
if (cause & F_FL_EXHAUSTED) {
sge->stats.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->stats.pkt_too_big++;
CH_ALERT("%s: SGE max packet size exceeded\n",
adapter->name);
}
if (cause & F_PACKET_MISMATCH) {
sge->stats.pkt_mismatch++;
CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(adapter);
writel(cause, adapter->regs + A_SG_INT_CAUSE);
return 0;
}
const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge)
{
return &sge->stats;
}
const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port)
{
return &sge->port_stats[port];
}
/**
* recycle_fl_buf - recycle a free list buffer
* @fl: the free list
* @idx: index of buffer to recycle
*
* Recycles the specified buffer on the given free list by adding it at
* the next available slot on the list.
*/
static void recycle_fl_buf(struct freelQ *fl, int idx)
{
struct freelQ_e *from = &fl->entries[idx];
struct freelQ_e *to = &fl->entries[fl->pidx];
fl->centries[fl->pidx] = fl->centries[idx];
to->addr_lo = from->addr_lo;
to->addr_hi = from->addr_hi;
to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
wmb();
to->gen2 = V_CMD_GEN2(fl->genbit);
fl->credits++;
if (++fl->pidx == fl->size) {
fl->pidx = 0;
fl->genbit ^= 1;
}
}
/**
* get_packet - return the next ingress packet buffer
* @pdev: the PCI device that received the packet
* @fl: the SGE free list holding the packet
* @len: the actual packet length, excluding any SGE padding
* @dma_pad: padding at beginning of buffer left by SGE DMA
* @skb_pad: padding to be used if the packet is copied
* @copy_thres: length threshold under which a packet should be copied
* @drop_thres: # of remaining buffers before we start dropping packets
*
* Get the next packet from a free list and complete setup of the
* sk_buff. If the packet is small we make a copy and recycle the
* original buffer, otherwise we use the original buffer itself. If a
* positive drop threshold is supplied packets are dropped and their
* buffers recycled if (a) the number of remaining buffers is under the
* threshold and the packet is too big to copy, or (b) the packet should
* be copied but there is no memory for the copy.
*/
static inline struct sk_buff *get_packet(struct pci_dev *pdev,
struct freelQ *fl, unsigned int len,
int dma_pad, int skb_pad,
unsigned int copy_thres,
unsigned int drop_thres)
{
struct sk_buff *skb;
struct freelQ_ce *ce = &fl->centries[fl->cidx];
if (len < copy_thres) {
skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
if (likely(skb != NULL)) {
skb_reserve(skb, skb_pad);
skb_put(skb, len);
pci_dma_sync_single_for_cpu(pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
memcpy(skb->data, ce->skb->data + dma_pad, len);
pci_dma_sync_single_for_device(pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
} else if (!drop_thres)
goto use_orig_buf;
recycle_fl_buf(fl, fl->cidx);
return skb;
}
if (fl->credits < drop_thres) {
recycle_fl_buf(fl, fl->cidx);
return NULL;
}
use_orig_buf:
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
skb = ce->skb;
skb_reserve(skb, dma_pad);
skb_put(skb, len);
return skb;
}
/**
* unexpected_offload - handle an unexpected offload packet
* @adapter: the adapter
* @fl: the free list that received the packet
*
* Called when we receive an unexpected offload packet (e.g., the TOE
* function is disabled or the card is a NIC). Prints a message and
* recycles the buffer.
*/
static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
{
struct freelQ_ce *ce = &fl->centries[fl->cidx];
struct sk_buff *skb = ce->skb;
pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
CH_ERR("%s: unexpected offload packet, cmd %u\n",
adapter->name, *skb->data);
recycle_fl_buf(fl, fl->cidx);
}
/*
* Write the command descriptors to transmit the given skb starting at
* descriptor pidx with the given generation.
*/
static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
unsigned int pidx, unsigned int gen,
struct cmdQ *q)
{
dma_addr_t mapping;
struct cmdQ_e *e, *e1;
struct cmdQ_ce *ce;
unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags;
mapping = pci_map_single(adapter->pdev, skb->data,
skb->len - skb->data_len, PCI_DMA_TODEVICE);
ce = &q->centries[pidx];
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) |
V_CMD_GEN2(gen);
e = &q->entries[pidx];
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen);
for (e1 = e, i = 0; nfrags--; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
ce++;
e1++;
if (++pidx == q->size) {
pidx = 0;
gen ^= 1;
ce = q->centries;
e1 = q->entries;
}
mapping = pci_map_page(adapter->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, frag->size);
e1->addr_lo = (u32)mapping;
e1->addr_hi = (u64)mapping >> 32;
e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen);
e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) |
V_CMD_GEN2(gen);
}
ce->skb = skb;
wmb();
e->flags = flags;
}
/*
* Clean up completed Tx buffers.
*/
static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
{
unsigned int reclaim = q->processed - q->cleaned;
if (reclaim) {
free_cmdQ_buffers(sge, q, reclaim);
q->cleaned += reclaim;
}
}
#ifndef SET_ETHTOOL_OPS
# define __netif_rx_complete(dev) netif_rx_complete(dev)
#endif
/*
* We cannot use the standard netif_rx_schedule_prep() because we have multiple
* ports plus the TOE all multiplexing onto a single response queue, therefore
* accepting new responses cannot depend on the state of any particular port.
* So define our own equivalent that omits the netif_running() test.
*/
static inline int napi_schedule_prep(struct net_device *dev)
{
return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state);
}
/**
* sge_rx - process an ingress ethernet packet
* @sge: the sge structure
* @fl: the free list that contains the packet buffer
* @len: the packet length
*
* Process an ingress ethernet pakcet and deliver it to the stack.
*/
static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
{
struct sk_buff *skb;
struct cpl_rx_pkt *p;
struct adapter *adapter = sge->adapter;
sge->stats.ethernet_pkts++;
skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
SGE_RX_DROP_THRES);
if (!skb) {
sge->port_stats[0].rx_drops++; /* charge only port 0 for now */
return 0;
}
p = (struct cpl_rx_pkt *)skb->data;
skb_pull(skb, sizeof(*p));
skb->dev = adapter->port[p->iff].dev;
skb->dev->last_rx = jiffies;
skb->protocol = eth_type_trans(skb, skb->dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
skb->protocol == htons(ETH_P_IP) &&
(skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
sge->port_stats[p->iff].rx_cso_good++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
sge->port_stats[p->iff].vlan_xtract++;
if (adapter->params.sge.polling)
vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
ntohs(p->vlan));
else
vlan_hwaccel_rx(skb, adapter->vlan_grp,
ntohs(p->vlan));
} else if (adapter->params.sge.polling)
netif_receive_skb(skb);
else
netif_rx(skb);
return 0;
}
/*
* Returns true if a command queue has enough available descriptors that
* we can resume Tx operation after temporarily disabling its packet queue.
*/
static inline int enough_free_Tx_descs(const struct cmdQ *q)
{
unsigned int r = q->processed - q->cleaned;
return q->in_use - r < (q->size >> 1);
}
/*
* Called when sufficient space has become available in the SGE command queues
* after the Tx packet schedulers have been suspended to restart the Tx path.
*/
static void restart_tx_queues(struct sge *sge)
{
struct adapter *adap = sge->adapter;
if (enough_free_Tx_descs(&sge->cmdQ[0])) {
int i;
for_each_port(adap, i) {
struct net_device *nd = adap->port[i].dev;
if (test_and_clear_bit(nd->if_port,
&sge->stopped_tx_queues) &&
netif_running(nd)) {
sge->stats.cmdQ_restarted[2]++;
netif_wake_queue(nd);
}
}
}
}
/*
* update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
* information.
*/
static unsigned int update_tx_info(struct adapter *adapter,
unsigned int flags,
unsigned int pr0)
{
struct sge *sge = adapter->sge;
struct cmdQ *cmdq = &sge->cmdQ[0];
cmdq->processed += pr0;
if (flags & F_CMDQ0_ENABLE) {
clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
!test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
flags &= ~F_CMDQ0_ENABLE;
}
if (unlikely(sge->stopped_tx_queues != 0))
restart_tx_queues(sge);
return flags;
}
/*
* Process SGE responses, up to the supplied budget. Returns the number of
* responses processed. A negative budget is effectively unlimited.
*/
static int process_responses(struct adapter *adapter, int budget)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
struct respQ_e *e = &q->entries[q->cidx];
int budget_left = budget;
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
while (likely(budget_left && e->GenerationBit == q->genbit)) {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
/* We batch updates to the TX side to avoid cacheline
* ping-pong of TX state information on MP where the sender
* might run on a different CPU than this function...
*/
if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
cmdq_processed[0] = 0;
}
if (unlikely(cmdq_processed[1] > 16)) {
sge->cmdQ[1].processed += cmdq_processed[1];
cmdq_processed[1] = 0;
}
if (likely(e->DataValid)) {
struct freelQ *fl = &sge->freelQ[e->FreelistQid];
BUG_ON(!e->Sop || !e->Eop);
if (unlikely(e->Offload))
unexpected_offload(adapter, fl);
else
sge_rx(sge, fl, e->BufferLength);
/*
* Note: this depends on each packet consuming a
* single free-list buffer; cf. the BUG above.
*/
if (++fl->cidx == fl->size)
fl->cidx = 0;
if (unlikely(--fl->credits <
fl->size - SGE_FREEL_REFILL_THRESH))
refill_free_list(sge, fl);
} else
sge->stats.pure_rsps++;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
--budget_left;
}
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
budget -= budget_left;
return budget;
}
/*
* A simpler version of process_responses() that handles only pure (i.e.,
* non data-carrying) responses. Such respones are too light-weight to justify
* calling a softirq when using NAPI, so we handle them specially in hard
* interrupt context. The function is called with a pointer to a response,
* which the caller must ensure is a valid pure response. Returns 1 if it
* encounters a valid data-carrying response, 0 otherwise.
*/
static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
do {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
sge->stats.pure_rsps++;
} while (e->GenerationBit == q->genbit && !e->DataValid);
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
return e->GenerationBit == q->genbit;
}
/*
* Handler for new data events when using NAPI. This does not need any locking
* or protection from interrupts as data interrupts are off at this point and
* other adapter interrupts do not interfere.
*/
static int t1_poll(struct net_device *dev, int *budget)
{
struct adapter *adapter = dev->priv;
int effective_budget = min(*budget, dev->quota);
int work_done = process_responses(adapter, effective_budget);
*budget -= work_done;
dev->quota -= work_done;
if (work_done >= effective_budget)
return 1;
__netif_rx_complete(dev);
/*
* Because we don't atomically flush the following write it is
* possible that in very rare cases it can reach the device in a way
* that races with a new response being written plus an error interrupt
* causing the NAPI interrupt handler below to return unhandled status
* to the OS. To protect against this would require flushing the write
* and doing both the write and the flush with interrupts off. Way too
* expensive and unjustifiable given the rarity of the race.
*/
writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
return 0;
}
/*
* Returns true if the device is already scheduled for polling.
*/
static inline int napi_is_scheduled(struct net_device *dev)
{
return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
}
/*
* NAPI version of the main interrupt handler.
*/
static irqreturn_t t1_interrupt_napi(int irq, void *data, struct pt_regs *regs)
{
int handled;
struct adapter *adapter = data;
struct sge *sge = adapter->sge;
struct respQ *q = &adapter->sge->respQ;
/*
* Clear the SGE_DATA interrupt first thing. Normally the NAPI
* handler has control of the response queue and the interrupt handler
* can look at the queue reliably only once it knows NAPI is off.
* We can't wait that long to clear the SGE_DATA interrupt because we
* could race with t1_poll rearming the SGE interrupt, so we need to
* clear the interrupt speculatively and really early on.
*/
writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
spin_lock(&adapter->async_lock);
if (!napi_is_scheduled(sge->netdev)) {
struct respQ_e *e = &q->entries[q->cidx];
if (e->GenerationBit == q->genbit) {
if (e->DataValid ||
process_pure_responses(adapter, e)) {
if (likely(napi_schedule_prep(sge->netdev)))
__netif_rx_schedule(sge->netdev);
else
printk(KERN_CRIT
"NAPI schedule failure!\n");
} else
writel(q->cidx, adapter->regs + A_SG_SLEEPING);
handled = 1;
goto unlock;
} else
writel(q->cidx, adapter->regs + A_SG_SLEEPING);
} else
if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA)
printk(KERN_ERR "data interrupt while NAPI running\n");
handled = t1_slow_intr_handler(adapter);
if (!handled)
sge->stats.unhandled_irqs++;
unlock:
spin_unlock(&adapter->async_lock);
return IRQ_RETVAL(handled != 0);
}
/*
* Main interrupt handler, optimized assuming that we took a 'DATA'
* interrupt.
*
* 1. Clear the interrupt
* 2. Loop while we find valid descriptors and process them; accumulate
* information that can be processed after the loop
* 3. Tell the SGE at which index we stopped processing descriptors
* 4. Bookkeeping; free TX buffers, ring doorbell if there are any
* outstanding TX buffers waiting, replenish RX buffers, potentially
* reenable upper layers if they were turned off due to lack of TX
* resources which are available again.
* 5. If we took an interrupt, but no valid respQ descriptors was found we
* let the slow_intr_handler run and do error handling.
*/
static irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
{
int work_done;
struct respQ_e *e;
struct adapter *adapter = cookie;
struct respQ *Q = &adapter->sge->respQ;
spin_lock(&adapter->async_lock);
e = &Q->entries[Q->cidx];
prefetch(e);
writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
if (likely(e->GenerationBit == Q->genbit))
work_done = process_responses(adapter, -1);
else
work_done = t1_slow_intr_handler(adapter);
/*
* The unconditional clearing of the PL_CAUSE above may have raced
* with DMA completion and the corresponding generation of a response
* to cause us to miss the resulting data interrupt. The next write
* is also unconditional to recover the missed interrupt and render
* this race harmless.
*/
writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
if (!work_done)
adapter->sge->stats.unhandled_irqs++;
spin_unlock(&adapter->async_lock);
return IRQ_RETVAL(work_done != 0);
}
intr_handler_t t1_select_intr_handler(adapter_t *adapter)
{
return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt;
}
/*
* Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
*
* The code figures out how many entries the sk_buff will require in the
* cmdQ and updates the cmdQ data structure with the state once the enqueue
* has complete. Then, it doesn't access the global structure anymore, but
* uses the corresponding fields on the stack. In conjuction with a spinlock
* around that code, we can make the function reentrant without holding the
* lock when we actually enqueue (which might be expensive, especially on
* architectures with IO MMUs).
*
* This runs with softirqs disabled.
*/
static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid, struct net_device *dev)
{
struct sge *sge = adapter->sge;
struct cmdQ *q = &sge->cmdQ[qid];
unsigned int credits, pidx, genbit, count;
spin_lock(&q->lock);
reclaim_completed_tx(sge, q);
pidx = q->pidx;
credits = q->size - q->in_use;
count = 1 + skb_shinfo(skb)->nr_frags;
{ /* Ethernet packet */
if (unlikely(credits < count)) {
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
sge->stats.cmdQ_full[2]++;
spin_unlock(&q->lock);
if (!netif_queue_stopped(dev))
CH_ERR("%s: Tx ring full while queue awake!\n",
adapter->name);
return NETDEV_TX_BUSY;
}
if (unlikely(credits - count < q->stop_thres)) {
sge->stats.cmdQ_full[2]++;
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
}
}
q->in_use += count;
genbit = q->genbit;
q->pidx += count;
if (q->pidx >= q->size) {
q->pidx -= q->size;
q->genbit ^= 1;
}
spin_unlock(&q->lock);
write_tx_descs(adapter, skb, pidx, genbit, q);
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid)
doorbell_pio(adapter, F_CMDQ1_ENABLE);
else {
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
}
return NETDEV_TX_OK;
}
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
/*
* eth_hdr_len - return the length of an Ethernet header
* @data: pointer to the start of the Ethernet header
*
* Returns the length of an Ethernet header, including optional VLAN tag.
*/
static inline int eth_hdr_len(const void *data)
{
const struct ethhdr *e = data;
return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
}
/*
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
*/
int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port];
struct sge *sge = adapter->sge;
struct cpl_tx_pkt *cpl;
#ifdef NETIF_F_TSO
if (skb_shinfo(skb)->gso_size) {
int eth_type;
struct cpl_tx_pkt_lso *hdr;
st->tso++;
eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
CPL_ETH_II : CPL_ETH_II_VLAN;
hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
hdr->opcode = CPL_TX_PKT_LSO;
hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
hdr->ip_hdr_words = skb->nh.iph->ihl;
hdr->tcp_hdr_words = skb->h.th->doff;
hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
skb_shinfo(skb)->gso_size));
hdr->len = htonl(skb->len - sizeof(*hdr));
cpl = (struct cpl_tx_pkt *)hdr;
sge->stats.tx_lso_pkts++;
} else
#endif
{
/*
* Packets shorter than ETH_HLEN can break the MAC, drop them
* early. Also, we may get oversized packets because some
* parts of the kernel don't handle our unusual hard_header_len
* right, drop those too.
*/
if (unlikely(skb->len < ETH_HLEN ||
skb->len > dev->mtu + eth_hdr_len(skb->data))) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* We are using a non-standard hard_header_len and some kernel
* components, such as pktgen, do not handle it right.
* Complain when this happens but try to fix things up.
*/
if (unlikely(skb_headroom(skb) <
dev->hard_header_len - ETH_HLEN)) {
struct sk_buff *orig_skb = skb;
if (net_ratelimit())
printk(KERN_ERR "%s: inadequate headroom in "
"Tx packet\n", dev->name);
skb = skb_realloc_headroom(skb, sizeof(*cpl));
dev_kfree_skb_any(orig_skb);
if (!skb)
return NETDEV_TX_OK;
}
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
skb->ip_summed == CHECKSUM_HW &&
skb->nh.iph->protocol == IPPROTO_UDP)
if (unlikely(skb_checksum_help(skb, 0))) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Hmmm, assuming to catch the gratious arp... and we'll use
* it to flush out stuck espi packets...
*/
if (unlikely(!adapter->sge->espibug_skb)) {
if (skb->protocol == htons(ETH_P_ARP) &&
skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
adapter->sge->espibug_skb = skb;
/* We want to re-use this skb later. We
* simply bump the reference count and it
* will not be freed...
*/
skb = skb_get(skb);
}
}
cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
cpl->opcode = CPL_TX_PKT;
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
/* the length field isn't used so don't bother setting it */
st->tx_cso += (skb->ip_summed == CHECKSUM_HW);
sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_HW);
sge->stats.tx_reg_pkts++;
}
cpl->iff = dev->if_port;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
cpl->vlan_valid = 1;
cpl->vlan = htons(vlan_tx_tag_get(skb));
st->vlan_insert++;
} else
#endif
cpl->vlan_valid = 0;
dev->trans_start = jiffies;
return t1_sge_tx(skb, adapter, 0, dev);
}
/*
* Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
*/
static void sge_tx_reclaim_cb(unsigned long data)
{
int i;
struct sge *sge = (struct sge *)data;
for (i = 0; i < SGE_CMDQ_N; ++i) {
struct cmdQ *q = &sge->cmdQ[i];
if (!spin_trylock(&q->lock))
continue;
reclaim_completed_tx(sge, q);
if (i == 0 && q->in_use) /* flush pending credits */
writel(F_CMDQ0_ENABLE,
sge->adapter->regs + A_SG_DOORBELL);
spin_unlock(&q->lock);
}
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
}
/*
* Propagate changes of the SGE coalescing parameters to the HW.
*/
int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
{
sge->netdev->poll = t1_poll;
sge->fixed_intrtimer = p->rx_coalesce_usecs *
core_ticks_per_usec(sge->adapter);
writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
return 0;
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*/
int t1_sge_configure(struct sge *sge, struct sge_params *p)
{
if (alloc_rx_resources(sge, p))
return -ENOMEM;
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return -ENOMEM;
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return 0;
}
/*
* Disables the DMA engine.
*/
void t1_sge_stop(struct sge *sge)
{
writel(0, sge->adapter->regs + A_SG_CONTROL);
(void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
if (is_T2(sge->adapter))
del_timer_sync(&sge->espibug_timer);
del_timer_sync(&sge->tx_reclaim_timer);
}
/*
* Enables the DMA engine.
*/
void t1_sge_start(struct sge *sge)
{
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
(void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
if (is_T2(sge->adapter))
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Callback for the T2 ESPI 'stuck packet feature' workaorund
*/
static void espibug_workaround(void *data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
if (netif_running(adapter->port[0].dev)) {
struct sk_buff *skb = sge->espibug_skb;
u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff && skb) {
if (!skb->cb[0]) {
u8 ch_mac_addr[ETH_ALEN] =
{0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
memcpy(skb->data + sizeof(struct cpl_tx_pkt),
ch_mac_addr, ETH_ALEN);
memcpy(skb->data + skb->len - 10, ch_mac_addr,
ETH_ALEN);
skb->cb[0] = 0xff;
}
/* bump the reference count to avoid freeing of the
* skb once the DMA has completed.
*/
skb = skb_get(skb);
t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
}
}
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Creates a t1_sge structure and returns suggested resource parameters.
*/
struct sge * __devinit t1_sge_create(struct adapter *adapter,
struct sge_params *p)
{
struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
if (!sge)
return NULL;
memset(sge, 0, sizeof(*sge));
sge->adapter = adapter;
sge->netdev = adapter->port[0].dev;
sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
init_timer(&sge->tx_reclaim_timer);
sge->tx_reclaim_timer.data = (unsigned long)sge;
sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
if (is_T2(sge->adapter)) {
init_timer(&sge->espibug_timer);
sge->espibug_timer.function = (void *)&espibug_workaround;
sge->espibug_timer.data = (unsigned long)sge->adapter;
sge->espibug_timeout = 1;
}
p->cmdQ_size[0] = SGE_CMDQ0_E_N;
p->cmdQ_size[1] = SGE_CMDQ1_E_N;
p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
p->rx_coalesce_usecs = 50;
p->coalesce_enable = 0;
p->sample_interval_usecs = 0;
p->polling = 0;
return sge;
}